- 1. (a) Define $f: I \to \mathbb{R}$ is a continuous function where I is an interval.
 - (b) Suppose $f:[a,b]\to\mathbb{R}$ is continuous and is such that f(x) is never rational for any $x\in[a,b]$. If $f(a)=\sqrt{2}$, find f(b). Justify.
 - (c) If f and g are both continuous defined on the same interval $I \subseteq \mathbb{R}$. Let $A = \{x : f(x) = g(x)\}$. If $x_n \in A$ and $x_n \to t \in I$, show that $t \in A$.
- 2. (a) Let A and B two sets that are bounded above. Prove that $C = \{x+y : x \in A, y \in B\}$ is also bounded above. Further show that

$$\sup C = \sup A + \sup B.$$

- (b) Let $S = \{x : x = \left(-\frac{1}{2}\right)^m \frac{3}{n}, n, m \in \mathbb{N}\}$. Find the sup and inf of S.
- 3. Consider the polynomial $p(x) = x^3 7x + 4$. Construct a suitable contractive sequence and deduce that there is a solution of p(x) = 0 in (0, 1).
- 4. (a) Define " $f: A \to \mathbb{R}$ is uniformly continuous".
 - (b) Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ be uniformly continuous. If (x_n) is a Cauchy sequence with $x_n \in A$, prove that $(f(x_n))$ is Cauchy.
 - (c) If $f:A\to\mathbb{R}$ is uniformly continuous and in addition, $A\subset\mathbb{R}$ is a bounded set, show that f is bounded.
- 5. (a) State the Mean Value Theorem.
 - (b) Suppose $f: \mathbb{R} \to \mathbb{R}$ has a derivative at all points and that f(c) = 0 for some $c \in \mathbb{R}$. Show that g(x) = |f(x)| has a derivative at c if and only if f'(c) = 0.
 - (c) Let $f:[0,1] \to \mathbb{R}$ be continuous on [0,1] and differentiable on (0,1). If f(0)=0 and f' is decreasing on (0,1), prove that

i.
$$\frac{f(x)}{x} \ge f'(x)$$
 for $0 < x < 1$ and

ii. the function $g:(0,1)\to\mathbb{R}$ defined by $g(x)=\frac{f(x)}{x}$ is decreasing on (0,1).

- 6. (a) State the Bolzano-Weierstrasse Theorem.
 - (b) Suppose $A \subset \mathbb{R}$, prove that either A is bounded below or there exists a sequence $(x_n), x_n \in A$, such that $\lim x_n = -\infty$.
 - (c) Let $f:[a,b]\to\mathbb{R}$ be continuous. Assume that such a function is bounded. Prove that f attains its sup and inf in [a,b].
- 7. (a) State the Location of Roots Theorem.
 - (b) Suppose $p(x) = a_{2m}x^{2m} + a_{2m-1}x^{2m-1} + \cdots + a_1x + a_0$ for some $m \in \mathbb{N}$ (i.e. a polynomial function of even degree) such that $(a_{2m})(a_0) < 0$. Show that there are at least two values $t_1, t_2 \in \mathbb{R}$ such that $p(t_1) = 0 = p(t_2)$.

(<u>Hint</u> First consider the case when $a_{2m} > 0$.)

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-242A

<u>ANALYSIS I</u>

Examiner: Professor K.N. GowriSankaran Date: Tuesday, December 15, 1998 Associate Examiner: Professor S.W. Drury Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

CALCULATORS ARE NOT PERMITTED.
All questions count equally.

This exam comprises the cover and 2 pages of questions.