- 1. (a) Define the concepts ' (a_n) converges to a' and ' (b_n) tends to ∞ '.
 - (b) Let $0 < a \le b \le c$. Prove that $([a^n + b^n + c^n]^{1/n})$ converges to c.
 - (c) Suppose $x_n \geq 0$ for all n and that $((-1)^n x_n)$ converges. Prove that (x_n) converges.
- 2. (a) Let (a_n) be a monotone increasing sequence. Prove that either (a_n) converges to $a \in \mathbb{R}$ or (a_n) tends to ∞ .
 - (b) Let (a_n) be an increasing sequence which converges to a. Define

$$b_n := \frac{1}{n}[a_1 + a_2 + \dots + a_n]$$

for all $n \in N$. Prove that (b_n) is increasing and converges to a.

3. (a) State the Mean Value Theorem.

Final Examination

- (b) If f is differentiable on an interval I and f' is bounded, prove that f satisfies a Lipschitz condition and hence that f is also uniformly continuous on I.
- (c) Hence or otherwise prove that $x \mapsto \sin x$ is uniformly continuous on \mathbb{R} .
- (d) Let f be a monotone function on [a,b] such that f satisfies the intermediate value property. Show that f is continuous.
- 4. A differentiable function $f: I \to R$ (where I := [a, b]) is said to be uniformly differentiable if for every $\varepsilon > 0$ there exists a $\delta > 0$, such that $\left| \frac{f(x) f(y)}{x y} f'(x) \right| < \varepsilon$ whenever $|x y| < \delta$ and $x, y \in I$.

Prove that f is uniformly differentiable if and only if f' is continuous on I.

- 5. (a) Suppose f is uniformly continuous on [a, b] and on [b, c]. Prove that f is uniformly continuous on [a, c].
 - (b) Let $f:A\to\mathbb{R}$ be uniformly continuous and further for every $x\in A,$ $|f(x)|\geq k>0.$ Prove that $\frac{1}{f}$ is uniformly continuous on A.
 - (c) Give an example of a uniformly continuous function f such that $\frac{1}{f}$ is not uniformly continuous.
- 6. (a) Let I be an interval and $f: I \to \mathbb{R}$ continuous. Further, let |f(x)| > 0 for all $x \in I$. Prove that either f(x) > 0 for all $x \in I$ or f(x) < 0 for all $x \in I$.
 - (b) Let $p(x) := x^4 + ax^3 + bx^2 + cx + 1$. Show that $\lim_{x \to \pm \infty} p(x) = \infty$. Hence, prove that there exists a $x_0 \in \mathbb{R}$ such that $p(x_0) = \text{Inf. } \{p(x) : x \in \mathbb{R}\}$.

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-242A

ANALYSIS I

Examiner: Professor K. GowriSankaran Date: Thursday, December 11, 1997 Associate Examiner: Professor S. Drury Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

All questions count equally though the level of difficulty may vary. NO CALCULATORS PERMITTED

This exam comprises the cover and 1 page of questions.