- 1. (a) Define what is meant by a bounded sequence, a convergent sequence, a monotone sequence. Prove that a convergent sequence is bounded. Give an example to show that a bounded sequence need not be convergent.
 - (b) If (a_n) is a convergent sequence, (b_n) a bounded sequence and $\lim(a_n) = 0$, show that $(a_n b_n)$ is convergent and $\lim(a_n b_n) = 0$.
- 2. (a) If S is a bounded nonempty set in \mathbb{R} , show that the set $S' = \{x : -x \in S\}$ is bounded, and determine its bounds in terms of the bounds of S.
 - (b) Let A and B be bounded nonempty subsets of \mathbb{R} , and let $A + B = \{a + b : a \in A, b \in B\}$. Prove that $\sup(A + B) = \sup A + \sup B$.
- 3. (a) If $a_n = \frac{1}{n+1} + \ldots + \frac{1}{2n}$, for all $n \in \mathbb{N}$, show that $\frac{1}{2} \leq a_n \leq 1$ for all n; show further that (a_n) converges.
 - (b) If $a_n = \sqrt{n+1} \sqrt{n}$ for all $n \in \mathbb{N}$, show that (a_n) and $(\sqrt{n}a_n)$ both converge.
- 4. (a) Let $f:[a,b]\to\mathbb{R}$ be continuous. Prove that f attains an absolute maximum on [a,b].
 - (b) Suppose that $f:(a,b)\to\mathbb{R}$ is continuous and let

$$\lim_{x \to a+} f(x) = \lim_{x \to b-} f(x) = 0.$$

If $f\left(\frac{a+b}{2}\right)>0$ prove that f attains an absolute maximum at some point $c\in(a,b).$

- 5. Define what is meant by the statement that a function f is uniformly continuous on an interval. State a theorem on the uniform continuity of a continuous function on a bounded closed interval. Show that a function f can be uniformly continuous on every bounded interval and yet not be uniformly continuous on \mathbb{R} . Show however that if in addition $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$ both exist and are finite, then f is uniformly continuous on \mathbb{R} .
- 6. State the Mean-Value Theorem.

Let f be a differentiable function in $\mathbb R$ with $|f'(x)| \leq \frac{1}{2}$ for all $x \in \mathbb R$. Prove that for any $x,y \in \mathbb R$

$$|f(x)-f(y)|\leq rac{1}{2}|x-y|$$
 .

FACULTY OF SCIENCE

FINAL EXAMINATION

$\underline{\text{MATHEMATICS } 189\text{-}242A}$

REAL ANALYSIS I

Examiner: Professor J.R. Choksi Date: Tuesday, December 10, 1996 Associate Examiner: Professor S.W. Drury Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

No Calculators, Notes or Books Permitted
All questions carry equal marks

This exam comprises the cover and 1 page of questions.