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where the question is printed!
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1. (a) [7 MARKS] Let f : A ! B be a function. Show carefully that, if f is an
injection, and S and T are subsets of A,

f(S \ T ) = f(S) \ f(T ) : (1)

(b) [3 MARKS] Show that (??) need not hold if f is not an injection.
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2. [10 MARKS] A simple undirected graph G = (V;E) (i.e., an undirected graph
G = (V;E) without loops or multiple edges) has the property that its chromatic
number is 3; but that, after any edge is removed, the resulting graph has chromatic
number 2. Showing all your work, determine all graphs G with this property.
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3. [10 MARKS] An examination has 5 problems, on each of which a student can
obtain a grade between 0 and 3 inclusive. Using generating functions | no other
method will be accepted here | determine the number of di�erent ways in which
a student can obtain a grade of 9.
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4. [10 MARKS] Using any method studied in this course, solve the recurrence
a
n+1 = 2a

n
+ 3a

n�1, (n � 1), subject to initial conditions a0 = 1, a1 = 7.
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5. (a) [5 MARKS] Determine the number of di�erent strings that can be formed
from all the letters of the word PEPPERCORN.

(b) [5 MARKS] Determine the number of di�erent strings that can be formed from
all the letters of the word PEPPERCORN where the letters C and N cannot
be side by side (in either order), and where O cannot appear immediately to
the left of N.

(c) [5 MARKS] Determine the number of di�erent strings that can be formed
from all the letters of the word PEPPERCORN where no two P's can appear
side by side.
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6. (a) [5 MARKS] Prove or disprove: If (P;R) and (Q;S) are posets with
jP j = jQj = 4, and if jRj = jSj, then there exists a bijection f : P ! Q

such that

8p1 2 P
h
8p2 2 P [((p1; p2) 2 R), ((f(p1); f(p2)) 2 S)]

i

(b) [5 MARKS] Prove or disprove: On the set f1; 2; 3g there is no equivalence
relation R for which jRj = 6 .
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7. (a) [5 MARKS] Prove or disprove: There exist at least 2 non-isomorphic graphs
on 8 vertices whose degrees are 2, 2, 2, 2, 3, 3, 3, 3.

(b) [5 MARKS] Prove or disprove: There exist at least 2 non-isomorphic trees on
10 vertices whose degrees are 1, 1, 1, 1, 1, 2, 3, 3, 3, 4.
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8. (a) [7 MARKS] Show that, if 5 distinct integers are selected from the set

f1; 2; 3; 4; 5; 6; 7; 8g ;

then there must be a pair of these integers whose sum is equal to 9.

(b) [3 MARKS] Show that the preceding statement fails if only 4 distinct integers
are selected from the set.
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9. (a) [5 MARKS] Let p be a positive prime integer. Describe in detail an algorithm
by which one can �nd, for each integer a which is not divisible by p, integers
b and c such that

ab+ pc = 1 :

(b) [5 MARKS] Show that 127 is prime by dividing it by certain positive integers
less than 12. Explain why your method works.

(c) [5 MARKS] Use the method you have described in (a) to determine, for the
integer 15, an integer ` such that

15 ` � 0 (mod 127) :
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continuation page for problem number

You must refer to this continuation page on the page where the problem is printed!
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continuation page for problem number

You must refer to this continuation page on the page where the problem is printed!


