Final Examination

- 1. (6%) Identify which of the following are true for all sets A and B. Justify your answers by giving a proof in case it is always true, and a counterexample otherwise.
 - (a) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B).$
 - (b) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B).$
 - (c) $A \times (B \cup A) = (A \times B) \cup (A \times A).$
- 2. (8%) Suppose that m and n are natural numbers with m < n.

Show that $\begin{pmatrix} 2n \\ m \end{pmatrix} < \begin{pmatrix} 2n \\ n \end{pmatrix}$.

- 3. (7%) Suppose that G is a commutative group and H and K are subgroups of G.
 - (a) Show that the set $HK = \{hk \in G : h \in H, k \in K\}$ is also a subgroup of G.
 - (b) Give a counterexample in case G is not assumed to be commutative. [Hint: You might want to consider the matrices $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$.]
- 4. (9%) Which of the following is a subring of $\mathcal{Z}[x]$? Which is an ideal? Justify your answers.
 - (a) The set of all polynomials in $\mathcal{Z}[x]$ of degree at least 3, together with 0.
 - (b) The set $\{a_3x^3 + a_4x^4 + \dots + a_kx^k : a_3, a_4, \dots, a_k \in \mathbb{Z}\}.$
 - (c) The set $\{a_0 + a_2x^2 + a_4x^4 + \dots + a_{2n}x^{2n} : a_0, a_2, \dots, a_{2n} \in \mathbb{Z}\}.$
- 5. (7%) Show that $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in \mathbb{Z}_2 \right\}$ is a ring with unity. How many elements does it have? Is it commutative? What are the units (i.e., the elements with multiplicative inverses in the ring)? Justify everything.

Final Examination

- 6. (7%) Suppose that R and S are rings, I is an ideal of R and J is an ideal of S. Show that $I \times J$ is an ideal of $R \times S$ and that $(R \times S)/(I \times J) \cong (R/I) \times (S/J)$.
- 7. (8%) Find a subfield F of C isomorphic to $\mathcal{Q}/(x^2+13)$; give two different isomorphisms between F and $\mathcal{Q}/(x^2+13)$.
- 8. (10%) Suppose that F is a field and that the nonconstant polynomials P(x) and Q(x) in F[x] are relatively prime. Suppose that R(x) and S(x) are any polynomials in F[x]. Prove that there is a polynomial $T(x) \in F[x]$ such that

$$T(x) \equiv R(x) \pmod{P(x)}$$
 and $T(x) \equiv S(x) \pmod{Q(x)}$.

- 9. (9%) (a) Find the minimal polynomial for the complex number √2 + 2i√2
 (i) over Q and then
 - (ii) over \mathcal{R} . In each case explain why the polynomial is irreducible.
 - (b) Which subfield of \mathcal{C} is a splitting field over \mathcal{Q} for this polynomial?
- 10. (12%) Suppose that $h : \mathbb{Z}[x] \longrightarrow \mathbb{C}$ is the homomorphism such that h(n) = n for all $n \in \mathbb{Z}$ and h(x) = -2i.
 - (a) Give an explicit formula for h(P), where P is any polynomial over \mathcal{Z} .
 - (b) What is the range S of h?
 - (c) What is K = ker(h)?
 - (d) Give an isomorphism from $\mathcal{Z}[x]/K$ onto S.
- 11. (6%) List all the maximal ideals of \mathcal{Z}_{20} . For each such ideal I, give a natural number n so that \mathcal{Z}_{20}/I is isomorphic to \mathcal{Z}_n .
- 12. (10%) Find all the rational roots of

$$2x^6 - 13x^5 + 26x^4 - 80x^3 + 145x^2 - 105x + 25.$$

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-235A

BASIC ALGEBRA I

Examiner: Professor J. Loveys Associate Examiner: Professor H. Darmon Date: Monday, December 14, 1998 Time: 9:00 A.M. - 12:00 Noon.

INSTRUCTIONS

Calculators are not permitted.

In this exam, you may use any results proved in class, on the assignments or on the midterm. Include all your work – anything you want considered for marks – on the booklet(s) provided.

Good luck!

This exam comprises the cover and 2 pages of questions.