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1. (6%) Identify which of the following are true for all sets A and B. Justify your answers
by giving a proof in case it is always true, and a counterexample otherwise.

(a) P(AUB) =P(A) (B

(b) P(ANB)="P(A) (B

(c) Ax (BUA)=(AxB)U(Ax A).

UP(B).
NP(B).

2. (8%) Suppose that m and n are natural numbers with m < n.
Show that < 2n> < < 2n >
m n

3. (7%) Suppose that G is a commutative group and H and K are subgroups of G.

(a) Show that the set HK = {hk € G : h € H,k € K} is also a subgroup of G.

(b) Give a counterexample in case G is not assumed to be commutative.

Hint: You might want to consider the matrices 01 and -0 .
10 01

4. (9%) Which of the following is a subring of Z[x]? Which is an ideal? Justify your answers.

(a) The set of all polynomials in Z[z] of degree at least 3, together with 0.
(b) The set {azz® + asz* + -+ + apa® : a3, a4, -+, a1 € Z}.
(c) The set {ag + asx? + agxt + -+ + a0, 2" : ag, a9, -+, as, € Z}.

5. (7%) Show that {( g I; ) :a,b,c € Z,} is a ring with unity. How many elements does

it have? Is it commutative? What are the units (i.e., the elements with multiplicative
inverses in the ring)? Justify everything.



10.

11.

12.
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(7%) Suppose that R and S are rings, I is an ideal of R and J is an ideal of S. Show
that I x J is an ideal of R x S and that (R x S)/(I x J) 2 (R/I) x (S/J).

(8%) Find a subfield F of C isomorphic to Q/(x? + 13); give two different isomorphisms
between F' and Q/(z? + 13).

(10%) Suppose that F is a field and that the nonconstant polynomials P(x) and Q(x)
in F[z] are relatively prime. Suppose that R(z) and S(z) are any polynomials in F[z].
Prove that there is a polynomial 7'(z) € F[z] such that

T(z) = R(z)(mod P(z)) and T'(z) = S(x)(mod Q(x)).

(9%) (a) Find the minimal polynomial for the complex number /2 + 2iy/2
(i) over Q and then

(i) over R. In each case explain why the polynomial is irreducible.
(b) Which subfield of C is a splitting field over Q for this polynomial?

(12%) Suppose that h : Z[x] — C is the homomorphism such that h(n) = n for all
n € Z and h(z) = —2i.

(a) Give an explicit formula for h(P), where P is any polynomial over Z.
(b) What is the range S of h?
(c) What is K = ker(h)?

(d) Give an isomorphism from Z[z|/K onto S.

(6%) List all the maximal ideals of Z. For each such ideal I, give a natural number n
so that Z50/1 is isomorphic to Z,.

(10%) Find all the rational roots of

225 — 132° + 262" — 802% + 14522 — 1052 + 25.
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