Final Examination December 17, 1996 189-235A

- 1. Say whether the following statements are true or false. (You do not need to provide justification.)
- (a) The ring $\mathbf{Z}[x]$ of polynomials with integer coefficients is euclidean.
- (b) The ring $\mathbf{R}[x]$ of polynomials with real coefficients is a principal ideal domain.
- (c) The ring $\mathbf{Q}[x,y]$ of polynomials in two variables with rational coefficients is a euclidean domain.
- (d) The ring $\mathbf{Z}[i]$ of Gaussian integers is a principal ideal domain.
- (e) The group S_4 of permutations of $\{1, 2, 3, 4\}$ has an element of order 5.
- (f) Every group of order 8 contains an element of order 8.
- (g) Every group of order 7 contains an element of order 7.
- (h) The ring $\mathbf{Q}[x]/(x^2-2)$ is a field.
- (i) The ring $\mathbf{R}[x]/(x^2-2)$ is a field.
- (j) If G_1 and G_2 are two groups of the same cardinality, and this cardinality is prime, then G_1 and G_2 are isomorphic.
- (k) The equation $x^2 + 1 = 0$ has two roots in the ring \mathbb{Z}_p when p is a prime and $p \equiv 1 \pmod{4}$.
- (l) Let G_1 and G_2 be two groups, and let $H_1 \subset G_1$ and $H_2 \subset G_2$ be normal subgroups. If H_1 is isomorphic to H_2 , and H_1 is isomorphic to H_2 , then H_2 is isomorphic to H_2 .
- **2**. (a) Give the definition of a Euclidean ring.
- (b) Show that a Euclidean ring is a principal ideal domain.
- (c) Show that the ring $\mathbf{Z}[\sqrt{-5}]$ is not a Euclidean ring (for any choice of "size function" δ .)
- **3**. Let G be a finite group. Define its *exponent*, n, to be the least common multiple of the orders of all the elements of G.
- (a) Show that n divides the cardinality of G.
- (b) Give an example of a group G where n is strictly less than the cardinality of G.
- (c) Let F be a field, and let F^{\times} be the group of non-zero elements of F, where the group law is given by multiplication. If G is a subgroup of F^{\times} , show that n is equal to the cardinalty of G, without invoking the theorem that G is cyclic.
- **4**. Let $R = \mathbf{Z}[\sqrt{-2}]$ be the ring of elements of the form $a + b\sqrt{-2}$, with $a, b \in \mathbf{Z}$. Define $\delta: R \longrightarrow \{0, 1, 2, \ldots\}$ by $\delta(a + b\sqrt{-2}) = a^2 + 2b^2$.
- (a) Show that R, equipped with this function δ , is a Euclidean ring.
- (b) Let p be an odd prime. If there is an integer n such that p^2 divides $n^2 + 2$, show that there exists another integer m such that p divides $m^2 + 2$ but p^2 does not divide $m^2 + 2$.
- (c) If p is a prime which divides $n^2 + 2$ for some integer n, show that there exist integers a and b such that $p = a^2 + 2b^2$.

Final Examination December 17, 1996 189-235A

- 5. Let $G = \mathbf{GL}_2(\mathbf{Z}_p)$ be the multiplicative group of invertible 2×2 matrices with entries in the field \mathbf{Z}_p with p elements, where p is a prime.
- (a) Show that the set of matrices of the form $\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$ with $a \in \mathbf{Z}_p$ is a subgroup of G, and is isomorphic to \mathbf{Z}_p (where the group law is addition).
- (b) Show that the set of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ with $ab \neq 0$ is a subgroup of G, and is isomorphic to $\mathbf{Z}_p^{\times} \times \mathbf{Z}_p^{\times}$ (where the group law comes from multiplication in \mathbf{Z}_p).
- (c) Using (a) and (b), show that the cardinality of G is divisible by $p(p-1)^2$.
- (d) (For extra credit): What is the cardinality of G?
- **6**. Let n = ab be a product of two integers which are *relatively prime*: gcd(a,b) = 1. Let R_1 be the ring \mathbf{Z}_n , and R_2 be the Cartesian product of \mathbf{Z}_a and \mathbf{Z}_b .
- (a) Let $\phi: R_1 \longrightarrow R_2$ be the function which sends x to (x_a, x_b) , where x_a (resp. x_b) denotes the congruence class of x modulo a (resp. modulo b). Show that ϕ is a homomorphism.
- (b) Show that ϕ is injective.
- (c) Show that ϕ is surjective.
- (d) Show that, if n = pq is a product of two odd primes, then the multiplicative group of \mathbf{Z}_n (i.e, the group \mathbf{Z}_n^{\times} of all elements in \mathbf{Z}_n which have a multiplicative inverse) is not cyclic.
- (e) Show that if p is prime then the multiplicative group \mathbf{Z}_p^{\times} is cyclic.
- 7. Let S_n be the group of permutations on the set $X = \{1, 2, ..., n\}$, and let G be a subgroup of S_n . Let $G_1 \subset G$ be the set of all permutations in G which fix 1.
- (a) Show that G_1 is a subgroup of G.
- (b) Define a function f from the coset space G/G_1 to X by the rule $f(aG_1) = a(1)$. Show that f is well defined, and that it is an injection (of sets).
- (c) We say that G is a transitive subgroup of S_n if for all $i, j \in X$, there is a permutation $a \in G$ such that a(i) = j. If G is transitive, show that the coset space G/G_1 has cardinality n.
- (d) If G is a transitive subgroup of S_n , show that n divides the cardinality of G.
- (e) Using the result of (c), show that $\#S_n = n(\#S_{n-1})$, where #H is used to denote the cardinality of the set H.
- (f) Use the formula of part (e) to prove that $\#S_n = n!$.

8. (a) If G is any group such that $x^2 = 1$ for all $x \in G$, show that G must be abelian.

(b) Let R be a ring, and let G(R) be the set of all three by three matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$
, with $a,b,c \in R$. Show that $G(R)$ is a subgroup of $\mathbf{GL}_3(R)$, and that $G(R)$

is non-commutative for any ring R in which $1 \neq 0$.

(c) Show that

$$\left(\begin{array}{ccc} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{array}\right)^k = \left(\begin{array}{ccc} 1 & ka & kb + \frac{k(k-1)}{2}ac \\ 0 & 1 & kc \\ 0 & 0 & 1 \end{array}\right).$$

(d) Give an example of a non-abelian group G of order 27 in which $x^3 = 1$ for all $x \in G$.

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-235A

BASIC ALGEBRA I

Examiner: Professor H. Darmon

Associate Examiner: Professor S.W. Drury

Date: Tuesday, December 17, 1996

Time: 9:00 A.M. - 12:00 Noon

INSTRUCTIONS

You have 3 hours. It is good strategy to attempt all questions. Each question is worth 15 points, for a maximum total of 120 points. If you are stuck on a question for too long, move on to the next one.

This exam comprises the cover and 3 pages of questions.