- 1. Let $V = \mathbb{R}^3$. Which of the following sets are subspaces and which are not subspaces? Justify your answer:
 - (i) $W_1 = \{(a, b, 0) : a, b \in \mathbb{R}\};$
 - (ii) $W_2 = \{(a, b, c) : a + b + c = 0\};$
 - (iii) $W_3 = \{(a, b, c) : a \ge 0\};$
 - (iv) $W_4 = \{(a, b, c) : a^2 + b^2 + c^2 \le 1\}.$
- 2. Which of the following sets of vectors in \mathbb{R}^3 are linearly independent?
 - (a) (1,2,3), (4,5,6), (7,8,9);
 - (b) (1,0,1), (2,3,1), (1,-1,6), (0,2,4);
 - (c) (1,1,1), (1,-1,1), (2,3,1);
- 3. Let

$$u_1 = (1, 1, -1), \quad u_2 = (2, 3, -1), \quad u_3 = (3, 1, -5)$$

and

$$v_1 = (1, -1, -3), \quad v_2 = (3, -2, -8), \quad v_3 = (2, 1, -3).$$

Show that $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$ generate the same vector space.

- 4. Let $T: V \rightarrow U$ be a linear transformation of vector spaces. Show that the image of T is a subspace of U and the kernel of T is a subspace of V. If the kernel of T is $\{0\}$, deduce that $\dim V < \dim U$.
- 5. Let V be the vector space of polynomials of degree $\leq n$. Determine whether or not each of the following is a basis of V.
- (i) {1, 1+t, 1+t+t², ..., 1+t+t²+...+tⁿ⁻¹+tⁿ} (ii) {1+t, t+t², t²+t³, ..., tⁿ⁻¹+tⁿ}.
- 6. Let $T: \mathbb{C} \to \mathbb{C}$ be the map $z \to \overline{z}$ (where \overline{z} denotes the complex conjugate a bi of $z = a + bi, a, b \in \mathbb{R}$). Show that T is NOT linear if \mathbb{C} is viewed as a vector space over itself, but T is linear if \mathbb{C} is viewed as a vector space over \mathbb{R} .
- 7. Find an orthogonal matrix P such that $P^{-1}AP$ is diagonal where

$$A = \begin{pmatrix} 11 & -8 & 4\\ -8 & -1 & -2\\ 4 & -2 & -4 \end{pmatrix}.$$

(Hint: -5 is an eigenvalue of the matrix.)

8. (i) Let V be the vector space of $n \times n$ matrices over \mathbb{R} . If $B^{(t)}$ indicates the transpose of matrix B, show that

$$\langle A, B \rangle = \operatorname{trace}(B^{(t)}A)$$

defines an inner product on V. (Recall that the trace of a matrix is the sum of the diagonal entries.)

(ii) Find an orthonormal basis for V.