MATH 223, LINEAR ALGEBRA FALL 2009

FINAL EXAMINATION

Tuesday, December 8, 2009 9:00-12:00

Examiner: Professor Jim Loveys

Associate Examiner: Doctor Christophe Weibel

Instructions:

- 1. No notes, books or calculators permitted.
- 2. Do not write anything on the separate sheet summarizing the questions.
- 3. This exam has 8 questions. All questions carry the same weight.
- 4. Do all your work on the sheets provided. Do not separate sheets that have been stapled together. (YOU WILL LOSE MARKS IF YOU DO.)
- 5. The questions have been divided into two parts, purely to facilitate marking. **PART 1** of this exam consist of questions 1 to 4. **PART 2** of this exam consists of questions 5 to 8. Make sure you have a "white" and a "blue" set of questions. Make sure that your name, student number, and section number are on both parts. (If your instructor is Christophe Weibel, you are in section 1; if your instructor is Jim Loveys, you are in section 2.)

NAME:

STUDENT NUMBER:

SECTION NUMBER:

DO NOT WRITE ANTHING BELOW HERE ON THIS PAGE.

QUESTION | 1 | 2 | 3 | 4 | TOTAL/40

.

This examination comprises this cover page, 8 pages of questions, and 8 extra (blank) pages. The question pages and blank pages are in two parts. There is also a sheet summarizing the problems.

1. Let
$$W_1 = Span \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix} \right\}$$
 and $W_2 = Span \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ -4 \end{pmatrix}, \begin{pmatrix} 4 \\ 6 \\ 2 \\ 7 \end{pmatrix} \right\}$ be subspaces of \mathcal{R}^4 . Find a basis for each of $W_1 + W_2$ and $W_1 \cap W_2$.

This page is for the continuation of problem 1; it may also be used for rough work.

- 2. Let $V = M_n(\mathcal{R})$ be the real vector space of $n \times n$ matrices with real entries and let A be a fixed $n \times n$ matrix with real entries. For $X \in V$, we define $TX = A^T X A$.
 - (a) Verify that T is a linear operator on V. For the rest of the question n=2 and $A=\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$.
 - (b) Let $B = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$ be the standard ordered basis for V. Find $[T]_B$.
 - (c) Find a basis for each of ker(T) and im(T).

This page is for the continuation of problem 2; it may also be used for rough work.

- 3. Let V be the vector space of functions defined and continuous on [-1,1]. For $f,g\in V$, we define $\langle f,g\rangle=\int_{-1}^1 x^4f(x)g(x)dx$.
 - (a) Show that this defines an inner product on V.
 - (b) Show that, for any $f \in V$,

$$\left(\int_{-1}^{1} x^{6} f(x) dx\right)^{2} \leq \frac{2}{9} \int_{-1}^{1} x^{4} f(x)^{2} dx.$$

Identify those functions f for which we have equality.

This page is for the continuation of problem 3; it may also be used for rough work.

4. Let V be a vector space and T a linear operator on V. Given that W is a subspace of V, recall that we say that W is T-invariant in case $T\vec{w} \in W$ for every $\vec{w} \in W$.

Suppose that p(x) is a polynomial and that W is T-invariant. Show that W is also p(T)-invariant. [Hint: First do this in case $p(x) = x^2$ and then when $p(x) = x^k$ for any k.]

This page is for the continuation of problem 4; it may also be used for rough work.