PART I.

Group 1

1. (a) Give the general solution of the following system of differential equations:

$$\frac{dx}{dt} = 4x + 2y$$
$$\frac{dy}{dt} = -3x - y$$

Final Examination

(b) Given that \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are eigenvectors of the linear transformation $T: V \to V$ for the eigenvalues λ_1 , λ_2 , λ_3 . Prove that if the eigenvalues are pairwise distinct, then the three eigenvectors form a linearly independent set.

2. Let $U = \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ be the subspace of \mathbf{R}^4 spanned by the vectors

$$\mathbf{v}_1 = (1, 0, 1, 0)^t, \mathbf{v}_2 = (-1, 1, 0, 0)^t, \mathbf{v}_3 = (0, -2, 1, 1)^t$$

(a) Give a basis of U which is orthogonal with respect to the ordinary inner product (dot-product).

(b) Let $P : \mathbf{R}^4 \to \mathbf{R}^4$ be the operator projecting every vector in \mathbf{R}^4 perpendicularly (i.e. orthogonally) onto U. Compute the third column of the matrix of P relative to the standard basis of \mathbf{R}^4 . (Do not calculate the entire matrix.)

(c) Give an orthonormal basis $\{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, \mathbf{f}_4\}$ of \mathbf{R}^4 such that $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3 \in U$.

$$x^{2} + y^{2} + z^{2} - 2xy - 2xz - 4yz - 2x + 14y - 2z = 0 .$$

If applicable, determine the (x, y, z) co-ordinates of the center of this quadric.

4. Let $U = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}, \quad V = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ where $\mathbf{u}_1 = (1, 2, -1, 0)^t, \ \mathbf{u}_2 = (0, 1, 2, 1)^t, \ \mathbf{u}_3 = (-1, 0, 5, 2)^t$ and $\mathbf{v}_1 = (3, -1, 2, 0)^t, \ \mathbf{v}_2 = (4, 2, 3, 1)^t.$

Determine bases and dimensions for $U, V, U \cap V, U + V$.

PART II.

December 21, 1995

Questions on this part of the examination are to be answered on the multiple choice score sheet provided.

1. The non-degenerate conic section is given in Cartesian co-ordinates by the equation

$$2x^2 + 2\sqrt{2}xy + 3y^2 + x - y = 0$$

The associated symmetric matrix has one of its eigenvalues equal to 1. Which of the following statements is true about this curve?

- (a) a hyperbola with principal axes parallel to the lines $\sqrt{2}x y = 0,$ $x + \sqrt{2}y = 0.$
- (b) a parabola with principal axes parallel to the lines $y 2\sqrt{2}x = 0$, $2\sqrt{2}y + x = 0$.
- (c) an ellipse with principal axes parallel to the lines $y \sqrt{2}x = 0,$ $\sqrt{2}y + x = 0$
- (d) an ellipse with principal axes parallel to the lines y x = 0, y + x = 0.
- (e) a hyperbola with principal axes parallel to the lines y x = 0, y + x = 0.
- 2. The necessary and sufficient condition on the parameters a, b for the system

$$ax - y + bz = 1$$

 $2y + az = 0$
 $2ax - y = 0$

to have a unique solution is:

- (a) $a^{2}b + b^{2} = 0.$ (b) $-4ab - a^{2} \neq 0.$ (c) $ab + 2 \neq 0.$ (d) $-a^{2}b + 2b^{2} \neq 0.$ (e) $a^{2} - 2ab = 0.$ 3. Let $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$, and $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$
 - (a) A is not diagonalisable, but B is diagonalisable over \mathbf{R} .
 - (b) Neither A nor B is diagonalisable over \mathbf{R} .
 - (c) Both A and B are diagonalisable over \mathbf{R} .
 - (d) A is diagonalisable and B is not diagonalisable over \mathbf{R} .
 - (e) Both A and B are diagonalisable over \mathbf{C} .

189-223A

Group 1

Final Examination

- 189-223A
- 5. U is a vector space, V and W are subspaces of U. Exactly one of the states of affairs listed below regarding the dimensions of U, V, W, $V \cap W$, V + W is possible. Which one is it?
 - (a) dim U = 6, dim V = 4, dim W = 4, dim $V \cap W = 1$, dim V + W = 7.
 - (b) dim U = 6, dim V = 5, dim W = 3, dim $V \cap W = 4$, dim V + W = 4.
 - (c) dim U = 6, dim V = 3, dim W = 2, dim $V \cap W = 1$, dim V + W = 3.
 - (d) dim U = 7, dim V = 5, dim W = 4, dim $V \cap W = 2$, dim V + W = 7.
 - (e) dim U = 7, dim V = 4, dim W = 3, dim $V \cap W = 0$, dim V + W = 6.
- 6. Given the linearly independent vectors \mathbf{v} and \mathbf{w} , which of the following statements below is always correct (here \langle , \rangle denotes the usual inner product on \mathbf{R}^n) for the vector \mathbf{u} defined by

$$\mathbf{u} = \langle \mathbf{w}, \mathbf{w} > \mathbf{v} - \langle \mathbf{v}, \mathbf{w} > \mathbf{w}?$$

- (a) \mathbf{v} is orthogonal to \mathbf{w} .
- (b) \mathbf{u} is orthogonal to both \mathbf{v} and \mathbf{w} .
- (c) **u** is a unit vector.
- (d) \mathbf{v} is orthogonal to \mathbf{u} .
- (e) \mathbf{u} is orthogonal to \mathbf{w} .
- 7. Given the basis $B = \left\{ \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\-1 \end{bmatrix} \right\}$ of \mathbf{R}^4 . the co-ordinate

vector of $\mathbf{v} = (6, -3, -2, 3)^t$ relative to this basis is

(a)
$$\begin{bmatrix} 1/2 \\ 3/4 \\ -3/2 \\ 1/4 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 \\ -3 \\ -2 \\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ 2 \\ -3 \\ 2 \end{bmatrix}$ (d) $\begin{bmatrix} -1/3 \\ 5/4 \\ 3/\sqrt{3} \\ 0 \end{bmatrix}$ (e) $\begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix}$.

8. Which of the following is a two dimensional subspace of \mathbb{R}^4 ?

(a)
$$\{(x, y, z, w)^t | x + 2y - 3z + w = 2\}.$$

(b) $\{(x, y, z, w)^t | x^2 - y^2 + 3w^2 = 0\}.$
(c) $\{(x, y, z, w)^t | x + y - z + w = 0\}.$
(d) the column space of C where $C = \begin{pmatrix} 1 & 3 & -1 & 4 \\ -1 & 3 & -5 & 2 \\ 3 & 4 & 2 & 7 \\ 1 & 3 & -1 & 4 \end{pmatrix}$
(e) The solution space of A where $A = \begin{pmatrix} 1 & -1 & 3 & 6 \\ 4 & -2 & 2 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$