Part II. Group 1. Gr

1. (a) Give the general solution of the following system of differential equations:

$$
\begin{array}{rcl}\n\frac{dx}{dt} & = & 4x + 2y \\
\frac{dy}{dt} & = & -3x - y\n\end{array}
$$

(b) Given that $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are eigenvectors of the linear transformation $T : V \to V$ for the eigenvalues λ_1 , λ_2 , λ_3 . Prove that if the eigenvalues are pairwise distinct, then the three eigenvectors form a linearly independent set.

2. Let $U = \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ be the subspace of \mathbb{R}^4 spanned by the vectors

$$
\mathbf{v}_1 = (1, 0, 1, 0)^t, \mathbf{v}_2 = (-1, 1, 0, 0)^t, \mathbf{v}_3 = (0, -2, 1, 1)^t
$$

(a) Give a basis of U which is orthogonal with respect to the ordinary inner product $(dot$ -product).

(b) Let $P : \mathbf{R}^4 \to \mathbf{R}^4$ be the operator projecting every vector in \mathbf{R}^4 perpendicularly (i.e. orthogonally) onto U. Compute the third column of the matrix of P relative to the standard basis of

 \mathbf{R}^+ . (Do not calculate the entire matrix.)

(c) Give an orthonormal basis $\{f_1, f_2, f_3, f_4\}$ of \mathbb{R}^4 such that $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3 \in U$.

3. In the standard classication, decide what kind of quadric surface is given by the equation

$$
x^2 + y^2 + z^2 - 2xy - 2xz - 4yz - 2x + 14y - 2z = 0
$$

If applicable, determine the (x, y, z) co-ordinates of the center of this quadric.

4. Let $U = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\},$ $V = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ where $\mathbf{u}_1 = (1, 2, -1, 0)^t$, $\mathbf{u}_2 = (0, 1, 2, 1)^t$, $\mathbf{u}_3 = (-1, 0, 5, 2)^t$ and $\mathbf{v}_1 = (3, -1, 2, 0)^t$, $\mathbf{v}_2 = (4, 2, 3, 1)^t$.

Determine bases and dimensions for U, V, $U \cap V$, $U + V$.

Part II. Group 1995 - Andrew 1997 - Andr

Questions on this part of the examination are to be answered on the multiple choice score sheet provided.

1. The non-degenerate conic section is given in Cartesian co-ordinates by the equation

$$
2x^2 + 2\sqrt{2}xy + 3y^2 + x - y = 0
$$

The associated symmetric matrix has one of its eigenvalues equal to 1. Which of the following statements is true about this curve?

- (a) a hyperbola with principal axes parallel to the lines $\sqrt{2}x - y = 0,$ $2x - y = 0,$ $x + \sqrt{2}y = 0.$
- (b) a parabola with principal axes parallel to the lines $y - 2\sqrt{2}x = 0,$ $2\sqrt{2}y + x = 0.$
- (c) an ellipse with principal axes parallel to the lines $y - \sqrt{2}x = 0,$ $\sqrt{2}y + x = 0$
- (d) an ellipse with principal axes parallel to the lines $y - x = 0,$ $y + x = 0.$
- (e) a hyperbola with principal axes parallel to the lines $y - x = 0,$ $y + x = 0.$
- 2. The necessary and sufficient condition on the parameters a, b for the system

$$
\begin{array}{rcl}\nax & - & y & + & bz & = & 1 \\
2y & + & az & = & 0 \\
2ax & - & y & = & 0\n\end{array}
$$

<u>of the contract of the contra</u>

 $\mathbf{1}$ and the contract of A CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR

 $\begin{array}{c|c|c|c|c|c|c} \hline \multicolumn{3}{c|}{\textbf{0} & \textbf{1} & \textbf{1}} & \multicolumn{3}{c|}{\textbf{0}} & \multicolumn{3}{c|}{\textbf{$ 1 1 1 \blacksquare . The contract of the \sim 0 \sim

to have a unique solution is:

- (a) $a \, b + b \, \equiv 0$. (b) $-4ab - a^2 \neq 0$. (c) $ab + 2 \neq 0$. (d) $-a^2b + 2b^2 \neq 0$. (e) $a^2 - 2ab = 0$. 3. Let A = \sim 0.000 $\begin{array}{cccc} \mid & 2 & 0 & 1 \end{array}$, and $B =$ 1 2 -1 1 1 2 0 1 $\sqrt{1 + \frac{1}{2} + \frac{1}{2}}$ $\left[\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right]$ and $B = \left[\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right]$
	- (a) A is not diagonalisable, but B is diagonalisable over $\mathbf R$.
	- (b) Neither A nor B is diagonalisable over \bf{R}

 -1 1 0 / 1 0 0

- (c) Both A and B are diagonalisable over **R**.
- (d) A is diagonalisable and B is not diagonalisable over \bf{R} .
- (e) Both A and B are diagonalisable over C .

- 5. U is a vector space, V and W are subspaces of U. Exactly one of the states of affairs listed below regarding the dimensions of U, V, W, V \cap W, V + W is possible. Which one is it?
	- (a) dim $U = 6$, dim $V = 4$, dim $W = 4$, dim $V \cap W = 1$, dim $V + W = 7$.
	- (b) dim $U = 6$, dim $V = 5$, dim $W = 3$, dim $V \cap W = 4$, dim $V + W = 4$.
	- (c) dim $U = 6$, dim $V = 3$, dim $W = 2$, dim $V \cap W = 1$, dim $V + W = 3$.
	- (d) dim $U = 7$, dim $V = 5$, dim $W = 4$, dim $V \cap W = 2$, dim $V + W = 7$.
	- (e) dim $U = 7$, dim $V = 4$, dim $W = 3$, dim $V \cap W = 0$, dim $V + W = 6$.
- 6. Given the linearly independent vectors **v** and **w**, which of the following statements below is always correct (nere \lt , $>$ denotes the usual linner product on \mathbf{R}^n) for the vector **u** defined by

$$
\mathbf{u}=<\mathbf{w},\mathbf{w}>\mathbf{v}-<\mathbf{v},\mathbf{w}>\mathbf{w}?
$$

- (a) **v** is orthogonal to **w**.
- (b) **u** is orthogonal to both **v** and **w**.
(c) **u** is a unit vector.
-
- (d) **v** is orthogonal to **u**.
- (e) **u** is orthogonal to **w**.
- 7. Given the basis B = 8 >>>< >>>: 2 $\begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \end{bmatrix}$ the contract of the contract o \sim 0 \sim the contract of the contract o \sim 0 \sim <u>.</u> . . $\left[\begin{array}{cc} 1 \\ -1 \end{array}\right], \left[\begin{array}{cc} 1 \\ 0 \end{array}\right],$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 1 1 –11 10 11 – 1 9 F A 9 F 9 9 N $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ of \sim 0.000 \sim 0.000 1 \sim 0.000 \sim 0.000 — 1 I I I I I I I I I I I I I I I 9. P. 4. 9. V. S. 2001 $\Big\vert \ , \ \Big\vert \ \frac{-1}{-1} \ \Big\vert \ \Big\vert \ \text{ of } \ {\bf R}^4.$ $\left[\begin{array}{c}1\\-1\\1\end{array}\right]$ of \mathbf{R}^4 , the $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ of \mathbf{R}^4 . the the contract of the contract o 1 1 1 \blacksquare 3 \blacksquare $\Big\}$ of \mathbb{R}^4 . the co-or **9** Provided a series of the series of t and the state of $\mathbf{1}$ and $\mathbf{2}$ and $\mathbf{3}$ and $\mathbf{4}$ and $\mathbf{5}$ of \mathbf{R}^* . the co-ordinate vector of $\mathbf{v} = (6, -3, -2, 3)^t$ relative to this basis is

(a)
$$
\begin{bmatrix} 1/2 \\ 3/4 \\ -3/2 \\ 1/4 \end{bmatrix}
$$
 (b) $\begin{bmatrix} 6 \\ -3 \\ -2 \\ -1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ 2 \\ -3 \\ 2 \end{bmatrix}$ (d) $\begin{bmatrix} -1/3 \\ 5/4 \\ 3/\sqrt{3} \\ 0 \end{bmatrix}$ (e) $\begin{bmatrix} -1 \\ 1 \\ 1 \\ -2 \end{bmatrix}$.

8. Which of the following is a two dimensional subspace of \mathbb{R}^4 ?

(a)
$$
\{(x, y, z, w)^t | x + 2y - 3z + w = 2\}
$$
.
\n(b) $\{(x, y, z, w)^t | x^2 - y^2 + 3w^2 = 0\}$.
\n(c) $\{(x, y, z, w)^t | x + y - z + w = 0\}$.
\n(d) the column space of C where $C = \begin{pmatrix} 1 & 3 & -1 & 4 \\ -1 & 3 & -5 & 2 \\ 3 & 4 & 2 & 7 \\ 1 & 3 & -1 & 4 \end{pmatrix}$
\n(e) The solution space of A where $A = \begin{pmatrix} 1 & -1 & 3 & 6 \\ 4 & -2 & 2 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$