McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 222

CALCULUS 3

Examiner: Mohammad Alakhrass

Associate Examiner: Professor M. Makkai

Date: Friday April 27, 2007

Time: 9:00 AM - 12:00PM

INSTRUCTIONS

- 1. Please attempt to answer all questions in the exam booklets provided.
- 2. This is a closed book exam. No notes or books are permitted.
- 3. Calculators are not permitted.
- 4. Use of a regular and or translation dictionary are permitted.

This examination is comprised of the cover page and, 2 pages of 6 questions.

Q1 Let
$$f(x) = \frac{4x^3}{4 + x^4}$$
.

- (a) (5 marks) Write the Maclaurin series for the function f and find the radius of convergence.
- (b) (4 marks) Write the Maclaurin series for the function $g(x) = \ln(4 + x^4)$. (Use part (a))
- (c) (4 marks) Find $f^{(2007)}(0)$. (Don't simplify your answer).

Q2 Consider the curve with position vector $\mathbf{r}(t) = (8t, 6\sin(t), 6\cos(t))$.

- (a) (6 marks) Find the Frenet frame $\hat{T}(t), \hat{N}(t), \hat{B}(t)$ for the curve r.
- (b) (6 marks) Find the curvature, the radius of curvature and the center of curvature for r.
- (c) (3 marks) Find the arc length of the curve **r** from the point $\mathbf{r}(0)$ to the point $\mathbf{r}(2\pi)$.
- (d) (3 marks) Reparametrize $\mathbf{r}(t)$ in terms of the arc length s.
- (e) (3 marks) Find equations of the tangent line to the curve \mathbf{r} at the point where $t = \frac{\pi}{2}$.
- (f) (4 marks) If a particle moves with position vector $\mathbf{r}(t)$ find the tangential and normal components of its acceleration.
- Q3 (a) (6 marks) Show that the function

$$f(x) = \begin{cases} \frac{ax+y^2}{\sqrt{x^2+y^2}} & \text{If } (x,y) \neq (0,0) \\ 0 & \text{If } (x,y) = (0,0) \end{cases}$$

is continuous at (0,0) if a=0, but is not continuous if $a \neq 0$.

(b) (5 marks) Let f and g be twice differentiable functions of one variable. Define u(x,t) = f(x+2t) + g(x-2t). Compute $\frac{\partial^2 u}{\partial t^2} - 4 \frac{\partial^2 u}{\partial x^2}$.

Q4 Let
$$f(x,y,z) = y^4 + xy^3 + x^2yz + z^2$$
, $\hat{u} = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$, $p = (1,1,1)$.

- (a) (3 marks) Find the rate of change of f at p in the direction \hat{u} (i.e. $D_{\hat{u}}f(p)$).
- (b) (3 marks) In what direction at the point p does f increase most rapidly? Find the rate of increase in that direction.
- (c) (3 marks) Find an equation of the tangent plane to the surface f(x, y, z) = 4 at the point p.
- Q5 (a) (6 marks) Find and classify the critical points of the function f(x,y) = xy(1-10x-2y) as local maxima, local minima or saddle points.
 - (b) (6 marks) Using Lagrange multipliers find the the maximum and the minimum values of $f(x,y) = x^2 + y^2$ on the circle $x^2 + y^2 4x + 3 = 0$.
- **Q6** (a) (6 marks) Evaluate $\int_0^1 (\int_{x^2}^1 x^3 \sin(y^3) \ dy) \ dx$.
 - (b) (6 marks) Evaluate $\int_0^\infty e^{-x^2/2} dx$.
 - (c) (6 marks) Evaluate $\int \int \int_R z \ dV$, where R is the region between the two cylinders $x^2+y^2=1$, $x^2+y^2=4$ bounded below by the plane z=0, and bounded above by the paraboloid $z=x^2+y^2$.
 - (d) (6 marks) Find the volume of the region D , where D is the region that lies **inside** the sphere $x^2+y^2+z^2=9$ and **outside** the cone $z=-\sqrt{x^2+y^2}$.
 - (e) (6 marks) Calculate the surface area of the part of the surface $z=x^2+y^2-2x+1$ over the disk $(x-1)^2+y^2\leq 1$.