McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATH 222

Calculus 3

Examiner: Gil Alon Date: Wednesday April 27, 2005 Associate Examiner: Professor Wilbur Jonsson Time: 2:00PM - 5:00PM

INSTRUCTIONS

Please answer all questions in exam booklets provided.

This is a closed book exam.

Calculators are not permitted.

Regular or Translation dictionaries are not permitted.

This exam comprises the cover page, and 1 page of 8 questions.

McGill University - Dept. of Mathematics and Statistics

Math 222- Calculus 3

Final Examination - 2005 Winter term

Examiner: Dr. G. Alon

Associate examiner: Prof. W. Jonsson

Answer the following 8 questions.

You do not have to simplify numerical answers (e.g., $\sin 5 - \log 4$ is an acceptable answer).

1. (13 points) Find the radius of convergence of each of the following power series:

(a)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{(n!)^3} n^2 (x-1)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n x^{2n}}{n}$$
.

- 2. (13 points)
 - (a) Find the first two nonzero terms in the Maclaurin series of $f(x) = \cos^5 x$ and find an estimate for the sum of the remaining terms of the series, for $0 \le x \le 0.1$.
 - (b) Find the Maclaurin series of $\arctan t$ by integrating $\frac{1}{1+t^2}$. Use this expansion to find $f^{(10)}(0)$ where $f(x) = \arctan 5x^2$.
- 3. (13 points) Find the equations of the tangent plane and the normal vector to the given surface at the given point, for:

(a)
$$(x, y, z) = (2se^t, \cos s + t, \frac{s}{t})$$
, at $s = t = 2$

(b)
$$(x^2 + y^2 + z^2)^2 + \sqrt{yz} = 10$$
 at $x = y = z = 1$.

- 4. (12 points)
 - (a) Find the arc length of the curve $r(t) = (3t^2, 4\sqrt{2}t^{1.5}, 6t)$ between r(0) and r(1).
 - (b) Write the arc length parametrization of this curve. The answer should be a function of the parameter s.
 - (c) If P = (12, 16, 12) and f(x, y, z) is a differentiable function defined in a neighbourhood of P and satisfying $\nabla f(P) = (1, 1, 2)$, find $\frac{d}{dt} f(r(t))|_{t=2}$. (Note: r(t) is the same curve as in part (a)).
- 5. (13 points) Let C be the curve of intersection of the surfaces defined by the equations: $x^2 + y^2 + z^2 = 12$ and $ze^{x-y} = 2$. Find the equation of the tangent line to C at the point (2,2,2).
- 6. (12 points) Let $f(x,y) = 3x^2 + 2x^3y^3 + 3y^2$.
 - (a) Find and classify the critical points of f in the entire plane.
 - (b) Find the minimum and maximum value of f in the region $-2 \le x \le 2$, $-2 \le y \le 2$.
- 7. (12 points) Calculate the integrals:

(a)
$$\int_{D} \int_{D} \frac{1}{x^2 + y^2 + 5} dx dy$$
 where $D = \{(x, y) : x^2 + y^2 \le 16\}$

- (b) $\int \int_D x dx dy$ where D is the triangle whose vertices are the points (0,1), (1,2) and (2,0).
- 8. (12 points) Let $f(x) = \frac{e^y \cos x}{1 + x + y}$. Find the directional derivative of f at (0,0) in the direction of the vector (4,3). Find the direction of fastest ascent for f (the answer should be a unit vector).