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PART I. Multiple choice questions. Group 1

Each question is worth 3 points.

1. The equation of the plane tangent to the surface z = 2x2 + y2 at the point where x = 3, y = 2 is

(a) z = −12x− 4y + 66, (b) z = 12x− 4y − 6, (c) z = −12x + 4y + 50,

(d) z = −12x + 4y − 30, (e) z = 12x + 4y − 22.

2. The fourth degree Taylor polynomial of f(x) = x2ex centered at a = 0 is

(a) 1 + x +
x2

2
+

x3

6
+

x4

24
, (b) 1 + x +

x2

2
+

x3

6
, (c) x + x2 +

x3

2
+

x4

6
,

(d) x2 + x3 +
x4

2
, (e)

x2

2
+

x3

6
+

x4

24
.

3. The vector i + 2j + 3k is perpendicular to the vector 9i− 3j + c · k when

(a) c = −1, (b) c = 1, (c) c = 2, (d) c = 3, (e) c = 0 .

4. For any two vectors a,b the cross product (3a + 2b)× a is the same vector as

(a) 2a× b, (b) 2b× a, (c) 3a× b, (d) 3b× a, (e) 5b× a.

5. The series
∞∑

n=0

(−1
2

)n

(a) has sum 1/2, (b) has sum 1/3, (c) has sum 2/3,

(d) diverges to ∞, (e) diverges to −∞.

6. The p-series
∞∑

n=1

1
np

(a) converges for p ≥ 1 and diverges for p < 1,

(b) converges for p > 1, diverges for p < 1 and we cannot say whether is converges or diverges for
p = 1,

(c) diverges for p ≥ 1 and converges for p < 1,

(d) diverges for p > 1 and converges for p ≤ 1,

(e) converges for p > 1 and diverges for p ≤ 1.

7. The power series
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− · · · represents the function

(a) ex, (b) sin x, (c) cos x, (d) arctan x, (e) tan x.
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Group 1

8. The power series
∞∑

n=0

(−1)nx2n+1

n!(n + 1)!22n+1

(a) converges only for x = 0, (b) has radius of convergence 2,

(c) converges for all real numbers x, (d) has interval of convergence −4 < x < 4,

(e) has radius of convergence 1.

9. A particle is moving along the trajectory r(t) = 2 cos t i + 3 sin t j + tk. At time t = π/2 the velocity
vector v(π/2) and the acceleration vector a(π/2) are

(a) v(π/2) = −2i + k, and a(π/2) = −3j,

(b) v(π/2) = −2j + k, and a(π/2) = −3i,

(c) v(π/2) = 2i + k, and a(π/2) = 3j,

(d) v(π/2) = 2j + k, and a(π/2) = 3i,

(e) v(π/2) = 3i + k, and a(π/2) = 2j.

10. The directional derivative of the function f(x, y) = x2 + 2y2 in the direction of the unit vector u =
(i− j)/

√
2 and at the point (2, 3) is

(a) 0, (b) 2/
√

2, (c) −4/
√

2, (d) 6/
√

2, (e) −8/
√

2.

11. The series expansion of
∫

ex2
dx is

(a) 1 + x2 +
x4

2!
+

x6

3!
+

x8

4!
+ · · · ,

(b) x + x3 +
x5

2!
+

x7

3!
+

x9

4!
+ · · · ,

(c) x +
x3

3
+

x5

10
+

x7

3!7
+

x9

4!9
+ · · · ,

(d) x +
x3

3
+

x5

5
+

x7

7
+

x9

9
+ · · · ,

(e) x +
x2

2
+

x3

3
+

x4

4
+

x5

5
+ · · · .

12. At the point (2, 1) the direction in which the function f(x, y) =
x2

4
+ y2 has the maximum rate of

change is given by the vector

(a) −i− 2j, (b) −i + 2j, (c) 2i + j, (d) i + 2j, (e) i− 2j.
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13. The equation of the plane tangent to the surface ex + 2y + sin z = 0 at the point (0,−1/2, 0) is

(a) x + 2y + z = −1, (b) x− 2y + z = 1, (c) 2x + y + z = −1/2,

(d) 2x− y + z = −1/2, (e) x + 2y − z = −1.

14. The tangent plane to the level surface x2 +
y2

4
+ z2 = 3 of the function F (x, y, z) = x2 +

y2

4
+ z2 at

the point (1, 2, 1) has equation

(a) −2x + y + 2z = 2, (b) 2x− y + 2z = 2, (c) 2x− y − 2z = −2,

(d) 2x + y + 2z = 6, (e) 2x + y − 2z = 2.

END OF PART I
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PART II.
1. (15 points) Let f(x, y) be a differentiable function and x = 2s cos t, y = 3s sin t.

(a) Find expressions for
∂f

∂s
,

∂f

∂t
in terms of

∂f

∂x
and

∂f

∂y
.

(b) Show that, for the same change of variables, we have

4
(

∂f

∂x

)2

+ 9
(

∂f

∂y

)2

=
(

∂f

∂s

)2

+
1
s2

(
∂f

∂t

)2

.



Final Examination December ???, 2010 Mathematics 189-222A 6

2. (16 points) Consider the function f(x, y) = 2x2 + 8xy + y4.

(a) Find the critical points and classify them as local maxima, local minima and saddle points.

(b) For the same function approximate f(1.99, 1.02) with the help of differentials.
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3. (9 points) Change the order of integration and evaluate the following integral

∫ 1

0

∫ 1

x2
x3 sin(y3) dy dx.

4. (8 points) Find the volume under the cone z =
√

x2 + y2 and above the region in the xy-plane lying
between the two circles x2 + y2 = 1, x2 + y2 = 4. Use polar coordinates.
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5. (10 points) Find the extreme values of the function

f(x, y) = 2x + y

on the ellipse
x2

2
+

y2

8
= 1.

Which are maxima and which are minima?
END of PART II
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Continuation of solution for problem: .
You must refer to this page on the page where the problem is printed.
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