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1. (a) Find the interval of convergence of the power series

(b) Find a power series representation about the point z = 0 for

4
g(z) = S

2. (a) Using a power series expansion for the sine function, compute

1
/ sin(z?) dz
0

to 3 decimal places.

(b) Compute
i (62:13 . 1)2
e=01n(l+z)—=

3. (a) Find the equation of the tangent plane to the surface

2 2 2
x
NI A
y oz oz
at the point (1,1, 1).
{(b) Find the directional derivative of the function
2 2 2
Fag z
Flz,y,z) = —+ L + =
¥y ooz oz

at the point (1,1, 1) in the direction (-1, 2,4).
4. (a) Reparametrize the curve

r(t) = (2t,cost,sint)

in terms of arc length measured from the point where t = (.

{b) For the curve in (a), find the unit tangent, unit principal normal and binormal vectors T,N,B of
the Frenet-Serret formulas as well as the curvature at any point on the curve.
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5. (a) Find and classify the critical points of
fla,y) =2y -2 —y* - 2y

as local maxima, local minima or saddle points using the test involving the second partial deriva-
tives of f(x,y).

(b) Use the Lagrange multiplier method to find the shortest distance from the origin to the curve
zy? = 1.
6. Tor each of the following double integrals
1 gl ‘
(a) / f V1—ytdydz, (b) /f In(z? + y*) dady,
o Jai/e 22 4+y? <l

sketch the domain of integration and evaluate the integral.

7. Find the volume of the region bounded by the cylinder 2? + y? = 2y, the paraboloid z? + 4? = 7z and
the plane z = 0.

8. Compute / / f zzdV, where R is the solid tetrahedron with vertices
R

(0,0,0),(1,0,0},(1,1,0),(0,1,1).



