1. Find the indicated anti-derivatives

(a)
$$\int (1-x)\sqrt{2x-x^2} \, dx.$$
 (b) $\int \frac{e^x}{(e^x+1)\ln(e^x+1)} \, dx,$
(c) $\int x^2 \arctan x \, dx,$ (d) $\int \frac{\ln x}{\sqrt{x}} \, dx.$

2. (a) Use the method of partial fractions to evaluate

$$\int \frac{x^2 + x + 1}{(x^2 + 2x + 2)^2} \, dx.$$

- (b) Evaluate $\int \tan^6 x \, dx$.
- 3. (a) Use the second fundamental theorem of calculus to evaluate

$$\frac{d}{dx}\left(\int_{\sqrt{x}}^{x}\frac{e^{t}}{t}dt\right).$$

(b) Find the area enclosed between the curves

$$y = x^2 - x$$
, and $y = e^x - 1$ for $0 \le x \le 1$.

- (c) Find the volume obtained by rotating the region bound by $y = \tan x$, x = 0 and y = 1 around the x-axis.
- 4. (a) Find the volume obtained by rotating the region bound by $y = x x^2$ and y = 0, about the line x = 2.
 - (b) Decide if the following integrals converge or diverge. Find the value in case of convergence.

,

(i)
$$\int_0^{\pi/4} \frac{\cos x}{(\sin x)^{5/4}} dx$$
, (ii) $\int_0^\infty x^2 e^{-x} dx$.

5. (a) Decide if the following series of numbers converge or diverge.

(i)
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{3^{(\ln k/k^2)}},$$
 (ii) $\sum_{1}^{\infty} \left(\frac{\ln t}{t}\right)^2$
(iii) $\sum_{1}^{\infty} \frac{k^k}{(k!)^2},$ (iv) $\sum_{1}^{\infty} \frac{e^{-1/n}}{\sqrt{n}}.$

Final Examination

- 189-151B
- (b) Show that the series $\sum_{1}^{\infty} (-1)^{n+1} \frac{n!}{(2n)!}$ converges. Find an approximate value of the sum of the series with error not exceeding $\frac{1}{1000}$.
- 6. (a) Given that $\sin u = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}$ for all u, express $\sin(tx^2)$ as a power series involving x and t. Use that series to evaluate $\frac{df}{dt}$ where $f(t) = \int_0^1 \sin(tx^2) dx$.
 - (b) Find the radius and the interval of convergence of the following power series. Check convergence at end points.

(i)
$$\sum_{1}^{\infty} \frac{n^{10}}{10^n} x^n$$
 and (ii) $\sum_{1}^{\infty} \frac{\ln k}{3^k} (x-1)^k$

- 7. (a) Sketch the curve with polar equation $r = 1 \sqrt{2} \sin \theta$. Find the area enclosed by the smaller loop of the above curve.
 - (b) Find the length of the spinal $r = e^{\theta}$, $0 \le \theta \le \pi$.
 - (c) Find the area of the surface obtained by rotating the curve $x = \frac{1}{2\sqrt{2}}(y^2 \ln y)$, $1 \le y \le 2$ around the *x*-axis.
- 8. (a) Evaluate $\int \int_D e^{x/y} dA$ where D is the region enclosed by the three lines x = 0, y = 1 and y = x.
 - (b) Interchange the orders of integration and evaluate

$$\int_0^1 \int_{y^2}^1 y \sin(x^2) dx \, dy.$$

(c) Use integration in polar coordinates to evaluate

$$\int_0^{\sqrt{2}} \int_y^{\sqrt{4-y^2}} \frac{1}{1+x^2+y^2} dx \, dy.$$

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-151B

CALCULUS B

Examiner: Professor K.N. GowriSankaran Associate Examiner: Professor W.G. Brown Date: Tuesday, April 18, 2000 Time: 2:00 P.M. - 5:00 P.M.

INSTRUCTIONS

Calculators are not permitted. All questions count equally. (Level of difficulty may vary.

This exam comprises the cover and two pages of questions.