McGill University Faculty of Science

Final Examination

Mathematics 141 FALL 09

Calculus 2

Date: Friday, Dec.11th 2009 Time: 14:00 – 17:00 hours

EXAMINER: Prof. N.Sancho

ASSOCIATE EXAMINER: Prof. W. Brown

FAMILY NAME:		
OTHER NAME:		
STUDENT NUMBER:		•

INSTRUCTIONS

- 1. Calculators are not permitted
- 2. You can continue your work in the **preceding (or facing) page** or in the pages at the end of the booklet.
- 3. This examination booklet consists of a cover page, plus 14 pages; pages 11, 12, 13 and 14 are blank. You must not tear pages from this booklet.
- 4. Dictionaries are not allowed
- 5. This is a closed book examination.

1(a)	1(b)	1(c)	2	3(a)	3(b)	4(a)	4(b)	5	6(a)
·						į			
6(b)	7(a)	7(b)	8(a)	8(b)	8(c)	Total			`
									ĺ

1.SHOW ALL YOUR WORK

- (a) [2 marks] If $F(x) = \int_{0}^{\sqrt{x}} \frac{t^2}{1+t^4} dt$ find the derivative of F(x).
- (b) [3 marks] Let $F(x) = 2x + \int_{x}^{0} \frac{\sin 2t}{1+t^4} dt$. Determine F(0); F'(0); F''(0).
- (c) [5 marks] Sketch the region bounded by the curves $y = 12 x^2$ and $y = x^2 6$ and find its area.

2.SHOW ALL YOUR WORK

[7 marks] Sketch the region bounded by the curves; $x = y^3$, x = 8, y = 0 and find the volume of the solid generated by revolving the region about the y-axis.

3.SHOW ALL YOUR WORK

- (a) [8 marks] Calculate $\int \frac{x+4}{x^2+2x+5} dx$.
- (b) [7 marks] Calculate $\int (\ln x)^2 dx$.

4.SHOW ALL YOUR WORK

(a) [8 marks] Prove the reduction formula for all integers $n\!\geq\!2$

$$\int \sec^{n} x \, dx = \frac{\tan x \sec^{n-2} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx.$$

(b) [7 marks] Evaluate $\int \sec^5 x \tan^2 x \, dx$.

5.SHOW ALL YOUR WORK

[10 marks] Find the exact area of the surface obtained by rotating the curve about the x-axis: $x = t^3$, $y = t^2$, $0 \le t \le 1$.

6.SHOW ALL YOUR WORK

(a) [10 marks] Evaluate $\int \frac{\sin^3(\ln x)\cos^3(\ln x)}{x} dx$

6.SHOW ALL YOUR WORK

(b) [5 marks] Evaluate the improper integral $\int_{2}^{3} \frac{dx}{\sqrt{3-x}} dx$.

7.SHOW ALL YOUR WORK

(a) [5 MARKS] find the arc length of the curve from x = 1 to x = 2 of $y = x^2 - \frac{1}{8} \ln x$.

7.SHOW ALL YOUR WORK

(b) [10 MARKS] Find the area of the inner loop of $r = 1 + 2\sin \theta$. (Hint: sketch the curve)

8.SHOW ALL YOUR WORK

- (a) [4 marks] Determine whether the given series converges or diverges $\sum_{n=1}^{\infty} \frac{n!}{n^2 e^n}$
- (b) [3 marks] Determine whether the geometric series $\sum_{n=0}^{\infty} \frac{1}{\left(\sqrt{2}\right)^n}$ is convergent or

divergent. If it is convergent find its sum.

(c) [6 marks] Determine whether the series converges absolutely, converges conditionally or diverges: $\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{(n+1)\ln(n+1)}$

Final Examination – Math 141 FALL 09 - Version 1

CONTINUATION PAGE FOR PROBLEM NUMBER

You must refer to this continuation page on this page where the problem is printed.