Final Examination

1. Explain the method of Riemann sums to evaluate the definite integral $\int_a^b f(x) dx$.

Illustrate your answer by evaluating $\int_0^1 (1+x)^2 dx$, using Riemann sums. Show that the answer is consistent with the fundamental theorem of calculus.

2. (a) Evaluate the following integrals:

(i)
$$\int \frac{dx}{x^2 + 6x + 10}$$
 (ii) $\int x^2 e^{3x} dx$.

(b) Derive the trapezoidal rule formula to estimate $\int_a^b f(x) dx$.

3. (a) Evaluate the following integrals:

(i)
$$\int \sin^3 x \cos^5 x \, dx$$
 (ii) $\int \frac{dx}{x^2 \sqrt{x^2 - 4}}$.

(b) Find the area in the first quadrant bounded by the curves xy = 1 and 2x + 2y = 5.

4. (a) Evaluate the following definite integrals or show divergence:

(i)
$$\int_0^1 x \ln x \, dx$$
 (ii) $\int_0^\infty x^2 e^{-5x} dx$.

- (b) Consider the region in the first quadrant bounded by the curves $y = x^2$ and $x = y^2$. Determine the volume of the solid region formed by rotating this plane region about the y-axis.
- 5. (a) Graph the polar curve $r = 1 \sin \theta$ and determine the area enclosed by this curve.
 - (b) Determine whether the following series converge. Name the tests you are using.

(i)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+5}}$$
; (ii) $\sum_{n=1}^{\infty} \frac{1}{\left(n+\frac{1}{2}\right)^2}$; (iii) $\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3+1}$.

- 6. (a) Find the area of the surface formed by rotating the curve $y = \cos x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$, about the *x*-axis.
 - (b) Find the radius of convergence and the interval of convergence:

(i)
$$\sum_{n=0}^{\infty} \frac{2^n x^n}{(n+2)^2}$$
; (ii) $\sum_{n=0}^{\infty} \frac{3^n (x-4)^n}{n+3}$; (iii) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{(n+1)(n+2)}$.

* * * * * * *

McGILL UNIVERSITY

FACULTY OF SCIENCE

FINAL EXAMINATION

MATHEMATICS 189-141A

CALCULUS II

Examiner: Professor J. Turner Associate Examiner: Professor W.G. Brown Date: Monday, December 7, 1998 Time: 9:00 A.M. - 12:00 Noon

INSTRUCTIONS

Calculators may not be used. Answer any FIVE questions.

This exam comprises the cover and 1 page of questions.