Faculty of Science

FINAL EXAMINATION

MATH 140

Calculus I

Examiner: Dr. D. Serbin

Associate Examiner: Prof. W. Brown

Date: Monday, April 18, 2005 Time: 9 A.M. - 12 Noon

INSTRUCTIONS

There are 9 questions, altogether worth 110 marks.

Answer all questions in examination booklets.

Show all your work. Simplify your final answers.

This is a closed book examination.

Calculators are not permitted.

You may keep the exam paper when finished.

This exam comprises the cover and 2 pages of questions.

- 1. Evaluate the following limits. You may use l'Hospital's rule only in (c).
 - (a) [5 MARKS]

$$\lim_{x \to -3} \frac{x+3}{x^2 + 2x - 3}$$

(b) [5 MARKS]

$$\lim_{x \to \infty} (\sqrt{x+2} - \sqrt{x}),$$

(c) [7 MARKS]

$$\lim_{x \to 0} \left(\frac{4 - 2x^2 - 4\cos x}{x^4} \right).$$

- 2. Compute the derivative of each of the following functions.
 - (a) [5 MARKS]

$$f(x) = \cosh(\sqrt{x^2 - 1}),$$

(b) [5 MARKS]

$$g(x) = \frac{\sin x}{e^x}.$$

(c) [5 MARKS]

$$h(x) = x^{x^2 + 1}.$$

3. A function f(x) is defined as follows

$$f(x) = \begin{cases} x^2 - 2x - a & \text{if } x < 1, \\ -x^2 + bx + 2 & \text{if } x \ge 1, \end{cases}$$

where a and b are constants to be evaluated.

- (a) [5 MARKS] Showing all your work determine all values of a and b which make f continuous at x = 1.
- (b) [5 MARKS] Showing all your work determine all values of a and b which make f differentiable at x = 1.
- 4. [10 MARKS] A particle is moving along the parabola $y = (x 1)^2$ in such a way that its x-coordinate is increasing at the constant rate of 4 units per second. Determine how fast the distance from the particle to the origin is changing at the instant the particle is at the point (2,1).

(continued on the next page)

5. (a) [5 MARKS] Find the function f that satisfies all of the following conditions:

$$f''(x) = 2e^x - \cos x$$
, $f(0) = 1$, $f'(0) = 1$.

(b) [5 MARKS] Use the Mean Value Theorem to show that

$$\ln x < x - 1.$$

when x > 1.

6. The equation

$$(x+y)^3 = 27(x-y)$$

defines y implicitly as a function of x near the point (2,1).

- (a) [7 MARKS] Determine the values of y' and y'' at (2,1).
- (b) [3 MARKS] Use the tangent line approximation to estimate y when x=1.98.
- 7. Let

$$f(x) = \frac{(x-1)^2}{e^x}.$$

- (a) [3 MARKS] Specify the domain of f.
- (b) [5 MARKS] Determine all horizontal and vertical asymptotes.
- (c) [5 MARKS] Determine the interval(s) where f increases, the interval(s) where f decreases, and local extrema.
- (d) [5 MARKS] Determine the concavity of the graph of f, and find all points of inflection. (Hint: You might need the fact $\sqrt{2} \approx 1.4$).
- (e) [4 MARKS] Sketch the graph of f, using the information determined above.
- 8. [8 MARKS] Showing all your work, determine the maximum area of a rectangle with a base that lies on the x-axis, and two upper vertices that lie on the graph of the equation $y = 2 x^2$.
- 9. [8 MARKS] Showing all your work, determine the absolute maximum and minimum values of

$$f(x) = \frac{\sin x}{2 - \cos x}$$

on the closed interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. (Hint: $\sqrt{3} \approx 1.7$)