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1. The plane II has vector equation

oY —4 1 -3
Ty | = 0 +s| 2|14+t O
I3 0 0 4

(a) Find an equation azy + bxs + cx3 = d for the plane II.

(b) Find the point @ in the plane 2z + 3y + z = 10 which is closest to the point P(7,7,3).
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2. (a) Find the equation of the line passing through the points A(1,2,3) and B(2,1,5).

(b) Find the distance between the line in part (a) and the line z =2 — 2t,y = 4+ 2¢, 2 = 7 — 4t.
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3. Let A be the matrix

00 1t 1 1
00 4 4 4
A= 12 -3 =820
12 -1 -6 2

(a) Bring A to reduced row echelon form. Clearly indicate each of the elementary operations that
you use.

(b) Find bases for the row space, column space and null space of A.
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4. (a) Prove or disprove the following statement:

Span{[1,2,-1,-2],[2,1,2,-1]} = Span{[-1,4, -7, —4],[8,7,4, —7]}.

(b) If u, v, w are linearly independent vectors in R™, for which values of k are the vectors
ku+ v,v + kw,w + ku linearly independent?
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5. (a) Let R : R? — R? be the reflection in the line 2z + 5y = 0. Find two linearly independent
eigenvectors of R and give their corresponding eigenvalues. You may use either the standard
matrix of R or geometric reasoning.

(b) Find the standard matrix A of the linear transformation T : R? — R? determined by the

(1)=[e] = (ED-[7]
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6. Let

A=

=
== o
W = =

(a) Find the inverse of A and write A~! as a product of elementary matrices.

(b) Write A as a product of elementary matrices.
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7. (a) Let A be an invertible 3 x 3 matrix. Suppose it is known that

U vow a 3 b
A=|[3 3 -2 | and that adj(4)=| -1 1 2
T Yy =z c =2 d

Find det(A). (Give an answer not involving any of the unknown variables.)

(b) If Ais a matrix such that A> — A+ I = 0 show that A is invertible with inverse I — A.
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8. Let A =

_ -
— O
O =

(a) Find the eigenvalues of A and a basis for each of its eigenspaces.

(b) Find an invertible matrix P such that P~*AP is a diagonal matrix.
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1 01
9. (a) For which values of & is the matrix {0 2 0| diagonalizable?
00 &k

(b) Let A and B be diagonalizable 2 x 2 matrices. If every eigenvector of A is an eigenvector of
B show that AB = BA.
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10. Let ¢(X) = 32?2 + 2175 + 373

(a) Find an orthogonal change of coordinates X = PY such that ¢(X) = ay? + by? for suitable
scalars a, b.

(b) Find the maximum and minimum values of ¢ on the circle ||X|| = 1.

10
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