December 14, 1998

PART I: Multiple Choice Questions

1. For the linear system
$$\begin{pmatrix} 2+a & 1-a \\ 4+3a & 3+a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
:

- (a) When $a \neq \frac{-1}{2}$ and $a \neq -1$, there are infinitely many solutions.
- (b) When $a \neq \frac{-1}{2}$, there is a unique solution.
- (c) In both the cases $a = \frac{-1}{2}$ and a = -1, there are infinitely many solutions.

(d) When
$$a = \frac{-1}{2}$$
, there are infinitely many solutions.

- (e) When a = -1, there are infinitely many solutions.
- 2. For a 3 × 3 matrix A, we have $A^3 = -\mathbf{I}$, where \mathbf{I} is the 3 × 3 identity matrix. What is $(A \mathbf{I})^{-1}$?
 - (a) $A^2 A + \mathbf{I}$ (b) $A - \mathbf{I}$ might not be invertible (c) $\frac{-1}{2}(A^2 + A + \mathbf{I})$ (d) $\frac{1}{2}(A^2 - A + \mathbf{I})$ (e) $\frac{-1}{2}\mathbf{I}$
- 3. The point $(-3, 2, 1)^t$ is on both of the planes

$$x + y + 3z = 2$$

and

$$x - y + z = -4.$$

Which of the following gives all the points of intersection?

(a)
$$\frac{x+3}{2} = \frac{y-2}{1} = \frac{z-1}{-1}$$
, (b) $\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -2\\ -1\\ 1 \end{pmatrix} + t \begin{pmatrix} -3\\ 2\\ 1 \end{pmatrix}$,
(c) $\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} -6\\ 4\\ 2 \end{pmatrix} + t \begin{pmatrix} -2\\ -1\\ 1 \end{pmatrix}$, (d) $\begin{pmatrix} x\\ y\\ z \end{pmatrix} = t \begin{pmatrix} -3\\ 2\\ 1 \end{pmatrix}$,

(e) Only the point $(-3, 2, 1)^t$.

5. Which one is a subspace of \mathbf{R}^4 ?

(a)
$$\{(a, b, c, d)^t \in \mathbf{R}^4 \mid a^2 = b^2, c+d=0\}$$

(b) $\{(a, b, c, d)^t \in \mathbf{R}^4 \mid a+b=0, c+d=0\}$
(c) $\{\mathbf{v} \in \mathbf{R}^4 \mid \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 1 \\ 1 & 0 & 3 & 1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\}$
(d) $\{(a, b, c, d)^t \in \mathbf{R}^4 \mid a^2 + b^2 > 0\}$

- (e) all vectors that are *not* orthogonal to $(1,0,0)^t$
- 6. What are the coordinates of the vector $(1, 1, 1)^t$ with respect to the ordered basis $\{(1, 0, 0)^t, (1, 1, 0)^t, (1, 1, 1)^t\}$?

(a)
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,
(c) $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, (d) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, (e) $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- 7. Suppose $\mathbf{v_1}, \ldots, \mathbf{v_6}$ are vectors in \mathbf{R}^4 and we write them as the columns of a 4×6 matrix A. Upon doing some elementary row operations, we find a row echelon form of $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$
 - $A \text{ is } \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}. \text{ Which of the following gives a basis for span}\{\mathbf{v_1}, \dots, \mathbf{v_6}\}?$
 - (a) $\{v_1 + v_2, v_3, v_4, v_5\}$
 - (b) $\{v_1, v_4 v_3, v_6\}$
 - (c) { $(1,0,0,0)^t, (4,1,0,0)^t, (6,1,1,0)^t$ }
 - (d) $\{\mathbf{v_1},\mathbf{v_3},\mathbf{v_6}\}$
 - (e) $\{\mathbf{v_1},\mathbf{v_3},\mathbf{v_4},\mathbf{v_6}\}$

8. Suppose
$$a_{ij}$$
 are chosen so that det $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = 2.$

What is the determinant of
$$\begin{pmatrix} a_{11} + 3a_{21} & a_{12} + 3a_{22} & a_{13} + 3a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^{-1}$$
?

9. The vectors $\mathbf{u}_1 = (1, 0, 1)^t$, $\mathbf{u}_2 = (1, 1, 1)^t$, $\mathbf{u}_3 = (0, 1, 1)^t$ form a basis for \mathbf{R}^3 . Applying the Gram-Schmidt orthonormalization process to this ordered basis yields the following orthonormal basis of \mathbf{R}^3 .

$$(a) \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\}, \qquad (b) \left\{ \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix} \right\} \right\}$$
$$(c) \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}, \qquad (d) \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}$$
$$(e) \left\{ \begin{pmatrix} 0\\0\\0 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix} \right\}.$$

- 10. A conic in the xy plane is given by the equation $4x^2 2xy + 4y^2 = 3$. After making the change of variables $\begin{pmatrix} x \\ y \end{pmatrix} = P\begin{pmatrix} X \\ Y \end{pmatrix}$, where $P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, the conic has the equation
 - (a) $4X^2 2XY + 4Y^2 = 3$,
 - (b) $3X^2 + 5Y^2 = 3$,
 - (c) $6X^2 + 10Y^2 = 3$,
 - (d) $5X^2 + 3Y^2 = 3$,
 - (e) $10X^2 + 6Y^2 = 3$.

11. Let

$$A = \left(\begin{array}{rrrr} 1 & -3 & 3 \\ -3 & 1 & -3 \\ 3 & -3 & 1 \end{array} \right).$$

Which of the following is true?

- (a) $(0,0,0)^t$ is an eigenvector for the eigenvalue 0 of A
- (b) $(1,1,1)^t$ is an eigenvector for eigenvalue 7 of A
- (c) A has no eigenvectors
- (d) $(1,1,0)^t$ and $(-1,0,1)^t$ are both eigenvectors for the eigenvalue -2 of A
- (e) $(1, -1, 1)^t$ is an eigenvector for eigenvalue 1 of A

PART II:

- 1. (16 marks) The solution set of the equation $8x^2 + 4xy + 5y^2 = 36$ gives a conic C in the xy coordinate system.
 - (a) Find an orthogonal matrix P which brings the conic C to standard form in the XY coordinate system with the change of variables $\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{bmatrix} X \\ Y \end{bmatrix}$.
 - (b) What is the equation of conic C in the new XY coordinate system? What kind of conic is C?
 - (c) Make a sketch showing the relation between the XY and xy coordinate systems and draw the conic C in the original xy coordinate system.

Final ExaminationDecember 14, 1998Continuation page for question 1.

2. (18 marks) Let

$$A = \begin{pmatrix} 1 & -1 & 2 & 1 & -1 \\ 3 & -2 & 5 & 1 & -6 \\ 2 & -4 & 6 & 6 & 4 \\ 2 & -5 & 7 & 8 & 7 \end{pmatrix}.$$

Performing Gaussian elimination on A for a few steps yields the matrix

$$A' = \begin{pmatrix} 1 & -1 & 2 & 1 & -1 \\ 0 & 1 & -1 & -2 & -3 \\ 0 & -2 & 2 & 4 & 6 \\ 0 & -3 & 3 & 6 & 9 \end{pmatrix}.$$

The book-keeping matrix at this point is

$$B' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ -2 & 0 & 1 & 0 \\ -2 & 0 & 0 & 1 \end{pmatrix}.$$

- (a) Continuing from this point, use the Gaussian elimination algorithm while continuing to keep track of the book-keeping matrix to obtain the reduced row echelon form \hat{A} of A, and the final book-keeping matrix B (i.e. start your row reduction on A' with current book-keeping matrix B').
- (b) Find a basis for the row space of A.
- (c) Find all dependence relations on the columns of A.
- (d) Find all dependence relations on the rows of A.
- (e) Find a basis for the column space of A consisting of columns of A.
- (f) Determine if the vector (1, -1, 1, -1, 1) is in the row space of A.

Final ExaminationDecember 14, 1998Continuation page for question 2.

Final ExaminationDecember 14, 1998Continuation page for question 2.

3. (12 marks) Consider the two lines

$$L_1: \quad \frac{x-2}{1} = \frac{y-2}{2} = \frac{z-2}{1}$$

 $\quad \text{and} \quad$

$$L_2: \quad \frac{x-5}{3} = \frac{y-6}{2} = \frac{z}{-1}.$$

- (a) Find the equation of the plane which contains L_1 and is parallel to L_2 in two different forms:

 - i. cartesian form (i.e. ax + by + cz + d = 0) ii. vector parametric form (i.e. $\mathbf{v} = \overrightarrow{OP} + s\mathbf{d_1} + t\mathbf{d_2}$)
- (b) Find the shortest distance from the point $(3,3,2)^t$ to the line L_2 .

Final Examination Continuation page for question 3.