December 10, 1997

Group 1

PART I: Multiple Choice Questions

- 1. The vertices of a parallelogram are A(1,2,0), B(5,4,0), C(2,1,0) and D(6,3,0). Using the vectors \vec{AB} and \vec{AC} the area is computed to be
 - (a) -6, (b) 22, (c) 6, (d) -22, (e) 46.
- 2. Consider the plane containing the points P(1,2,0), Q(1,1,1) and R(3,-1,1). The equation of a line orthogonal to this plane is

(a) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$,	(d) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix},$
(b) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$,	(e) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$,
(c) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}.$	

3. Which of the following four matrices has a unique solution for its associated homogeneous system of equations?

$$(i) \left(\begin{array}{cc} 2 & 1 \\ 4 & 3 \end{array}\right), \qquad (ii) \left(\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right), \qquad (iii) \left(\begin{array}{cc} 5 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 4 & 2 \end{array}\right), \qquad (iv) \left(\begin{array}{cc} 1 & 1 & 8 \\ 0 & 1 & 0 \\ 4 & 0 & 4 \end{array}\right)$$

(a) (i) and (iv), (b) (i),(ii) and (iv), (c) (ii) and (iii), (d) all of them, (e) none of them.

4. Let $\mathbf{u} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$ and $\mathbf{d} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$. Then the vector $\mathbf{u} - \operatorname{Proj}_{\mathbf{d}}(\mathbf{u})$ is orthogonal to \mathbf{d} and is equal to

(a)
$$1/14\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$$
, (b) $1/14\begin{bmatrix} 10\\15\\-5 \end{bmatrix}$, (c) $1/14\begin{bmatrix} 56\\14\\0 \end{bmatrix}$,
(d) $1/14\begin{bmatrix} 4\\-1\\0 \end{bmatrix}$, (e) $1/14\begin{bmatrix} 46\\-29\\5 \end{bmatrix}$.

5 Which of the following subsets of \mathbf{B}^2 are subspaces?

December 10, 1997

6. Consider the following bases for \mathbf{R}^2

$$T = \left\{ \left(\begin{array}{c} 1\\0 \end{array} \right), \left(\begin{array}{c} 0\\1 \end{array} \right) \right\} \qquad T' = \left\{ \left(\begin{array}{c} 1\\1 \end{array} \right), \left(\begin{array}{c} 2\\1 \end{array} \right) \right\}.$$

The transition matrix from T' to T is

(a)
$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
, (b) $\begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$, (d) $\begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}$, (e) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

7. Which of the following equations has as its roots the eigenvalues of the matrix (i.e. the characteristic equation or its negative).

$$\left(\begin{array}{rrr} 4 & 0 & 1 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- (a) $\lambda^{3} 4\lambda^{2} 1\lambda 1 = 0$ (b) $\lambda^{3} - 4\lambda^{2} - 2\lambda - 2 = 0$ (c) $-6\lambda^{3} - 1\lambda^{2} - 1\lambda - 4 = 0$ (d) $\lambda^{3} - 6\lambda^{2} - 2\lambda - 2 = 0$
- (e) $\lambda^3 6\lambda^2 + 9\lambda 4 = 0$

8. Let
$$\mathbf{b_1} = \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$$
, $\mathbf{b_2} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$ and $\mathbf{b_3} = \begin{pmatrix} 2\\ -1\\ 1 \end{pmatrix}$. The coordinate vector of $\mathbf{v} = \begin{pmatrix} 1\\ -2\\ 5 \end{pmatrix}$ with respect to the basis $\{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}$ is

(a)
$$\begin{pmatrix} 4\\1\\0 \end{pmatrix}$$
, (b) $\begin{pmatrix} 3\\2\\-1 \end{pmatrix}$, (c) $\begin{pmatrix} -6\\3\\2 \end{pmatrix}$, (d) $\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$, (e) $\begin{pmatrix} 5\\1\\2 \end{pmatrix}$.

9. Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & -2 \end{pmatrix}$$
. A basis for the nullspace (or kernel) of A is
(a) $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, (b) $\begin{pmatrix} -6 \\ 3 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, (c) $\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$, (d) $\begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, (e) $\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$

10. Let
$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 7 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}^{3}$$
. The determinant of C^{-1} is

.

PART II: Long Answer Questions

1. Let A be the matrix

1	-2	1	2^{-}	
-1	7	-1	3	
-2	4	3	6	•
3	4	-2	6	

(a) Reduce to reduced row echelon form, keeping track of the bookkeeping matrix.

(b) Find the dependence relations on the rows of A.

(c) Find a basis for the column space of A from among the columns of A.

- 2. Consider the four points A(2, 0, -7), B(1, -1, -8), C(5, 1, -5), D(3, 1, -4) in \mathbb{R}^3 .
 - (a) Find an equation of the plane containing the points A, B and C;
 - (b) Find the distance from point D to the plane;
 - (c) Evaluate the area of triangle ABC.

Final Examination Question 2 continued: December 10, 1997

189-133A

- 3. The equation $5x^2 2\sqrt{3}xy + 7y^2 = 16$ represents a conic in the xy coordinate system.
 - (a) Find a rotation of co-ordinates that bring the conic into standard form.What is the matrix of this rotation?What is the cosine of the angle of rotation?

December 10, 1997

189-133A

(b) Make a sketch showing the relation between the two co-ordinate systems. Identify the type of conic and make a sketch of the conic in the rotated coordinate system.