MATH 357 Honors Statistics

Yuyan Chen

January 2022

-Lecture 1b-

1 Chapter 1: Random Sampling

1.1 Basic Concepts

Definition 1.1. The random variables (vectors) X_1, \dots, X_n are called a random sample if they are iid with some common distribution P. P is called the **population distribution** and n is called the **sample size**. Data are the observations (or realizations) of X_1, \dots, X_n , *i.e.*

 x_1, \cdots, x_n .

Note: We regard P as **unknown**; it is a proxy for our lack of knowledge of some phenomenon. Our goal is to infer (learn) P or some of its properties from the basis of the observed data x_1, \dots, x_n .

Example 1.2.

Recall the definition of a random sample. This sampling model is also called sampling from an **infinite** population. Independence implies the distribution of X_2 is unaffected by having sampled $X_1 = x_1$.

Remark 1.3 (Finite population (N) with P(sampled) = 1/N).

- 1. Sample with replacement
- 2. Sample without replacement: X_1, \dots, X_n are identically distributed but NOT independent. However when N is much langer than n, the independence assumption may be a good enough approximation.

1.2 Descriptive Statistics

Definition 1.4 (statistic). Let X_1, \dots, X_n be a random sample from P on \mathbb{R}^d . Let $T : \mathbb{R}^d \times \dots \times \mathbb{R}^d \to \mathbb{R}^h$ be a measurable mapping that does NOT depend on any unknown parameters. The random vector $T(X_1, \dots, X_n)$ is called a **statistic**.

Note that with Borel measure, all **continuous** functions are **measurable**.

Example 1.5.

$$(\frac{1}{n}\sum_{i=1}^{n}1(X_i=0)-p_0)^2$$

is not a statistic since p_0 is unknown.

Rule of thumb: You must be able to evaluate a statistic. The observed value must be a scalar, not a term or formula.

Definition 1.6. Let X_1, \dots, X_n be a random sample from P on \mathbb{R} . Then

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

is called the **sample mean** (a measure of central tendency). Furthermore,

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

is called the sample variance (a measure of variability), and S is called the sample standard deviation. The observed values are denoted \bar{x}, s^2, s .

Theorem 1.7. For arbitrary $x_1, \dots, x_n \in \mathbb{R}$,

$$\min_{a \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n} (x_i - a)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2.$$

(b)

$$(n-1)s^{2} = \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \sum_{i=1}^{n} x_{i}^{2} - n(\bar{x})^{2}$$

Proof.

$$\sum_{i=1}^{n} (x_i - a)^2 = \sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - a)^2$$

Lemma 1.8. Let X_1, \dots, X_n be a random sample from P on \mathbb{R} , $X \sim P$, g measurable so that E g(X) and var g(X) exist. Then

$$E\left(\sum_{i=1}^{n} g(X_i)\right) = n \cdot E(g(X))$$
$$var\left(\sum_{i=1}^{n} g(X_i)\right) = n \cdot var(g(X)))$$

Note that

$$E(g(X)) = \int g(x)f(x)dx$$

Theorem 1.9. Let X_1, \dots, X_n be a random sample from P on \mathbb{R} , $X \sim P$, $EX = \mu$ and $\sigma^2 = var X$ are finite. Then,

- (a) $E\bar{X} = \mu$
- (b) var $(\bar{X}) = \frac{\sigma^2}{n}$
- (c) $E(S^2) = \sigma^2$.

Note: Theorem 1.9 holds for all P such that $EX = \mu$ and $\sigma^2 = var X$ are finite.

Example 1.10.

Definition 1.11 (order statistics). Let X_1, \dots, X_n be a random sample from P on \mathbb{R} . Placed in ascending order,

$$X_{(1)} \le X_{(2)} \le \dots \le X_{(n)},$$

the ordered random variables are called the **order statistics**. $X_{(r)}$ is called the r^{th} order statistic.

- $X_{(1)} \cdots$ sample **minimum**
- $X_{(n)} \cdots$ sample **maximum**
- $R = X_{(n)} X_{(1)} \cdots$ sample range
- $X_{med} \cdots$ sample **median** (a measure of central tendency)

$$X_{med} = \begin{cases} X_{\frac{n+1}{2}}, & \text{if } n \text{ is odd} \\ \\ \frac{X_{\frac{n}{2}} + X_{\frac{n}{2}+1}}{2}, & \text{if } n \text{ is even} \end{cases}$$

- sample $(100 \cdot p)^{th}$ percentile, where $p \in (\frac{1}{2n}, 1 \frac{1}{2n})$ is:
 - $X_{(\{np\})} \text{ if } p \in \left(\frac{1}{2n}, \frac{1}{2}\right)$ $X_{med} \text{ if } p = \frac{1}{2}$ $X_{(\{n+1-n(1-p)\})} \text{ if } p \in \left(\frac{1}{2}, 1 \frac{1}{2n}\right)$

where $b \in [0, \infty)$, $\{b\}$ is the integer so that

$$j - \frac{1}{2} \le b < j + \frac{1}{2}.$$

The definition of the $(100 \cdot p)^{th}$ percentile is rigged so that if the $(100 \cdot p)^{th}$ percentile is $X_{(i)}$, the *i*th smallest observation, the $(100 \cdot (1-p))^{th}$ percentile is the *i*th largest observation, $X_{(n+1-i)}$.

- the 25th percentiled is called the **first quartile** (Q1)
- the 75^{th} percentiled is called the **third quartile** (Q3)
- their differntce $IQR = Q_3 Q_1$ (a measure of variability) is called interqurtile range.

Lemma 1.12 (Mean absolute error). For any $x_1, \dots, x_n \in \mathbb{R}$, let X_{med} be the observed value of the sample median. Then for any $a \in \mathbb{R}$,

$$\frac{1}{n}\sum_{i=1}^{n}|x_i-a| \ge \frac{1}{n}\sum_{i=1}^{n}|x_i-x_{med}|.$$

Example 1.13.

Graphical data visualization

- (a) Boxplot
- (b) Histogram (for continuous data)

Partition the range $[x_{(i),x_{(n)}}]$ into k (chosen) bins.

 h_j is so that

$$h_j \cdot (b_{j+1} - b_j) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(x_i \in [b_j, b_{j+1}])$$
$$\approx P(X \in [b_j, b_{j+1}])$$

The idea is that the histogram approximates the pdf of P.

(c) Bar chart/ bar plot (for discrete data) We observed k distinct value.

$$h_j = \frac{1}{n} \sum_{i=1}^n 1(x_i = b_j) \approx P(X = b_j)$$

Bar chart approximates the pmf of P.

1.3 Sampling distribution

Definition 1.14 (sampling distribution). Consider a statistic $T(X_1, \dots, X_n)$. Its distribution is called the sampling distribution of $T(X_1, \dots, X_n)$.

Theorem 1.15. Consider a random sample from P on \mathbb{R} , $X \sim P$ and assume that X has a MGF (moment generating function) M_X on the interval I. Then \overline{X} has MGF

$$M_{\bar{X}}(t) = \left(M_X(t/n)\right)^n$$

Example 1.16.

- $X \sim \mathcal{N}(\mu, \sigma^2), \ \bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$
- $X \sim Bin(m, p), n \cdot \bar{X} \sim Bin(m \cdot n, p)$
- $X \sim Gamma(\alpha, \beta), \ \bar{X} \sim Gamma(\alpha \cdot n, \beta/n).$

<u>Observation</u>: the sampling distribution of $T(X_1, \dots, X_n)$ depends on the population distribution P.

Theorem 1.17. Let X_1, \dots, X_n be a random sample from P on \mathbb{R} . Then from any $x \in \mathbb{R}, r \in \{1, \dots, n\},\$

$$P(X_{(r)} \le x) = F_{X_{(r)}}(x) = \sum_{k=r}^{n} \binom{n}{k} \{F(x)\}^{k} \{1 - F(x)\}^{n-k}$$

Proof. Fix $x \in \mathbb{R}$, $r \in \{1, \dots, n\}$. Let

$$Y = \#i : X_i \le x$$
$$= \sum_{i=1}^n \mathbb{1}(X_i \le x), \text{ iid Bernoulli}(F(x)), \text{ since } P(X_i \le x) = F(X)$$

Hence, $Y \sim Bin(n, F(x))$.

$$P(X_{(r)} \le x) = P(Y \ge r)$$

= $\sum_{k=r}^{n} {n \choose k} (F(x))^{k} (1 - F(x))^{n-k}$

		н.	

Note: if P has a pdf f, then $X_{(r)}$ has a pdf

$$f_{(X_{(r)})}(x) = \frac{n!}{(r-1)!(n-r)!} \{F(x)\}^{r-1} f(x) \{1 - F(x)\}^{n-r}.$$

Example 1.18. Suppose U_1, \dots, U_n from U(0, 1). Then $U_{(r)}$ has a pdf

$$f_{U(r)}(u) = \frac{n!}{(r-1)!(n-r)!} u^{r-1} (1-u)^{n-r}.$$

Note that $\Gamma(n) = (n-1)!$ Hence, $U_{(r)} \sim Beta(r, n-r+1)$. In particular,

$$E(U_{(r)}) = \frac{r}{n+1}.$$

Note: for $\mathcal{U}(a,b)$, f(x) = 1/(b-a) for $x \in [a,b]$, 0 otherwise.

1.4 Sampling from the Normal Population

Throughout this section, $X \sim \mathcal{N}(\mu, \sigma^2)$, where μ and σ^2 are unknown.

Theorem 1.19. Let X_1, \dots, X_n be a random sample from $\mathcal{N}(\mu, \sigma^2)$. Let \bar{X} and S^2 be the sample mean and variance. Then,

(a)

$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

(b) \bar{X} and S^2 are independent.

Proof. (b) Let X_i^* be the standardized variable such that

$$X_i^* = \frac{X_i - \mu}{\sigma}.$$

Then, $X_i^* \sim \mathcal{N}(0, 1)$. We have

$$\bar{X^*} = \frac{\bar{X} - \mu}{\sigma}$$
$$(S^*)^2 = \frac{\bar{S}^2}{\sigma^2}.$$

Both are one-to-one function to \bar{X} and S^2 , respectively. Hence, WLOG, we can assume $\mu = 0$ and $\sigma^2 = 1$ and if $\bar{X^*} \perp (S^*)^2$, $\bar{X} \perp S^2$. Note that

$$S^{2} = \frac{1}{n-1} \left(\underbrace{(-\sum_{i=2}^{n} (X_{i} - \bar{X}))^{2} + \sum_{i=2}^{n} (X_{i} - \bar{X})^{2}}_{=X_{1} - \bar{X}} \right)$$

Lemma 1.20. X_2, \cdots, X_n iid $\mathcal{N}(0, 1)$. Then,

$$\bar{X} \perp (X_2 - \bar{X}, \cdots, X_n - \bar{X}).$$

Proof. Define $T : \mathbb{R}^n \to \mathbb{R}^n$ as

$$(x_1, \cdots, x_n) \rightarrow (\bar{x}, x_2 - \bar{x}, \cdots, x_n - \bar{x}).$$

Then, $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$ is

$$(y_n, \cdots, y_n) \to (\underbrace{y_1 - \sum_{i=2}^n y_i}_{=n \cdot y_1 - \sum_{i=2}^n (y_i + y_1)}, y_2 + y_1, \cdots, y_n + y_1).$$

Jacobi matrix |J| = n.

$$\begin{aligned} f_{(Y_1,\cdots,Y_n)}(y_1,\cdots,y_n) &= f_{(X_1,\cdots,X_n)}(T^{-1}(y_1,\cdots,y_n)) \cdot |J| \\ &= ((\frac{1}{\sqrt{2\pi}})^n \exp(-\frac{1}{2}((y_1 - \sum_{i=2}^n y_i)^2 + \sum_{i=2}^n (y_i + y_1)^2))) \cdot n \\ &= \sqrt{n}(\frac{1}{\sqrt{2\pi}}) \exp(-\frac{1}{2}(ny_1^2)) \\ &\cdot \sqrt{n}(\frac{1}{\sqrt{2\pi}})^{n-1} \exp(-\frac{1}{2}((\sum_{i=2}^n y_i)^2 + \sum_{i=2}^n y_i^2)) \\ &= f_1(y_1) \cdot f_2(y_2,\cdots,y_n) \end{aligned}$$

Theorem 12.7 (from Jacod & Protter) Let $X = (X_1, \dots, X_n)$ have joint density f. Let $g : \mathbb{R}^n \to \mathbb{R}^n$ be continuously differentiable and injective, with non-vanishing Jacobian. Then Y = g(X) has density

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) | \det J_{g^{-1}}(y) |, \text{ if } y \text{ is in the range of } g \\ 0, \text{ otherwise.} \end{cases}$$

Since S^2 is a function of $(X_2 - \overline{X}, \dots, X_n - \overline{X})$ which we now know is independent of \overline{X} .

Definition 1.21 (Chi-squared distribution). The χ^2_{ν} distribution has a pdf given, for all x > 0,

$$f(x;\nu) = \frac{1}{2^{\nu/2}\Gamma(\frac{\nu}{2})} \cdot x^{\nu/2-1} \cdot e^{-x/2}$$

and 0 otherwise. The χ^2_{ν} distribution is in fact the $Gamma(\frac{\nu}{2}, 2)$. The MGF of χ^2_{ν} is given, for all $t < \frac{1}{2}$, by $M_{\chi^2_{\nu}} = (1 - 2t)^{-\nu/2}$.

Lemma 1.22.

(a) When X ~ χ²_ν, then EX = ν and var X = 2ν
(b) X₁ ~ χ²_{ν₁}, X₂ ~ χ²_{ν₂}, and X₂ ⊥ X₁, then X₁ + X₂ ~ χ²<sub>ν₁+ν₂
(c) X ~ N(0,1) then X² ~ χ²₁.
</sub>

Theorem 1.23. Suppose that X_1, \dots, X_n is a random sample from $\mathcal{N}(\mu, \sigma^2)$. Then,

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

-Lecture 3b-

Motivation for t distribution: Consider

$$\sqrt{n}\frac{\bar{X}-\mu}{\sigma} \sim \mathcal{N}(0,1),$$

where σ is unknown. Instead:

$$\sqrt{n}\frac{\bar{X}-\mu}{S} \equiv T.$$

Note that T is a statistic.

Definition 1.24 (Student t distribution). The Student t distribution with ν degrees of freedom, t_{ν} , has pdf

$$f(x;\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \cdot \Gamma(\frac{\nu}{2})} (1 + \frac{x^2}{\nu})^{-\frac{\nu+1}{2}}, \ x \in \mathbb{R}.$$

Lemma 1.25. Let $X \sim t_{\nu}$. The the following holds:

- (a) EX = 0 if $\nu > 1$. If $\nu \leq 1$, EX does not exist. Note: t_1 is Cauchy(1).
- (b) $varX = \frac{\nu}{\nu-2}$ if $\nu > 2$. If $\nu \le 2$, then varX does not exist.
- (c)

$$X \stackrel{d}{=} \frac{Z}{\sqrt{V/\nu}}$$

where $Z \sim \mathcal{N}(0, 1)$, $V \sim \chi^2_{\nu}$, and $Z \perp V$.

Theorem 1.26. Suppose that X_1, \dots, X_n is a random sample from $\mathcal{N}(\mu, \sigma^2)$. Then,

$$T = \sqrt{n} \cdot \frac{\bar{X} - \mu}{S} \sim t_{n-1}$$

Proof. Lemma 1.25 (c).

Definition 1.27. The Fisher-Snedecor F_{ν_1,ν_2} with ν_1 and ν_2 dof is the distribution of

$$\frac{V_1/\nu_1}{V_2/\nu_2}$$

where $V_1 \sim \chi^2_{\nu_1}$, $V_2 \sim \chi^2_{\nu_2}$, $V_1 \perp V_2$.

Theorem 1.28. Let X_1, \dots, X_n be a random sample from $\mathcal{N}(\mu_1, \sigma_1^2)$. Let Y_1, \dots, Y_m be a random sample from $\mathcal{N}(\mu_2, \sigma_2^2)$. Suppose that (X_1, \dots, X_n) and (Y_1, \dots, Y_n) are independent; let S_X^2 and S_Y^2 be their respective sample variances, then

$$\underbrace{\frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2}}_{\sim F_{n-1,m-1}} \sim F_{n-1,m-1}$$

not a statistic since σ_1^2 and σ_2^2 unknown

<u>Remark</u>: Theorem 1.28 will serve as later to derive the so-called F test. Imagine we want to assess whether $\sigma_1^2 = \sigma_2^2$.

$$\underbrace{\frac{S_X^2}{S_Y^2}}_{\text{is a statistic}} \neq 1 \sim F_{n-1,m-1}.$$

2 Chapter 2: Theory of point estimation

2.1 Parametric model

Throughout this chapter, we will assume that X_1, \dots, X_n is a random sample from P and that

$$P \in \mathcal{P} = \{P_{\theta}, \theta \in \Theta\}.$$

- \mathcal{P} is called a **parametric model** for P.
- θ is called a **parameter**.
- Θ is called a **parameter space** and we assume that $\Theta \in \mathbb{R}^k$.

We will denote the CDF of P_{θ} by F_{θ} and its pdf/pmf by $f(x; \theta), x \in \mathbb{R}$.

Example 2.1. For Newcomb's measurements, we may assume

$$\mathcal{P} = \{\underbrace{\mathcal{N}(\mu, \sigma^2)}_{P_{\theta}}, \underbrace{(\mu, \sigma^2)}_{\theta} \in \underbrace{\mathbb{R} \times (0, \infty)}_{\Theta}\}$$

<u>Note</u>: A parametric model for P is an **assumption**. It is always an **approximation** to the reality which may or may NOT be true. Our goal is to estimate the unknown parameter θ from the observed data x_1, \dots, x_n .

Definition 2.2. A point estimator is <u>any statistic</u> $W(X_1, \dots, X_n)$ which has been constructed with the aim to estimate θ . The observed value of W, *i.e.* $W(x_1, \dots, x_n)$ is called the **estimate** of θ .

<u>Note:</u> we do NOT require that the range of W is Θ . <u>Notation:</u> estimators are often denoted $\hat{\theta}$, $\hat{\theta}(X_1, \dots, X_n)$, $\tilde{\theta}$, and θ_n .

2.2 Methods of finding estimators

<u>Recall</u>: an estimator is a <u>statistic</u> $W(X_1, \dots, X_n)$.

2.2.1 Method of moments

sample moment:

$$m_j = \frac{1}{n} \sum_{i=1}^n X_i^j.$$

From Theorem 1.9, we know that if $EX^j < \infty$, $E(m_j) = EX^j$. If $E(X^j)^2 < \infty$, then from the weak law of large numbers,

$$m_j \xrightarrow{P} EX^j$$
 as $n \to \infty$

Now suppose $\theta = (\theta_1, \dots, \theta_k)$. The method of moments proceeds as follows:

1. Calculate k moments of P_{θ} (population moments), i.e.

$$EX^j = \mu_j(\theta), \ j = 1, \cdots, k.$$

2. Calculate the j^{th} sample moment

$$m_j = \frac{1}{n} \sum_{i=1}^n X_i^j, \ j = 1, \cdots, k.$$

3. Equate

$$m_j = \mu_j(\theta), \ j = 1, \cdots, k.$$

If there is a unique solution, it is called a **method of moments estimator** of θ .

• "easy"

• usually consistent since

$$Y \xrightarrow{P} y \implies f(Y_n) \xrightarrow{P} f(Y)$$

• usually biased (e.g. Jensen inequality)

<u>Remark</u> You may need to choose moments other than the first k, depending on the distribution P_{θ} .

Example 2.3. Suppose X_1, \dots, X_n is a random sample from the Normal distribution, *i.e.*

$$P \in \{\mathcal{N}(\mu, \sigma^2), (\mu, \sigma^2) \in \mathbb{R} \times (0, \infty)\}.$$

The method-of-moment estimator of (μ, σ^2) is

$$(\bar{X}, \underbrace{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}_{\frac{n-1}{n} S^2}).$$

Example 2.4. Consider a random sample X_1, \dots, X_n from Bin(N, p), *i.e.*

$$P \in \{Bin(N, p), p \in (0, 1)\}$$

where N is known. The method of moment generator of p is

$$\hat{p} = \frac{1}{N}\bar{X}.$$

If N is unknown, the method-of-moment estimator of (p, N) is

$$\left(\frac{\bar{X} - \frac{1}{n}\sum_{i=1}^{n} (X_i - \bar{X})^2}{\bar{X}}, \frac{(\bar{X})^2}{\bar{X} - \frac{1}{n}\sum_{i=1}^{n} (X_i - \bar{X})^2}\right).$$

<u>Note</u>: the method of moment estimators above may well be negative. The estimator of N may not be an integer.

Example 2.5. Consider a random sample from $U(-\theta, \theta)$,

$$P \in \{U(-\theta,\theta), \theta \in (0,\infty)\}.$$

We have

$$EX = \frac{-\theta + \theta}{2} = 0,$$

which is not useful. Use the second moment, we obtain

$$\hat{\theta} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} X_i^2}.$$

Consider $x_0 = 0$, $x_1 = 1 \sim U(\theta, \theta)$. We find θ to be

$$\hat{\theta} = \sqrt{\frac{1}{4}(0+1)} = \frac{1}{2}.$$

However, $0,1 \notin (-\frac{1}{2},\frac{1}{2})$.

2.2.2 Method of Maximum Likelihood

Assume X_1, \dots, X_n is a random sample from

$$P \in \{P_{\theta}, \theta \in \Theta\}.$$

Assume also that for each $\theta \in \Theta$, P_{θ} has a PMF/PDF.

Definition 2.6. Given the observed data x_1, \dots, x_n , the function of θ defined by

$$L(\theta) = L(\theta; x_1, \cdots, x_n) = \prod_{i=1}^n f(x_i; \theta)$$

is called the likelihood function.

Note that the likelihood function is a function of θ for a fixed set x_1, \dots, x_n .

Example 2.7.

Interpretation of the likelihood function

• If P_{θ} is discrete, then the value of L at θ_0 is

$$L(\theta_0) = P_{\theta_0}(X_1 = x_1, \cdots, X_n = x_n)$$
$$= L(\theta_0; x_1, \cdots, x_n)$$

 $L(\theta_0)$ is the probability of observing the data we observed if the parameter $\theta = \theta_0$. For example, in Example 2.7,

$$L(1) = 3.8 \times 10^{-5}$$

is the probability (or "likelihood") of observing 1,2,2,5 when $\lambda = 1$.

• When P_{θ} is continuous, this interpretation is still used, but in an approximation sense. Because $P(X_1 = x_1, \dots, X_n = x_n) = 0$, we need to consider

$$P(X_{1} \in (x_{1} - \varepsilon, x_{1} + \varepsilon), \cdots, X_{n} \in (x_{n} - \varepsilon, x_{n} + \varepsilon))$$

$$= \int_{x_{1}-\varepsilon}^{x_{1}+\varepsilon} \cdots \int_{x_{n}-\varepsilon}^{x_{n}+\varepsilon} \prod_{i=1}^{n} f(t_{i}; \theta) dt_{n} \cdots dt_{1}$$

$$\approx \prod_{i=1}^{n} f(t_{i}; \theta) \cdot (2\varepsilon)^{n}$$

$$= L(\theta; x_{1}, \cdots, x_{n}) \cdot \underbrace{(2\varepsilon)^{n}}_{\text{does not contain } \theta}$$

provided that $\varepsilon > 0$ is very small. So,

$$L(\theta; x_1, \cdots, x_n) \propto P(X_1 \in (x_1 - \varepsilon, x_1 + \varepsilon), \cdots, X_n \in (x_n - \varepsilon, x_n + \varepsilon))$$

Whether P_{θ} is continuous or discrete, we can say that if

$$L(\theta_1; x_1, \cdots, x_n) \ge L(\theta; x_1, \cdots, x_n),$$

it is more "likely" to have observed x_1, \dots, x_n when $\theta = \theta_1$ than $\theta = \theta_2$.

Definition 2.8. For an observed sample x_1, \dots, x_n , the **maximum likeli**hood (ML) estimate of θ , denoted $\hat{\theta}(x_1, \dots, x_n)$ is a value such that

$$L(\hat{\theta}(\underline{x}); x_1, \cdots, x_n) = \sup_{\theta \in \Theta} L(\theta; x_1, \cdots, x_n)$$

provided it exists. If the ML estimate exists for almost all samples x_1, \dots, x_n and if the mapping $\hat{\theta} : \mathbb{R}^n \to \mathbb{R}^h$

$$(x_1, \cdots, x_n) \to \hat{\theta}(x_1, \cdots, x_n)$$

is measurable, $\hat{\theta}(X_1, \cdots, X_n)$ is called the ML estimator of θ .

"Almost all samples" means that $\hat{\theta}(x)$ exists for all $x \in A$ when

$$P_{\theta}((X_1,\cdots,X_n)\in A)=1$$

for all $\theta \in \Theta$.

In Definition 2.8, note that the ML estimate is the value $\hat{\theta}(x)$ in Θ at which the sup is attained.

The log-likelihood function is defined as

$$l(\theta; x) = \log L(\theta; x) = \sum_{i=1}^{n} \log f(x_i; \theta).$$

Typically, l is smooth and we can look for its maximum by calculating

$$\frac{\partial l}{\partial \theta_j}(\theta; x_1, \cdots, x_n) = 0, \ j = 1, \cdots, k$$

and inspect the solutions.

Example 2.9. Consider a random sample from a Binomial population with KNOWN size N:

$$P \in \{Bin(N, P), p \in [0, 1]\}.$$

The likelihood function is

$$L(p; x_1, \cdots, x_n) = \prod_{i=1}^n \binom{N}{x_i} p^{x_i} (1-p)^{N-x_i}.$$

The ML estimator is thus $\hat{p} = \frac{\bar{X}}{N}$ (and the same as the method-of-moment estimator.)

<u>Careful:</u> If we choose

$$\{Bin(N,p), p \in (0,1)\}$$

then ML estimate does not exist when $\bar{x} = 0$ or $\bar{x} = N$. Since $P_p(\bar{X} = 0) \neq 0$, $P_p(\bar{X} = N) \neq 0$, the ML estimator does not exist in this case.

-Lecture 5a

Example 2.10. Consider a random sample from

$$P \in \{\mathcal{N}(\mu, 1), \mu \in \mathbb{R}\}.$$

ML estimator of μ is $\hat{\mu} = \bar{X}$. Suppose now we know that $\mu \ge 0$. In this case, \bar{x} is not the ML estimate when $\bar{x} < 0$. Note that

$$\frac{\partial l}{\partial \mu} = n \cdot (\bar{x} - \mu) < 0$$

if $\bar{x} < \mu$. Hence, l is decreasing on $[0, \infty)$. Hence, l is maximized at $\tilde{\mu}(\tilde{x}) = 0$. In this (constrained) estimation problem, the MLE is

$$\tilde{\mu} = \max(\bar{X}, 0).$$

Example 2.11. Take a random sample from $P \in \{U(0, \theta), \theta \in (0, \infty)\}$. To calculate the MLE,

$$L(\theta; \underline{x}) = \prod_{i=1}^{n} \frac{1}{\theta} \cdot 1(x_i \in [0, \theta])$$
$$= (\frac{1}{\theta})^n \cdot 1(\min_{1 \le i \le n} x_i \ge 0) \cdot 1(\max_{1 \le i \le n} x_i \le \theta).$$

The MLE is

$$\tilde{\theta}(\tilde{x}) = \max_{1 \le i \le n} x_i.$$

<u>Note:</u> if the density function has a compact support, use the **indicator function** to denote the support.

Theorem 2.12 (Invariance Principle of the MLE). Consider a statistical model $\{P_{\theta}, \theta \in \Theta\}$ and suppose that $g : \Theta \to \mathbb{R}^m$ is an arbitrary measurable function. Set $\Gamma = g(\Theta)$ to be the range of g and suppose we wish to estimate $\gamma = g(\theta)$. Then if $\tilde{\theta}(x)$ is the MLE of θ ,

$$\hat{\gamma} = g(\hat{\theta}(\hat{x}))$$

is the MLE of γ in the following sense: for

$$L^*(\gamma; \underline{x}) = \sup_{\theta \in \Theta: g(\theta) = \gamma} L(\theta; \underline{x})$$

then

$$L^*(\hat{\gamma}; \tilde{x}) = \sup_{\gamma \in \Gamma} (\gamma; \tilde{x})$$

Proof. WTS: $L^*(\hat{\gamma}; x) = \sup_{\gamma \in \Gamma} L^*(\gamma; x)$.

$$L^{*}(\hat{\gamma}; \underline{x}) = \sup_{\theta \in \Theta: g(\theta) = \hat{\gamma}} L(\theta; \underline{x})$$
$$= L(\hat{\theta}; \underline{x})$$
$$= \sup_{\theta \in \Theta} L(\theta; \underline{x})$$
$$= \sup_{\gamma \in \Gamma} \sup_{\theta \in \Theta: g(\theta) = \gamma} L(\theta; \underline{x})$$
$$= \sup_{\gamma \in \Gamma} L^{*}(\gamma; \underline{x})$$

r			п	
L			L	
_	-	-		

Example 2.13.

- $\{Bin(N, p), p \in [0, 1]\}, N \text{ is known.}$
- {*Exponential*(λ), $\lambda > 0$ }. *The MLE of* λ *is* \overline{X} .

Example 2.14.

• { $\mathcal{N}(\mu, \sigma^2)$, $\mu \in \mathbb{R}$, $\sigma^2 > 0$ }. The MLE of (μ, σ^2) is $(\bar{X}, \frac{n-1}{n}S^2)$.

-Lecture 5b-

In the Bayesian approach, our uncertainty (lack of knowledge) of θ is expressed by a probability density $\pi(\theta)$, called the **prior**. Once we have collected the data, we will update the prior by incorporating the information from the data. This leads to the so-called **posterior density**. Bayesian estimation tends to perform better for small sample size.

Assume for simplicity that θ is univariate and let π be the pmf/pdf of the prior distribution (i.e. a distribution on Θ of your choice). Suppose the density (pmf/pdf) of (X_1, \dots, X_n) given θ

$$\prod_{i=1}^{n} f(x_i; \theta).$$

The posterior density is the conditional density of θ given the observed data (i.e. conditionally on $X_1 = x_1, \dots, X_n = x_n$). The posterior density is given by

$$\pi(\theta|x_1,\cdots,x_n) = \frac{\prod_{i=1}^n f(x_i;\theta)}{m(x_1,\cdots,x_n)} \cdot \pi(\theta)$$

where

$$m(x_1, \cdots, x_n) = \int_{\Theta} \prod_{i=1}^n f(x_i; \theta) \pi(\theta) d\theta$$

is the marginal density of X_1, \dots, X_n (unconditional). A Bayesian estimate of θ could be the mean of the posterior distribution with density (pmf/pdf) $\pi(\theta|x_1, \dots, x_n)$.

Example 2.15. X_1, \dots, X_n a Bernoulli random sample, $X_i \sim Bernoulli(p)$. $\Theta(0,1)$. The prior density is **chosen** to be $Beta(\alpha, \beta)$. The Bayesian estimate p_B as the expected value of the posterior:

$$p_B = \frac{n\bar{x} + \alpha}{n + \alpha + \beta} = \frac{n}{n + \alpha + \beta} \cdot \underbrace{\bar{x}}_{sample \ mean} + \frac{\alpha + \beta}{n + \alpha + \beta} \cdot \underbrace{\frac{\alpha}{\alpha + \beta}}_{expectation \ of \ the \ prior}$$

Trick to avoid integration:

$$\pi(\theta|x_1, \cdots, x_n) = \underbrace{c(x_1, \cdots, x_n)}_{\text{normalizing constant}} \cdot \underbrace{\prod_{i=1}^n f(x_i; \theta)}_{\text{likelihood}} \cdot \underbrace{\pi(\theta)}_{\text{prior}}$$

 \propto likelihood \times prior

Example 2.16. X_1, \dots, X_n a random sample from Exponential(λ). The parameter space is $(0, \infty)$.

- Likelihood is $\lambda^n e^{-n\bar{x}\lambda}$
- Prior: $Gamma(\alpha, \beta)$

$$\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{\lambda \beta}, \ \lambda > 0$$

- Posterior: $Gamma(n + \alpha, n\bar{x} + \beta)$
- Bayesian estimator of λ :

$$\hat{\lambda_B} = \frac{n+\alpha}{n\bar{x}+\beta} \xrightarrow[n \to \infty]{} \frac{1}{\bar{x}}$$

2.3 Method of evaluating estimators

Definition 2.17. Consider a statistical model

$$P = \{P_{\theta}, \theta \in \Theta\}$$

and $\gamma: \Theta \to \mathbb{R}^m$. Let $T(X_1, \cdots, X_n)$ be an estimator of $\gamma(\theta)$. Then:

(a) T is called **unbiased** if $\forall \theta \in \Theta$,

$$E_{\theta}T(X_1,\cdots,X_n)=\gamma(\theta).$$

The difference $E_{\theta}T(X_1, \dots, X_n) - \gamma(\theta)$ is called the **bias** of *T*, and denoted $bias_{\theta}(T)$.

(b) If for all $\theta \in \Theta$,

$$\lim_{n \to \infty} E_{\theta} T(X_1, \cdots, X_n) = \gamma(\theta),$$

then T is called asymptotically unbiased.

(c) (Weak consistency) T is called **consistent** if for all $\theta \in \Theta$

$$T(X_1, \cdots, X_n) \xrightarrow{P_{\theta}} \gamma(\theta)$$

as $n \to \infty$.

(d) The mean square error of T is

$$MSE_{\theta} = E_{\theta} \{ T(X_1, \cdots, X_n) - \gamma(\theta) \}^2.$$

<u>Note:</u> the expectation, variance, etc. of T is taken w.r.t. P_{θ} and hence **depends** on θ . For all $\theta \in \Theta$:

$$MSE_{\theta}T = E_{\theta}(T - \gamma(\theta))^{2}$$

= $E_{\theta}(T - E_{\theta}T + E_{\theta}T - \gamma(\theta))^{2}$
= $E_{\theta}(T - E_{\theta}T)^{2} + (E_{\theta}T - \gamma(\theta))^{2} + 2(E_{\theta}T - \gamma(\theta)) \cdot E_{\theta}(T - E_{\theta}T)$
= $var_{\theta}T + (bias_{\theta}T)^{2}$

Example 2.18. Consider a random sample X_1, \dots, X_n from $\mathcal{N}(\mu, \sigma^2)$. We know from Theorem 1.9 that $E\bar{X} = \mu$, $ES^2 = \sigma^2$.

$$MSE(\bar{X}) = var\bar{X} = \frac{\sigma^2}{n}$$
$$MSE(S^2) = varS^2 = \frac{2\sigma^2}{n-1}.$$

The MLE of σ^2 is

$$\hat{\sigma}^2 = \frac{n-1}{n}S^2.$$

and

$$bias(\hat{\sigma}^2) = -\frac{1}{n}\sigma^2.$$

Hence, $\hat{\sigma}^2$ is asymptotically unbiased.

$$MSE(\hat{\sigma}^2) = var(\hat{\sigma}^2) + (bias(\hat{\sigma}^2))^2$$
$$= \underbrace{\frac{2\sigma^4}{n-1}}_{MSE(S^2)} \cdot \underbrace{\frac{2n^2 - 3n + 1}{2n^2}}_{\leq 1}$$
$$\leq MSE(S^2)$$

Trade-off between the bias and the variance

• Increasing the (bias)² led to a **decrease** of the variance and an overall decrease of the MSE.

• The MSE is just a criterion, meaning that we should not discard S² based on the MSE alone.

Example 2.19. The Bayesian estimator of p is

$$\hat{p}_B = \frac{n\bar{X} + \alpha}{n + \alpha + \beta}.$$

Clearly, \hat{p}_B is biased.

$$MSE\hat{p}_B = \frac{\alpha^2 + p(n - 2\alpha^2 - 2\alpha\beta) + p^2(-n + \alpha^2 + \beta^2 + 2\alpha\beta)}{(n + \alpha + \beta)^2}.$$

We can decide to choose α and β so that the $MSE_{\hat{p}_B}$ does not depend on p. We get $\alpha = \beta = \frac{\sqrt{n}}{2}$.

When p = 1/2, the Bayesian estimator (the blue line) has the biggest advantage over the MLE (the red line), since the expectation of the prior, Beta (α, β) , is

$$\frac{\alpha}{\alpha+\beta} = \frac{1}{2}.$$

Theorem (2.20). Suppose that T is asymptotically unbiased estimator of $\gamma(\theta)$ and $var_{\theta}T \to 0$ as $n \to \infty$ for all $\theta \in \Theta$. Then T is a consistent estimator of $\gamma(\theta)$.

Proof. Fix an arbitrary $\varepsilon > 0$, and $\theta \in \Theta$. By Markov inequality,

$$P_{\theta}(|T - \gamma(\theta)| > \varepsilon) \leq \frac{E_{\theta}(T(X_1, \cdots, X_n) - \gamma(\theta))^2}{\varepsilon^2}$$
$$= \frac{MSE_{\theta}(T)}{\varepsilon^2}$$
$$= \frac{var_{\theta}T + (bias_{\theta}T)^2}{\varepsilon^2} \xrightarrow[\sigma \to \infty]{} 0.$$

Remark:

we see from the proof that if T is an estimator of $\gamma(\theta)$ and $MSE_{\theta}T \to 0$ as $n \to \infty$, then T is consistent for $\gamma(\theta)$.

-Lecture 6b-

2.4 Best Unbiased Estimators

- Comparisons based on MSE may not yield a clean winner among estimators
- There is no "best MSE" estimator. Consider

$$\{Bernoulli(p), p \in (0,1)\}.$$

Let

$$p_{\rm sillv} = 0.5.$$

This is silly because the estimator does not use the data at all, but

$$MSE_p(\hat{p}_{silly}) = (0.5 - p)^2$$
$$= 0 \text{ when } p = 0.5.$$

Now, we can devise such silly estimator for any $p_0 \in (0, 1)$:

$$\hat{p}_{silly;p_0} = p_0 \to MSE_{p_0}(\hat{p}_{silly;p_0}) = 0.$$

• MSE that uniformly minimize MSE of all possible estimators would have to be 0 for any $p \in (0, 1)$.

Definition 2.20. An estimator T^* is called a uniform minimum variance unbiased estimator (UMVUE) of $\gamma(\theta)$ if:

- 1. T^* is unbiased: $E_{\theta}T^* = \gamma(\theta)$
- 2. T^* is "best" in terms of the variance: if T is an arbitrary unbiased estimator of $\gamma(\theta)$,

$$\forall \theta \in \Theta, \ \underbrace{var_{\theta}T^*}_{MSE_{\theta}T^*} \leq \underbrace{var_{\theta}T}_{MSE_{\theta}T}.$$

Example 2.21. X_1, \dots, X_n a random sample from $Poisson(\lambda), \lambda \in (0, \infty)$. We derived earlier an estimator of λ :

$$\hat{\lambda} = \bar{X}.$$

Theorem 2.22 (Cramer-Rao Inequality). Suppose that X_1, \dots, X_n is a random sample from $P_{\theta}, \theta \in \Theta \subset \mathbb{R}$. Let $T(X_1, \dots, X_n)$ be an unbiased estimator of $\gamma(\theta)$, i.e.

$$\forall \theta \in \Theta, \ E_{\theta}T = \gamma(\theta).$$

Let $X \sim P_{\theta}$. Assume that the conditions (1), (2), (3) below holds:

(1) For all $\theta \in \Theta$, P_{θ} had a pdf/ pmf $f(x; \theta)$ and

$$\frac{\partial f}{\partial \theta}$$

exists for all $\theta \in \Theta$ and all $x \in N_{\theta}$.

(2) $\forall \theta \in \Theta$,

$$E_{\theta}\left(\frac{\partial logf}{\partial \theta}(X;\theta)\right) = 0$$

and

$$E_{\theta}\left(\left(\frac{\partial logf}{\partial \theta}(X;\theta)\right)^{2}\right) = I(\theta) \in (0,\infty)$$

for all $\theta \in \Theta$. Here, $I(\theta)$ is called the Fisher Information.

(3) $var_{\theta}T(X_1, \cdots, X_n) < \infty$ for all $\theta \in \Theta$ and

$$\sum_{i=1}^{n} E_{\theta} \left\{ T(X_1, \cdots, X_n) \cdot \frac{\partial logf}{\partial \theta}(X_i; \theta) \right\} = \gamma'(\theta)$$

for all $\theta \in \Theta$.

Then

$$var_{\theta}T(X_1,\cdots,X_n) \geq \frac{(\gamma'(\theta))^2}{n \cdot I(\theta)}.$$

Proof. Cauchy-Schwarz inequality:

$$(cov(Z, W))^2 \le varZ \cdot varW.$$

Remarks

• Note that if $X \sim P_{\theta}$,

$$P_{\theta}(X \in \{x : f(x; \theta) > 0\}) = 1.$$

So we can assume whog that $f(x; \theta) > 0$ for all $x \in N_{\theta}$ and $\theta \in \Theta$. Then

$$\frac{\partial logf}{\partial \theta} = \frac{\frac{\partial f}{\partial \theta}}{f}$$

exists for all $\theta \in \Theta$ and $x \in N_{\theta}$.

- Assumptions (2) and (3) really mean that we can interchange differentiation and either integration or summation as the case may be.
- Check if it is an exponential family

Example 2.23. X_1, \dots, X_n us $Bernoulli(p), p \in (0, 1)$. \overline{X} is UMVUE for p.

-Lecture 7a-

Recall that Cauchy-Schwarz inequality,

$$cov(X,Y) \le \sqrt{varXvarY}.$$

Equality holds if and only if $\exists a, b \in \mathbb{R}$ so that

$$Y = aX + b$$
 a.s.

Denoting $T = T(X_1, \dots, X_n)$, an unbiased estimator of $\gamma(\theta)$ with finite variance and

$$W = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} log f(X_i; \theta)$$

then we have

Corollary 2.24. Under the condition of the CR theorem (Thm 2.22), T attains the CR lower boudn if and only if

$$a(\theta) \cdot (T - \gamma(\theta)) = W P_{\theta} - a.s.$$

Example 2.23 (cont'd) X_1, \dots, X_n , a random sample from Bernoulli(p), $p \in (0, 1)$.

$$W = \sum_{i=1}^{n} \frac{\partial}{\partial p} log f(X_i; p)$$
$$= \sum_{i=1}^{n} \left(\frac{X_i}{p} + \frac{(1 - X_i)}{1 - p}\right)$$
$$= \frac{n\bar{X} - np}{p(1 - p)}.$$

Suppose we wish to estimate the ODDs

$$\gamma(\theta) = \frac{p}{1-p}$$

In order for T to attain the CR lower bound

$$\frac{p}{n(1-p)^3},$$

we have to have that $T = a(n)\overline{X} + b(n)$, but $ET = a(n) \cdot p + b(n) \neq \frac{p}{1-p}$ for all $p \in (0, 1)$. Hence, the CR lower bound for estimating the odds cannot be attained.

Definition 2.25 (One-parameter exponential family). A family of PDFs/ PMFs is called a one-parameter exponential family in $c(\theta)$ and T(x), if, for all $\theta \in \Theta \subset \mathbb{R}$,

$$f(x;\theta) = 1_A(x) \exp\left\{c(\theta)T(x) + d(\theta) + S(x)\right\}$$

for some set $A \subset \mathbb{R}$ which does not depend on θ and is a Borel set,, $c : \Theta \to \mathbb{R}$, and $S, T : \mathbb{R} \to \mathbb{R}$ Borel-measurable, and T is not a.s. constant on A.

Example 2.26. *Bernoulli(p):*

$$f(x;p) =_p p^x (1-p)^{1-x}, x \in \{0,1\}.$$
$$A = \{0,1\}.$$

On A,

$$f(x;p) = \exp\left\{x \cdot \log p + (1-x) \cdot \log(1-p)\right\}$$
$$= \exp\left\{\underbrace{x}_{T(x)} \cdot \underbrace{\log \frac{p}{1-p}}_{c(p)} + \underbrace{\log(1-p)}_{d(p)}\right\}.$$

Remark

One can prove that for $\Theta = (a, b), -\infty \leq a < b \leq \infty, c : \Theta \to \mathbb{R}$ is continuously differentiable with $c'(\theta) > 0$ for all $\theta \in \Theta$, then the assumptions of the CR Theorem 2.22 are fulfilled. Since

$$\frac{\partial}{\partial \theta} log f(x; \theta) = c'(\theta)T(x) + d'(\theta)$$

than

$$Z = \frac{1}{n} \sum_{i=1}^{n} T(X_i)$$

is an UMVUE of $\gamma(\theta) = ET(X)$ (assuming $ET^2(X) < \infty$) by Theorem 2.22.

Example 2.27 (Uniform $(0, \theta)$). A unbiased estimator of θ is

$$T = \frac{n+1}{n}X(n).$$

$$varT = \frac{\theta^2}{n(n+2)} << \frac{\theta^2}{n}, \ CR \ lower \ bound.$$

. Hence, we need a deeper theory to find UMVUE.

3 Chapter **3**: Sufficiency and Completeness

3.1 Suffiency

Can we summarize the data without losing information about θ ?

Notation: the support of (X_1, \dots, X_n) , the so called sample space, is denoted by χ .

Basic observation Any statistic T induces a partition of χ . Indeed, let

$$\tau = \{t : t = T(\underline{x}) \text{ for some } \underline{x} \in \mathcal{X}\}.$$

The sets

$$\mathcal{A}_t = T^{-1}\{t\} = \{\underset{\sim}{x \in \mathcal{X} : T(x) = t}\}$$

form a partition of the sample space.

The statistic T summarizes the data (i.e. reduces information). T = t really means that $(X_1, \dots, X_n) \in \mathcal{A}_t$.

T contains all relevant information about θ if the exact value of $\underset{\sim}{x} \in \mathcal{A}_t$ contains no additional information about θ .

Definition 3.1 (Sufficient statistic). A statistic $T(X_1, \dots, X_n)$ is a sufficient statistic for θ if the conditional distribution of (X_1, \dots, X_n) given $T(X_1, \dots, X_n) = t$ does not depend of θ .

Example 3.2.

- (X_1, \dots, X_n) is sufficient for θ : the conditional distribution of (X_1, \dots, X_n) given $(X_1, \dots, X_n) = \underset{\sim}{x}$ is degenerate.
- X_1, \dots, X_n be a random sample from $Bernoulli(p), p \in (0, 1)$.

$$T(X_1, \cdots, X_n) = \sum_{i=1}^n X_i$$

Here, $\chi = \{0, 1\}^n$, $T = \{0, 1, \cdots, n\}$,

$$\mathcal{A}_t = \{(x_1, \cdots, x_n) \in \{0, 1\}^n : \sum_{i=1}^n x_i = t\}.$$

For all $(x_1, \cdots, x_n) \in \mathcal{X}, t \in \tau$,

$$P_{\theta}\left((X_{1},\cdots,X_{n})=(x_{1},\cdots,x_{n})|T(X_{1},\cdots,X_{n})=t\right)$$
$$=\begin{cases} 0 \quad \text{if } x \notin \mathcal{A}_{t} \\ \frac{1}{\binom{n}{t}} \quad \text{if } x \in \mathcal{A}_{t} \end{cases}$$

does not depend on p, so $T = \sum_{i=1}^{n} is$ sufficient for p.

Theorem 3.3 (Neyman-Fisher Factorization). Let $f(x_1, \dots, x_n; \theta)$ denote the joint pdf/pmf of (X_1, \dots, X_n) . A statistic T is sufficient for θ if and only if for all $\theta \in \Theta$, there exists measurable function g_{θ} , h so that

$$f(x_1,\cdots,x_n;\theta)=g_{\theta}(T(x_1,\cdots,x_n))\cdot h(x_1,\cdots,x_n).$$

Proof.
Example 3.4. X_1, \dots, X_n is a random sample from $N(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma^2 > 0$.

$$f(x_1, \cdots, x_n; \mu, \sigma^2) = (\frac{1}{2\pi})^{n/2} (\frac{1}{\sigma^2})^{n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right)$$

Clearly, (X_1, \dots, X_n) is sufficient for (μ, σ^2) . But

$$\sum_{i=1}^{n} (x_i - \mu)^2$$

= $\sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2$
= $(n-1)s^2 + n(\bar{x} - \mu)^2$

$$f(x_1, \cdots, x_n; \mu, \sigma^2) = (\underbrace{\frac{1}{2\pi}}_{h(\underline{x})})^{n/2} \cdot \underbrace{(\frac{1}{\sigma^2})^{n/2} \exp\left(-\frac{(n-1)s^2 + n(\bar{x}-\mu)^2}{2\sigma^2}\right)}_{g_{\mu,\sigma^2}(\bar{x},s^2)}$$

Using Thm 3.3 (Neyman-Fisher factorization), we conclude that (\bar{X}, S^2) is sufficient for (μ, σ^2) . Assume now that σ^2 is known. Here, (\bar{X}, S^2) is sufficient for μ . But, we can also write

$$f(x_1, \cdots, x_n; \mu, \sigma^2) = (\underbrace{\frac{1}{2\pi}}_{h(\underline{x})})^{n/2} (\frac{1}{\sigma^2})^{n/2} \exp\left(-\frac{(n-1)s^2}{2\sigma^2}\right) \cdot \underbrace{\exp\left(-\frac{n(\bar{x}-\mu)^2}{2\sigma^2}\right)}_{g_{\mu}(\bar{x})}$$

Hence, \overline{X} is sufficient for μ .

Remark: Sufficient statistic is generally not unique. Some statistics achieve greater data reduction than others. Also, the dimension of paramters nad the dimension of statistics are <u>unrelated</u>.

Example 3.5. Consider a random sample form $U(\theta, \theta + 1), \theta \in \mathbb{R}$.

$$f(x_1, \cdots, x_n; \theta)$$

$$= \begin{cases} 1, & if \ \theta < x_i < \theta + 1 \\ 0, & otherwise \end{cases}$$

$$= \underbrace{\mathbb{1}(\min_{1 \le i \le n} x_i; \max_{1 \le i \le n} x_i)}_{g\theta(\min_{1 \le i \le n} x_i; \max_{1 \le i \le n} x_i)}$$

Using the Neyman-Fisher factorization, we have that

$$\left(\min_{1\leq i\leq n} X_i, \max_{1\leq i\leq n} X_i\right)$$

is sufficient for θ .

Example 3.6. Consider a random sample from $U(0, \theta)$

Consider a random sample from $U(0, \theta), \theta > 0$.

$$f(x_1, \cdots, x_n; \theta)$$

$$= \begin{cases} \left(\frac{1}{\theta}\right)^n, & \text{if } 0 < x_i < \theta \\ 0, & \text{otherwise} \end{cases}$$

$$= \underbrace{\left(\frac{1}{\theta}\right)^n \cdot 1(\max_{1 \le i \le n} x_i < \theta)}_{g_{\theta}(\max_{1 \le i \le n} x_i)} \cdot \underbrace{1(\min_{1 \le i \le n} x_i > 0)}_{h(x_1, \cdots, x_n)}$$

By the Neyman-Fisher factorization, $\max_{1 \le i \le n} X_i$ is sufficient for θ .

3.2 The Rao-Blackwell Theorem

Recall X, Y random variables

$$E(X) = E(E(X|Y))$$

and E(X|Y) is a measurable function of Y.

$$var(X) = E(var(X|Y)) + var(E(X|Y)).$$

Theorem 3.7 (Rao-Blackwell Theorem). Let W be an unbiased estimator of $\gamma(\theta)$ with finite variance, and T be a sufficient statistic for θ . Let

$$W^* = E(W|T).$$

Then

- (a) W^* is an unbiased estimator of $\gamma(\theta)$.
- (b) For all $\theta \in \Theta$:

$$var_{\theta}W^* \leq var_{\theta}W.$$

Example 3.8.

Remark

- Process of conditioning on a sufficient statistic is called "Rao-Blackwellization".
- Theorem 3.7 implies that an UMVUE (if it exists) needs to be based on a sufficient statistic.

Corollary 3.9. Let W be an estimator of $\gamma(\theta)$ with finite variance, but not necessarily unbiased. Let T be a sufficient statistic for θ . Then for

 $W^* = E(W|T),$

 $MSE_{\theta}(W^*) \leq MSE_{\theta}(W) \quad \forall \theta \in \Theta.$

-Lecture 9a

3.3 Completeness

Suppose that T is a statistic and g is a measurable function such that

$$\forall \theta \in \Theta, \ E_{\theta}g(T) =$$

we have that

$$\forall \theta \in \Theta, \ E_{\theta}g(T) = 0.$$

Assume, for simplicity $\Theta \in \mathbb{R}$ and we wish to estimate θ . Suppose W is an unbiased estimator of θ . Suppose that g(T) is not degenerate (i.e. is a constant a.s.). Then for any $a \in \mathbb{R}$,

$$W_a = W + g(T) \cdot a$$

then W_a is also an estimator of θ :

$$E_{\theta}(W_a) = E_{\theta}(W) + a \cdot E_{\theta}(g(T))$$
$$= \theta + a \cdot 0 = \theta.$$

Assume further that W and g(T) have a finite variance. Suppose that $cov_{\theta_0}(W, g(T)) \neq 0$ for some $\theta_0 \in \Theta$. Then, WLOG assume $cov_{\theta_0}(W, g(T)) < 0$:

$$var_{\theta_0} = var_{\theta_0}(W) + a^2 \cdot var_{\theta_0}(g(T)) + 2a \cdot cov_{\theta_0}(W, g(T))$$

Then,

$$var_{\theta_0} - var_{\theta_0}(W) = a^2 \cdot var_{\theta_0}(g(T)) + 2a \cdot cov_{\theta_0}(W, g(T)).$$

The RHS is negative if a > 0 and

$$a \cdot var_{\theta_0}g(T) < -2 \cdot cov_{\theta_0}(W, g(T))$$
$$a < \underbrace{\frac{-2 \cdot cov_{\theta_0}(W, g(T))}{var_{\theta_0}(g(T))}}_{=a^* > 0}$$

Hence, for $a \in (0, a^*)$,

$$var_{\theta_0}W_a < var_{\theta_0}W.$$

Note that if T is complete, no such a^* exists.

Definition 3.10 (Completeness). A statistic T is called complete, if the family $\{P_{\theta}^{T}, \theta \in \Theta\}$ is complete, meaning that if for any measurale $g: T \to \mathbb{R}$ such that

$$\forall \theta \in \Theta, \mathbb{E}(g(t)) = 0,$$

we have

$$\forall \theta \in \Theta, \ P_{\theta}(g(T) = 0) = 1.$$

Remark: T is complete if $\forall \theta \in \Theta$, $E_{\theta}(g(T)) = 0$ implies that g(T) = 0 [P] a.e. Then, clearly, $cov_{\theta}(W, g(T)) = 0$ for all $\theta \in \Theta$, for any unbiased estimate W.

Example 3.11. Completeness tells us something about the size of

$$\{P_{\theta}^T, \ \theta \in \Theta\}.$$

Consider X_1, \dots, X_n a random sample from $Bernoulli(p), p \in \Theta \subset (0, 1)$. Take $T = \sum_{i=1}^n X_i$. Then $T \sim Binomial(n, p)$. Hence

$$E_p(g(T)) = \sum_{k=0}^n g(h) \binom{n}{k} p^k (1-p)^{n-k}.$$

So $E_p(g(T)) = 0$ for all $p \in \Theta$ means that

$$0 = \sum_{k=0}^{n} \underbrace{g(k)\binom{n}{k}}_{a_{k}} \cdot (1-p)^{n} \cdot \underbrace{(\frac{p}{1-p})^{k}}_{r}$$
(*)
$$0 = \sum_{k=0}^{n} a_{k}r^{k}, \ p \in \Theta$$

For T to be complete, we need to conclude that g(h) = 0 for all $k = \{0, \dots, n\}$, i.e. $a_k = 0$ for al $k \in \{0, \dots, n\}$.

- If $\Theta = (0,1)$, then $r = \frac{p}{1-p} \in (0,\infty)$. Hence, (*) means that the polynomial vanishes for all $r \in (0,\infty)$, and that indeed implies that $a_k = 0$ for all $k \in \{0, \dots, n\}$, so T is complete.
- If Θ is finite and |Θ| ≤ n, it may well happen that a_k ≠ 0 for some k.
 For example, if Θ = {1/2}, then (*) becomes (say n = 1):

$$0 = g(0) + g(1)$$

which does not imply

$$g(0) = g(1) = 0.$$

Hence, T is NOT complete.

Example 3.12. Consider a random sample X_1, \dots, X_n from $U(0, \theta), \theta > 0$.

$$T = \max_{i \le i \le n} X_i.$$

Then,

$$P_{\theta}(T \le t) = \prod_{i=1}^{n} P_{\theta}(X_i \le t) = \begin{cases} (t/\theta)^n, \ t \in (0,\theta) \\ 0, \ t \le 0 \\ 1, \ t \ge \theta \end{cases}$$

So T has a pdf:

$$f_{\theta}^{T}(t) = \frac{n}{\theta^{n}} \cdot t^{n-1}, \ t \in (0, \theta).$$

Suppose that g is measurable and such that $E_{\theta}g(T) = 0$ for all $\theta > 0$. Suppose that g is Riemann-integrable.

$$E_{\theta}g(T) = 0 \iff 0 = \int_0^{\theta} g(t) \cdot \frac{n}{\theta^n} \cdot t^{n-1} dt$$

Fix $\theta \in \Theta$ arbitrary. Then $E_{\theta}g(T) = 0$ implies

$$0 = \frac{\partial}{\partial \theta} \int_{0}^{\theta} g(t) \frac{n}{\theta^{n}} t^{n-1} dt$$

= $(\frac{\partial}{\partial \theta} \theta^{-n}) \cdot \underbrace{\theta^{n}}_{=0} \int_{0}^{\theta} g(t) \frac{n}{\theta^{n}} t^{n-1} dt$
= $\theta^{-n} \cdot \frac{\partial}{\partial \theta} \int_{0}^{\theta} g(t) n \cdot t^{n-1} dt$
= $\theta^{-n} [g(\theta) n \cdot \theta^{n-1}]$
= $\frac{g(\theta) \cdot n}{\theta}$ by Leibnitz rule

Hence, $g(\theta) = 0$ implies g(t) = 0 for t > 0 for any $\theta > 0$. Then, $P_{\theta}(g(T) = 0) = 1$ for all $\theta > 0$. Hence, T is complete.

Theorem 3.13 (Lehmann-Scheffe). X_1, \dots, X_n a random sample from P_{θ} , $\theta \in \Theta$. Suppose that T is a <u>sufficient</u> and <u>complete</u> statistic. Let $\gamma(\theta)$ be a real-valued parameter, and let W be an unbiased estimator of $\gamma(\theta)$ with finite variance. Then

$$W^* = E(W|T)$$

is UMVUE for $\gamma(\theta)$.

Remark:

• We see from the proof that the UMVUE is a.s. unique.

• If T is complete and sufficient and W = h(T) is unbiased, then W is UMVUE.

Example 3.14.

- $T = \max_{i \le i \le n} X_i$ is complete.
- T is sufficient
- $\frac{n+1}{n}T$ is an unbiased estimator of θ .

Hence, by Lehmann-Scheffe theorem, $\frac{n+1}{n} \max_{1 \le i \le n}$ is UMVUE.

Theorem 3.15. Suppose X_1, \dots, X_n are iid from a distribution in a Jparameter exponential family, that is, the PDF/PMF has the form

$$f(x;\theta) = 1(x \in A) \exp\{\sum_{i=1}^{J} c_j(\theta)T_j(x) + d(\theta) + S(x)\}\$$

where $J \geq 1$, $A \subset \mathbb{R}$ is a Borel set independent of θ , c_1, \dots, c_j , $d : \Theta \to \mathbb{R}$; $T_1, \dots, T_J, S : \mathbb{R} \to \mathbb{R}$ measurable and T_1, \dots, T_J are not a.s. constant. Then

$$T = \left(\sum_{i=1}^{n} T_1(X_i), \cdots, \sum_{i=1}^{n} T_J(X_i)\right)$$

is sufficient for θ . If

$$\{(c_1(\theta),\cdots,c_J(\theta):\theta\in\Theta)\}\$$

contains an open subset in \mathbb{R}^J , T is complete.

Example 3.16.

• Bernoulli:

$$f(x;p) = p^{x}(1-p)^{1-x} \mathbb{1}(x \in \{0,1\})$$
$$= \mathbb{1}(x \in \{0,1\}) \exp\{x \cdot \log \frac{p}{1-p} + \log(1-p)\}$$

where J = 1, S(x) = 0. By Theorem 3.15, $\sum_{i=1}^{n} X_i$ is sufficient for p. The set

$$\{\log \frac{p}{1-p}, \ p \in (0,1)\} = (-\infty,\infty).$$

Hence, $\sum_{i=1}^{n} X_i$ is complete.

• Uniform: $f(x;\theta) = \frac{1}{\theta} \mathbf{1}(x \in (0,\theta))$ is not an exponential form since $A = (0,\infty)$ depends on θ .

4 Chapter 4: Hypothesis Tests

4.1 Basic terminology of hypothesis testing

Definition 4.1 (Hypothesis). A hypothesis is a statement about a population parameter. Given a parametric model for the population distribution, viz

$$\{P_{\theta}, \ \theta \in \Theta\}$$

we have

• the null hypothesis ("the null")

$$H_0: \theta \in \Theta_0$$

where $\Theta_0 \subset \Theta$ is some fixed subset of the parameter space.

• the alternative hypothesis (the "alternative")

 $H_1: \theta \notin \Theta_0$

When $|\Theta_0| = 1$, H_0 is called simple; otherwise, it is called composite, and analogously for H_1 .

Definition 4.2 (Hypothesis test). A hypothesis test is a decision rule that specfies for which sample values H_0 is rejected and for which it is not. Formally, a hypothesis test is a measurable map

$$\psi: \chi \to [0,1].$$

The observed value $\psi(x_1, \dots, x_n)$ is the probability of rejecting H_0 when

$$(X_1,\cdots,X_n)=(x_1,\cdots,x_n).$$

$$R = \{(x_1, \cdots, x_n) \in \mathcal{X} : \psi(x_1, \cdots, x_n) = 1\}$$

is called the rejection region.

•

$$A = \{(x_1, \cdots, x_n) \in \mathcal{X} : \psi(x_1, \cdots, x_n) = 0\}$$

is called the acceptance region.

•

$$U = \{(x_1, \cdots, x_n) \in \mathcal{X} : \psi(x_1, \cdots, x_n) \in 0, 1()\}$$

is called the randomization region.

If $U \neq \emptyset$, ψ is called a randomized test.

Example 4.3. Coffee bean: good - 0, spoiled - 1 X_1, \dots, X_n sample of coffee beans

• test statistic:

$$T = \sum_{i=1}^{n} X_i = \text{``number of spoiled beans''}$$

- pick $c \in \{0, \cdots, n+1\}$
- •

$$\psi(X_1, \cdots, X_n) = \begin{cases} 1, T \ge c \\ 0, T < c \end{cases} = 1(T \ge c)$$

Any test can have 4 possible outcomes: Decision			
		Accept Ho	Reject Ho
4 4	lo is true	\checkmark	Type I error "false positive"
TRUTH	Ho is faloe	Type I error "false negative"	

- Medical test :
 - H_0 : healthy
 - H_1 : infected
- Trial :
 - H_0 : innocent
 - H_1 : guilty
- Exam :
 - H_0 : student deserves to pass
 - H_1 : student does not deserve to pass

- super tough
 - every fails
 - type 2 error does not occur
 - type 1 error blows up
- Department chair: make sure that at most 5% (or α %) of good students fails \implies control the Type 1 error \implies LEVEL
- While controlling type 1 error, we can try to minimize the type 2 error, or maximize the power of the test (to detect the alternative, i.e. fail poor students)

Definition 4.4 (Power function). The power function of a hypothesis test ψ is

$$B_{\psi} : \Theta \to [0, 1]$$

 $\theta \to E_{\theta}(\psi(X_1, \cdots, X_n))$

If ψ is not randomized, $B_{\psi}(\theta)$ is the probability of rejecting H_0 . For a given $\alpha \in [0, 1], \psi$ is called a level- α test if

$$\forall \theta \in \Theta_0 : B_{\psi}(\theta) \le \alpha.$$

The size of ψ is $\sup_{\theta \in \Theta_0} B_{\psi}(\theta)$.

A level- α test controls type 1 error, but not necessarily the type 2 error.

- Rejecting H_0 is a "safe" decision
- Accepting H_0 is NOT a "safe" decision. That's why we say "the data do not provide sufficient evidence to reject H_0 " or "do not reject H_0 ".
- If possible, the scientific hypothesis we wish to prove should be the alternative. Sometimes, it is not possible. For example, we want to know if the snowfall is from a normal distribution.

Example 4.1 (cont'd)

 $H_0: \theta$

$$\leq \frac{1}{100} \quad H_1: \theta > \frac{1}{100}$$
$$T = \sum_{i=1}^n X_i \sim Binomial(n, \theta).$$
$$B_{\psi}(\theta) = P_{\theta}(T \geq c) = \sum_{k=c}^n \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

- if c = 0, $B_{\psi}(\theta) = 1$ for all $\theta \in (0, 1)$.
- if c = n + 1, $B_{\psi}(\theta) = 0$ for all $\theta \in (0, 1)$
- if $c \in \{1, \dots, n\}$: B_{ψ} is strictly increasing in θ . \implies The size of ψ is $B_{\psi}(\frac{1}{100})$.
- To choose c:
 - Control type 1 error:

$$B_{\psi}(\frac{1}{100}) \le \alpha = 0.05$$

The larger c, the smaller the size.

- Maximize the power: maximize B_{ψ} for $\theta > 1/100$. The smaller c, the larger the power.
- Note: typically, increasing the sample size leads to a better power.

Lecture 10a

4.2 Likelihood Ratio Test

General strategy how to construct tests. Typically, we construct a test statistic

$$W(X_1,\cdots,X_n)$$

and identify values in the sample space χ for which W has an unlikely value if H_0 holds. This set of values in χ will form a rejection region R. The (non-randomized) test will be

$$\psi(X_1,\cdots,X_n) = 1((X_1,\cdots,X_n) \in R)$$

For test problems about the parameter θ ,

$$H_0: \theta \in \Theta_0 \quad H_1: \theta \notin \Theta_0$$

a large class of tests can be obtained as follows:

Definition 4.5 (Likelihood ratio test). *The likelihood ratio statistic for testing*

$$H_0: \theta \in \Theta_0 \quad H_1: \theta \notin \Theta_0$$

is $\lambda(X_1, \dots, X_n)$ given, at any (x_1, \dots, x_n) by,

$$\lambda = \frac{\sup_{\theta \in \Theta_0 L(\theta; x_1, \cdots, x_n)}}{\sup_{\theta \in \Theta L(\theta; x_1, \cdots, x_n)}}$$

A likelihood ratio test(LRT) has the rejection region

$$R = \{(x_1, \cdots, x_n) : \lambda(x_1, \cdots, x_n) \le c\}$$

for some suitable chosen critical value c, chosen as a function of α (the level of the test).

How do we calculate the LR statistic λ ?

• If $\hat{\theta}$ is MLE of θ and $\hat{\theta}_0$ is $\hat{\theta}_0 = argmax_{\theta \in \Theta_0} L(\theta; X_1, \cdots, X_n)$, then

$$\lambda = \frac{L(\hat{\theta}_0; x_1, \cdots, x_n)}{L(\hat{\theta}; x_1, \cdots, x_n)}$$

Example 4.6. We wish to test $H_0: p \le p_0$ vs $H_1: p > p_0$ based on a random sample X_1, \dots, X_n from Bernoulli(p) (viz. Example 4.1). To construct a LRT, recall

$$L(p; x_1, \cdots, x_n) = p^{n \cdot \bar{x}} (1-p)^{n(1-\bar{x})}, \ p \in [0, 1]$$

we already know (Ex. 2.9) that the MLE of p is \overline{X} .

$$\hat{p}_0 = \arg \max_{0 \le p \le p_0} L(p; x_1, \cdots, x_n) = \min(p_0, \bar{x}).$$

4.3 p-value

Definition 4.7. Let $W(X_1, \dots, X_n)$ be a test statistic such that small (large) value of W give evidence against H_0 (are unlikely under H_0). For each

$$(x_1,\cdots,x_n)\in\mathcal{X},$$

let

$$p(x_1, \cdots, x_n) = \sup_{\theta \in \Theta_0} P_{\theta}(W(X_1, \cdots, X_n) \le (\ge) \underbrace{W(x_1, \cdots, x_n)}_{observed \ value \ of \ W}),$$

"probablity of observing a value of W that is even more unlikely under H_0 than the one actually observed"

The random variable $p(X_1, \dots, X_n)$ is called the p-value.

Definition 4.7 Let
$$W(X_{1}, ..., X_n)$$
 be a test
statistic such that small values of W
(large)
ogive evidence against Ho (are unlikely under Ho)
For each $(x_{1}, ..., x_n) \in X$, let
* $p(x_{1}, ..., x_n) = \sup_{\Theta} P(W(X_{1}, ..., X_n) \stackrel{>}{=} W(\underbrace{x_{1}, ..., x_{n}}_{observed})$
 $\Theta \in \Theta$.
* probability of observing a value of W that is
even more unlikely under Ho that the one acheally
observed.
The random variable $p(X_{1}, ..., X_{n})$ is called
the p-value

Note: the p-value is NOT the probability that H_0 holds!

Example 4.8 (p-value of a LRT).

$$p(x_1, \cdots, x_n) = \sup_{\theta \in \Theta_0} (\lambda(X_1, \cdots, X_n) \le \lambda(x_1, \cdots, x_n)).$$

Example 4.9 (Bernoulli).

Theorem 4.10. In the context of Definition 4.7, the test that rejects H_0 if $p(X_1, \dots, X_n) \leq \alpha$ is a level- α test for all $\alpha \in [0, 1]$.

Lemma 4.11. For any random variable Y with distribution function G, $P(G(Y) \le u) \le u$ for all $u \in [0, 1]$.

Proof. wlog:

$$p(x_1, \cdots, x_n) = \sup_{\theta \in \Theta_0} P_{\theta}(W \le w(x_1, \cdots, x_n)).$$

For all $\theta \in \Theta$, let

$$p_{\theta}(x_1, \cdots, x_n) = P_{\theta}(W(X_1, \cdots, X_n) \le w(x_1, \cdots, x_n))$$
$$= F_{\theta}^W(W(x_1, \cdots, x_n))$$

From Lemma 4.11

$$P_{\theta}(p_{\theta}(X_1, \cdots, X_n) \le \alpha)$$

= $P_{\theta}(F_{\theta}^W(W(X_1, \cdots, X_n)) \le \alpha) \le \alpha$

Hence, for all $\theta^* \in \Theta_0$

$$P_{\theta^*}(p(X_1,\cdots,X_n) \le \alpha) \le P_{\theta^*}(p_{\theta^*}(X_1,\cdots,X_n) \le \alpha) \le \alpha$$

since

$$p(X_1, \cdots, X_n) = \sup_{\theta \in \Theta_0} p_{\theta}(X_1, \cdots, X_n) \ge p_{\theta^*}(X_1, \cdots, X_n)$$

Note: if you report the p-value

- the reader can choose α
- the smaller the p-value, the stronger the evidence against H_0 .

4.4 Small Sample Tests for Normal Samples

Throughout this lecture: X_1, \dots, X_n is a random sample from $N(\mu, \sigma^2)$.

Example 4.12 (z-test). Assume that $\sigma^2 \equiv \sigma_0^2$ is KNOWN and we wish to test

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$

The Z statistic is

$$\sqrt{n}\frac{X-\mu_0}{\sigma_0} \sim N(0,1).$$

Definition 4.13 ((1- α)· 100% quantile of N(0,1)). The (1- α)100% quantile of N(0,1) is a value z_{α} such that

$$1 - \Phi(z_{\alpha}) = \alpha = \Phi(-z_{\alpha})$$

where Φ is the CDF of N(0, 1).

• Two-sided z test: the level- α LRT for testing

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$$

is

$$\psi(X_1,\cdots,X_n) = 1(\frac{\sqrt{n}}{\sigma_0}|\bar{X}-\mu_0| \ge z_{\alpha/2}).$$

p-value:

$$2(1 - \Phi(|z_{obs}|))$$

where

$$z_{obs} = \frac{\sqrt{n}}{\sigma_0} (\bar{x} - \mu_0)$$

• One-sided z test: if instead, we wish to test

$$H_0: \mu \le \mu_0 \text{ vs } H_1: \mu > \mu_0$$

Recall that the likelihood function L is increasing on $(\infty, \bar{x}]$ and decreasing on $[\bar{x}, \infty)$. Hence,

$$\hat{\mu}_0 = \min(\bar{x}, \mu_0).$$
$$\psi(X_1, \cdots, X_n) = 1(\frac{\sqrt{n}}{\sigma_0}(\bar{X} - \mu_0) \ge z_\alpha).$$

p-value

$$1 - \Phi(z_{obs})$$

• One-sided z test:

$$H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0$$
$$\psi(X_1, \cdots, X_n) = 1(\frac{\sqrt{n}}{\sigma_0}(\bar{X} - \mu_0) \le -z_\alpha).$$

p-value

 $\Phi(z_{obs})$

Exmaple 4.12 (T test).

Suppose that both μ and σ^2 are unknown. (Note that σ^2 is a nuisance parameter.)

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$$

The LRT has the form

$$\psi(X_1,\cdots,X_n) = 1(\frac{\sqrt{n}}{S}|\bar{X}-\mu_0| \ge c^*)$$

Recall from Theorem 1.26 that under H_0 ,

T statistic =
$$\frac{\sqrt{n}}{S}(\bar{X} - \mu_0) \sim t_{n-1}$$

Definition 4.13 ($(1-\alpha)100\%$ quantile from the student t distribution) The $(1-\alpha) \cdot 100\%$ quantitle from the student t distribution with ν dof is $t_{\nu,\alpha}$ such that

$$P(T \ge t_{\nu,\alpha}) = \alpha$$

where $T \sim t_{\nu}$.

• Two-sided T-test:

$$\psi(X_1, \cdots, X_n) = 1\left(\frac{\sqrt{n}}{S} |\bar{X} - \mu_0| \ge t_{n-1,\alpha/2}\right)$$
$$p - value = P(|T| \ge |t_{obs}|)$$
$$t_{obs} = \frac{\sqrt{n}}{s}(\bar{x} - \mu_0)$$
$$T \sim t_{n-1}$$

• One-sided T-test:

$$H_0: \mu \le \mu_0 \text{ vs } H_1: \mu > \mu_0$$

The level- α LRT is

$$\psi(X_1, \cdots, X_n) = 1(\frac{\sqrt{n}}{S}(\bar{X} - \mu_0) \ge t_{n-1,\alpha})$$
$$p - value = P(T \ge t_{obs})$$

• One-sided T-test:

$$H_0: \mu \ge \mu_0 \text{ vs } H_1: \mu < \mu_0$$

The level- α LRT is

$$\psi(X_1, \cdots, X_n) = 1\left(\frac{\sqrt{n}}{S}(\bar{X} - \mu_0) \le -t_{n-1,\alpha}\right)$$
$$p - value = P(T \le t_{obs})$$

-Lecture 11a

Example 4.14 (F test). Two independent random samples:

 $\underbrace{X_1, \cdots, X_n}_{random \ sample \ from \ N(\mu_1, \sigma_1^2))} \qquad \& \qquad \underbrace{Y_1, \cdots, Y_n}_{random \ sample \ from \ N(\mu_2, \sigma_2^2))}$ $H_0: \sigma_1^2 = \sigma_2^2 \qquad vs \qquad H_1: \sigma_1^2 \neq \sigma_2^2$

Definition 4.15. The $(1 - \alpha) \cdot 100\%$ quantile of the F_{ν_1,ν_2} distribution is $F_{\nu_1,\nu_2,\alpha}$ so that

$$P(W \ge F_{\nu_1,\nu_2,\alpha}) = \alpha$$

where $W \sim F_{\nu_1,\nu_2}$.

The level- α LRT (F-test) Assumptions:

- The samples are independent;
- The population distributions are normal for both samples.

 $\psi(X_1, \cdots, X_m, Y_1, \cdots, Y_n) = 1 \left(S_X^2 / S_Y^2 \in (0, F_{m-1, n-1, 1-\alpha/2}] \cup [F_{m-1, n-1, \alpha/2}, \infty) \right)$ p-values: $W_{obs} = S_X^2 / S_Y^2, W \sim F_{m-1, n-1}$

$$p - value = \begin{cases} 2P(W \ge w_{obs}), \ w_{obs} > 1\\ 2P(W \le w_{obs}), \ w_{obs} \le 1 \end{cases}$$

Remark 4.15 Other classical tests for normla samples that can be derived as LRTs:

(1) Chi-squared test: X_1, \dots, X_n random sample from $N(\mu, \sigma^2)$

- (2) Two-sample t test: Assumptions:
 - The samples are independent;
 - The population distributions are normal for both samples, with the same variance

(and possibly different means). $X_1, \dots, X_m \& Y_1, \dots, Y_n$

two independents samples;
$$X_{i} \sim N(\mu \sigma^{2})$$

 $F_{i} \sim N(\nu) \sigma^{2}$
 $H_{0}: \mu \leq \nu \qquad N(\nu) \sigma^{2}$
 $H_{0}: \mu \leq \nu \qquad H_{1}: \mu \geq \nu$
 $= \frac{1}{\sqrt{(m+n)}(\overline{X} - \overline{Y})} \qquad H_{1}: \mu \geq \nu$
 $\psi = 1 \qquad (\sqrt{\frac{m}{(m+n)}(\overline{X} - \overline{Y})} \leq -\frac{1}{\sqrt{(m+n)}} < -\frac{1}{\sqrt{($

4.5 Uniformly most powerful tests

Recall the power of a test ψ :

$$B_{\psi} : \Theta \to [0, 1]$$

 $\theta \to B_{\psi}(\theta) = E_{\theta}\psi = P_{\theta}(X \in R)$

So far, we were controlling the type 1 error (level- α test):

$$\sup_{\theta \in \Theta_0} B_{\psi}(\theta) \le \alpha.$$

Now we can try to minimize the type 2 error, i.e. maximize $B_{\psi}(\theta), \theta \in \Theta_1$, but we cannot minimize both types of error at the same time.

Definition 4.16 (UMP Test). A test ψ is called a uniformly most powerful(UMP) level- α test if its power satistifes

(a)

$$\sup_{\theta \in \Theta_0} B_{\psi}(\theta) \le \alpha$$

(b) For any other level- α test ψ^* with B^*_{ψ} , we have that

$$\forall \theta \in \Theta_1 : B_{\psi}(\theta) \ge B_{\psi^*}(\theta)$$

(i.e. ψ minimizes the type 2 error uniformly over Θ_1)

Definition 4.17. H_i , $i \in \{0,1\}$ is called simple if Θ_i is a singleton, i.e. $|\Theta_i| = 1$. Otherwise, H_i is called composite.

We will start developing a theory for finding UMP tests. We will begin by considering the case of testing a simple H_0 vs a simple H_1 .

$$\Theta = \{\theta_0, \theta_1\}$$

- $H_0: \theta = \theta_0 \text{ vs } H_1: \theta = \theta_1$
- KNAPSACK Problem

Theorem 4.18 (Neyman-Pearson Lemma). Consider $\Theta = \{\theta_0, \theta_1\}, H_0 : \theta = \theta_0$ vs $H_1 : \theta = \theta_1$. Suppose that

$$f(x_1,\cdots,x_n;\theta_i),\ i\in\{0,1\}$$

is the PDF/PMF of (X_1, \dots, X_n) when $\theta = \theta_i$. Define the so-called NP test $\psi_k, k \in [0, \infty]$:

$$\psi_k(x_1,\cdots,x_n) = \begin{cases} 1, & f(x_1,\cdots,x_n;\theta_1) \ge k \cdot f(x_1,\cdots,x_n;\theta_0) \\ 0, & f(x_1,\cdots,x_n;\theta_1) < k \cdot f(x_1,\cdots,x_n;\theta_0) \end{cases}$$

Then ψ_k is a UMP test for H_0 vs H_1 at level

$$\alpha = P_{\theta_0}(\psi_k(X_1, \cdots, X_n) = 1).$$

Remark 4.19. If ψ_k is randomized test:

$$\psi_k(\underset{\sim}{x}) = \begin{cases} 1, & f(\underset{\sim}{x}; \theta_1) > k \cdot f(\underset{\sim}{x}; \theta_0) \\ \gamma, & f(\underset{\sim}{x}; \theta_1) = k \cdot f(\underset{\sim}{x}; \theta_0) \\ 0, & f(\underset{\sim}{x}; \theta_1) < k \cdot f(\underset{\sim}{x}; \theta_0) \end{cases}$$

Example 4.20. X_1, \dots, X_n from $N(\mu, \sigma_0^2)$, σ_0^2 is assumed to be known, so the parameter space is \mathbb{R} . Consider testing:

$$H_0: \mu \leq \mu_0 \ vs \ H_1: \mu > \mu_0$$

Fix an arbitrary $\mu_1 > \mu$. Consider testing the auxiliary problem:

$$H_0^*: \mu = \mu_0 \ vs \ H_1^*: \mu = \mu_1$$

If we simply set $k^* = z_{\alpha}$,

$$\psi_{NP}(X_1, \cdots, X_n) = 1(\frac{\sqrt{n}}{\sigma_0}(\bar{X} - \mu_0) \ge z_\alpha)$$
$$= \psi_z(X_1, \cdots, X_n)$$

which is a one-sided z test. Note that the test ψ_{NP} has nothing to do with μ_1 . Hence, ψ_z is UMP for $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$.

Definition 4.21. A family

$$P = \{P_{\theta} : \theta \in \Theta \subset \mathbb{R}\}$$

of distribution with PMF/PDF $f(;\theta), \theta \in \Theta$ is said to have a monotone likelihood ratio(MLR) is a statistic $T : \chi \to \mathbb{R}$ if

(1)

$$\Theta \to P$$
$$\theta \to P_{\theta}$$

is injective.

(2) For every $\theta_1, \theta_2 \in \Theta$, $\theta_1 < \theta_2$, there exists version of $f(; \theta_1)$ $f(; \theta_2)$ and a non-decreasing mapping $h(; \theta_1, \theta_2) : \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ so that

$$\frac{f(x;\theta_2)}{f(x;\theta_1)} = h(T(x);\theta_1,\theta_2)$$

on the set $\{x \in \mathcal{X} : f(x; \theta_1) > 0 \text{ or } f(x; \theta_1) > 0\}$; here $\overset{"a}{\sim} = 0$ " if a > 0.

Example 4.22. In the setup of Example 4.20,,

$$P = \{P_{\mu}, \mu \in \mathbb{R}\}$$

has a MLR in $T = \overline{X}$.

Theorem 4.23 (Karlin-Rubin). Let X_1, \dots, X_n be a random sample and P the family of distribution of (X_1, \dots, X_n) . Suppose

$$P = \{ P_{\theta}, \theta \in \Theta \subset \mathbb{R} \},\$$

and P has a MLR in a statistic T.

Ho:
$$0 \leq 0$$
, no. $H_{z}: 0 \geq 0$,
let $d \in (0, 1)$ and Y_{KR} be a tot given by
 $Y_{LR}(2\xi) = \begin{cases} 1 & & \\ y & \\ 0 & \\$

65

- (1) ψ_{KR} minimizes uniformly the type 2 and type 1 error among all tests ψ with $E_{\theta_0}\psi = \alpha$.
- (2) ψ_{KR} is a UMP level α test for H_0 vs H_1
- (3) $B_{\psi_{KR}}$ is non-decreasing (non-increasing) in θ .

Remark 4.24. Let F_{θ}^{T} denote the CDF of T, i.e. $F_{\theta}^{T}(t) = P_{\theta}(T \leq t)$,

$$(F_{\theta}^{T})^{-1}(u) = \inf\{x : F_{\theta}^{T}(x) \ge u\}, \ u \in (0, 1).$$

Then: for Ho: $\theta \in \Theta_0$ m. H_1 : $\theta > \Theta_0$ We can set $k = (F_{\Theta_0}^T)^{-1}((1-\alpha))$ $T = \begin{cases} \frac{\alpha - P_{\Theta_0}(T > k_0)}{P_{\Theta_0}(T = k_0)}, & \text{if } P_{\Theta_0}(T = k_0) \neq 0 \\ 0, & \text{if } P_{\Theta_0}(T = k_0) \neq 0 \end{cases}$

Example 4.25. X_1, \dots, X_n random sample from $Poisson(\lambda), \lambda > 0$. *P* has a MLR in $T = \sum_{i=1}^n X_i$.

Note: if $X \sim Poisson(\lambda_1)$ and $Y \sim Poisson(\lambda_2)$ and X and Y are independent, then $X + Y \sim Poisson(\lambda_1 + \lambda_2)$.

Example 4.26. Consider the setup of Example 4.20. We wish to test

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0$$

A UMP level- α test ψ would need to satisfy

$$E_{\mu_0}\psi \leq \alpha$$

٠

$$E_{\mu}\psi = \sup\{E_{\mu}\psi^*: \psi^* \text{ is a test such that } E_{\theta_0}\psi^* \leq \alpha\}$$

Now for all $\mu > \mu_0$: ψ would be UMP for

$$H_0: \mu = \mu_0 \ vs \ H_1^*: \mu > \mu_0$$

for all $\mu < \mu_0 : \psi$ would be UMP for

$$H_0: \mu = \mu_0 \text{ vs } H_1^{**}: \mu < \mu_0$$

$$\psi = \psi_1 = 1(\frac{\sqrt{n}}{\sigma_0}(\bar{X} - \mu_0) \ge z_\alpha)$$

$$= \psi_2 = 1(\frac{\sqrt{n}}{\sigma_0}(\bar{X} - \mu_0) \le -z_\alpha)$$

But

$$\{x : \psi_1 \neq \psi_2\} = \{x : \frac{\sqrt{n}}{\sigma_0}(\bar{x} - \mu_0) \ge z_\alpha \text{ or } \frac{\sqrt{n}}{\sigma_0}(\bar{x} - \mu_0) \le -z_\alpha\}$$

does not have probablity 0. So such a test ψ does not exist.

Convention: we can develop a theory of UMP level- α tests for the two-sided theory problems. ($\theta = \theta_0 \text{ vs } \theta \neq \theta_0$) if we restrict attention to unbiased tests:

$$B_{\psi}(\theta) \ge \alpha \ \forall \theta \neq \theta_0$$

5 Chapter 5: Confidence Sets

5.1 Confidence set

Goal: express uncertainty in parametric estimates

Definition 5.1 (Confidence set). Consider a parametric model

$$P = \{ P_{\theta,\xi}, (\theta,\xi) \in \mathfrak{L} \}.$$

Here, θ is the parameter of interest and ξ is a nuisance parameter. Let $\Theta = \{\theta : (\theta, \xi) \in \mathfrak{L}, \text{ for at least one } \xi\}$. The mapping

$$C : \chi \to 2^{\Theta}$$
$$(x_1, \cdots, x_n) \to c(\underline{x})$$

is called a confidence set for θ if for all $\theta \in \Theta$ the set $\{x \in \mathcal{X} : \theta \in c(x)\}$ is measurable.

A confidence set c has confidence level $1 - \alpha$ if $\forall \theta \in \Theta, \forall \xi : (\theta, \xi) \in \mathcal{L}$

$$P_{\theta,\xi}(\theta \in C(X)) \ge 1 - \alpha$$

Remark If there are no nuisance parameters, ξ is simply omitted in Def 5.1 and $\mathcal{L} = \Theta$.

Example 5.2 (Constructing confidence sets using pivots). X_1, \dots, X_n random sample from the Exponential distribution with density

$$f(x;\lambda) = \lambda e^{-\lambda x}, \ x > 0$$
$$P = \{ Exp(\lambda), \lambda \in (0,\infty) \}$$

Goal: construct CS for λ . Note:

$$\sum_{i=1}^{n} X_i \sim Gamma(n, \lambda)$$

Define

$$Q = 2(\sum_{i=1}^{n} X_i) \cdot \lambda = Q(X, \lambda) \sim \chi^2_{2n} \text{ does not depend on } \lambda$$

The MGF of Q is

$$E_{\lambda} \left(\begin{array}{c} t \\ e \end{array} \right) = E_{\lambda} \left(\begin{array}{c} (2t \\ \lambda \end{array} \right) \stackrel{>}{\underset{i=1}{\Sigma}} X_{i} \\ e \end{array} \right) = \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} = \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \\ F_{\lambda} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) \stackrel{\sim}{\underset{i=1}{\Sigma}} \left(\begin{array}{c} (2\lambda t) X_{i} \end{array} \right) \stackrel{\sim}{\underset{i=1}{\Sigma$$

A quantity which depends on (X_1, \dots, X_n) and the parameter of interest θ , and whose distribution does not depend on θ or ξ is called a **PIVOT**.

To construct a confidence set for λ from Q, we can simply choose (a, b) so that the CS is at confidence level $1 - \alpha$. Here, we choose $a, b \in \mathbb{R}$, a < b, so that

$$P(\chi^2_{2n} \in (a,b)) = 1 - \alpha$$

For example, we can set $a = \chi^2_{2n,1-\alpha/2}, b = \chi^2_{2n,\alpha/2}$

To obtain the CS from (a, b), we can solve for

$$a < Q(X, \lambda) < b$$
$$\frac{a}{2\sum_{i=1}^{n} X_{i}} < \lambda < \frac{b}{2\sum_{i=1}^{n} X_{i}}$$
$$C(X) = \left(\frac{a}{2\sum_{i=1}^{n} X_{i}}, \frac{b}{2\sum_{i=1}^{n} X_{i}}, \frac{b}{2\sum_{i=1}^{n} X_{i}}\right)$$

Set

Then, for any
$$\lambda > 0$$
,

$$P_{\lambda}\left(\lambda \in \left(\frac{a}{2\sum_{i=1}^{n} X_{i}}, \frac{b}{2\sum_{i=1}^{n} X_{i}}\right)\right)$$
$$=P_{\lambda}\left(a < 2\left(\sum_{i=1}^{n} X_{i}\right) < b\right)$$
$$=P(\chi_{2n}^{2} \in (a, b)) = 1 - \alpha$$

Hence, C(X) above is a confidence set for λ at confidence level $1 - \alpha$.

Example 5.3 (More Pivots). X_1, \dots, X_n a random sample from $N(\mu, \sigma^2)$. We wish to construct a confidence set at level $(1 - \alpha)$ for μ (i.e. σ^2 is a nuisance parameter). Define

$$Q(X_1, \cdots, X_n, \mu) = \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{n-1}$$

Choose (a, b), i.e., $a, b \in \mathbb{R}$ so that

$$P(t_{n-1} \in (a,b)) = 1 - \alpha$$

Definition 5.4. Suppose that C(X) is confidence set for θ at level $1 - \alpha$.

- If C(X) has the form (L(X), U(X)), then C is called a two-sided confidence interval at confidence level 1α .
- If C(X) has the form (∞, U(X), then C is called upper one-sided confidence interval at confidence level 1 − α.
- If C(X) has the form (L(X),∞), then C is called lower one-sided confidence interval at confidence level 1 − α.

Definition 5.5 (Unbiased confidence set). For any $\theta \in \Theta$, let k_{θ} be a set of undesirable parameters. A confidence set at confidence level $1 - \alpha$ is called unbiased if

$$\forall \theta \in \Theta, \ \forall \xi : (\theta, \xi) \in \mathcal{L}, \ \forall \theta^* \in k_{\theta}, P_{\theta, \xi}(\theta^* \in C(X)) \le 1 - \alpha$$

Example 5.6 (Ex 5.3 continued). X_1, \dots, X_n sample from $N(\mu, \sigma^2)$, μ of interest, σ^2 nuisance, $k_{\mu} = (\infty, \mu)$. For $\mu^* \in k_{\mu}$,

$$P_{\mu,\sigma^{2}}(\mu^{*} \in (\bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}}, \infty))$$
$$= P_{\mu,\sigma^{2}}(\frac{\bar{X} - \mu}{S}\sqrt{n} < t_{n-1,\alpha} + \underbrace{\frac{\mu^{*} - \mu}{S}\sqrt{n}}_{<0})$$
$$\leq P_{\mu,\sigma^{2}}\left(\underbrace{\frac{\bar{X} - \mu}{S} \cdot \sqrt{n}}_{\sim t_{n-1}} < t_{n-1,\alpha}\right) = 1 - \alpha.$$

• Similarly, if $k_{\mu} = (\mu, \infty)$

$$(-\infty, \bar{X} + \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}})$$

is unbiased
• Similarly, if $k_{\mu} = \{\mu\}^C$

$$(\bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}}, \bar{X} + \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}})$$

is unbiased.

5.2 Correspondence between confidence sets and hypothesis tests

Theorem 5.7. For any confidence set C, there exists a family of nonrandomized tests

$$\{\psi_{\theta_0}, \theta_0 \in \Theta\}$$

with

$$C(x) = \{\theta_0 \in \Theta : \psi_{\theta_0}(x) = 0\}$$

is measurable for all θ_0 since θ_0 is measurable.

Example 5.8. X_1, \dots, X_n random sample from $N(\mu, \sigma^2)$. In Example 5.3, we derived CI for μ using pivots.

• lower one-sided confidence interval for μ :

$$(\bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}}, \infty)$$

we can calculate, for $\mu_0 \in \mathbb{R}$,

$$\psi_{\mu_0}(x) = \begin{cases} 1, \ \mu_0 \notin (\bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}}, \infty) \\ 0, \ \mu_0 \in (\bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}}, \infty) \end{cases}$$
$$= \begin{cases} 1, \ \mu_0 \le \bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}} \\ 0, \ \mu_0 > \bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}} \end{cases}$$
$$= \begin{cases} 1, \ \frac{\bar{X} - \mu_0}{S} \cdot \sqrt{n} \ge t_{n-1,\alpha} \\ 0, \ \frac{\bar{X} - \mu_0}{S} \cdot \sqrt{n} < t_{n-1,\alpha} \end{cases}$$

This is the one-sided t-test (Ex 4.12) for

$$H_0: \mu \le \mu_0 \ vs \ H_1: \mu > \mu_0$$

• For the two-sided confidence interval for μ :

$$(\bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}}, \bar{X} + \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}})$$

we can derive the associated family of tests. For any $\mu_0 \in \mathbb{R}$,

$$\psi_{\mu_0} = \begin{cases} 1, \ \mu \notin (\bar{x} - \frac{t_{n-1,\alpha/2} \cdot S}{\sqrt{n}}, \bar{x} + \frac{t_{n-1,\alpha/2} \cdot S}{\sqrt{n}}) \\ 0, \ \mu \in (\bar{x} - \frac{t_{n-1,\alpha/2} \cdot S}{\sqrt{n}}, \bar{x} + \frac{t_{n-1,\alpha/2} \cdot S}{\sqrt{n}}) \end{cases} \\ = \begin{cases} 1, \ \sqrt{n} \left| \frac{\bar{x} - \mu_0}{s} \right| \ge t_{n-1,\frac{\alpha}{2}} \\ 0, \ \sqrt{n} \left| \frac{\bar{x} - \mu_0}{s} \right| < t_{n-1,\frac{\alpha}{2}} \end{cases}$$

This is the two-sided t test for

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu \neq \mu_0.$$

Theorem 5.9. Consider a confidence set C and the corresponding family of tests $\{\psi_{\theta_0}, \theta_0 \in \Theta\}$ as specified in Theorem 5.7. Let also, for any $\theta \in \Theta$, k_{θ} be the set of undesirable parameters. For each $\theta_0 \in \Theta$, let

$$\Theta_1^{\theta_0} = \{ \theta \in \Theta : \theta_0 \in k_\theta \}$$

Then the following holds:

(1) C has confidence level $1 - \alpha$ if and only if $\forall (\theta_0, \xi) \in \mathcal{L}$:

$$E_{(\theta_0,\xi)}\psi_{\theta_0}(\underset{\sim}{X}) \le \alpha$$

(2) C is an unbiased level- $(1 - \alpha)$ confidence set for θ if and only if, for each $\theta_0 \in \Theta$, ψ_{θ_0} is an **unbiased** level- α test of

$$H_0: \theta = \theta_0 \ vs \ H_1: \theta \in \Theta_1^{\theta_0}$$

Note that Theorem 5.9 only guarantees the null hypothesis that $\theta = \theta_0$. **un**biased means type 2 error $\leq 1 - \alpha$.

Example 5.10. From 5.6, we know that if $k_{\mu} = (-\infty, \mu)$, then

$$(\bar{X} - \frac{t_{n-1,\alpha} \cdot S}{\sqrt{n}}, \infty)$$

is an unbiased level- $(1 - \alpha)$ CI for μ . For $\mu_0 \in \mathbb{R}$:

$$\{\mu \in \mathbb{R} : \mu_0 \in (-\infty, \mu)\} = (\mu_0, \infty).$$

Hence, from Theorem 5.9, the one-sided t-test

$$\psi_{\mu_0} = \begin{cases} 1, \ \sqrt{n} \frac{\bar{X} - \mu_0}{S} \ge t_{n-1,\alpha} \\ 0, \ \sqrt{n} \frac{\bar{X} - \mu_0}{S} < t_{n-1,\alpha} \end{cases}$$

is unbiased, level- α test for

$$H_0: \mu = \mu_0 \ vs \ H_1: \mu > \mu_0$$

•
$$K_{\mu} = 2\mu^{2}\Gamma \longrightarrow + wo-sided CI for \mu.$$

 $(\overline{X} - \frac{t_{n-1}}{\sqrt{n}}, \frac{z}{\overline{X}} + \frac{t_{n-1}}{\sqrt{n}})$
(unbiasel, level- $(t-\alpha)$)
 $\{\mu \in \mathbb{R} : \mu_{0} \in \Gamma\mu^{2}, \frac{z}{\overline{S}} = \{\mu \in \mathbb{R} : \mu \neq \mu_{0}\}$
 $Two-sided + -test is an urbiased, level- α test
for $H_{0} : \mu = \mu_{0}$ ∞ . $H_{1} : \mu \neq \mu_{0}$.$

Example 5.11 (Constructing CS from tests). X_1, \dots, X_n random sample from $N(\mu, \sigma^2)$, μ nuisance; our goal is to construct confidence sets for σ^2 . Recall chi-square test

Remark 4.15:

$$H_{o}:$$
 $\sigma^{2} \leq \sigma_{o}^{2}$
 $rightarrow H_{a}$
 $\sigma^{2} > \sigma_{o}^{2}$
 $find the second second$

$$k_{\sigma^2} = (0, \sigma^2) \to H_1 : \sigma_0^2 < \sigma^2$$
$$C(x) = \left(\frac{(n-1)S^2}{\chi_{n-1,\alpha}^2}, \infty\right)$$

$$k_{\sigma^2} = \{\sigma^2\}^C \to H_1 : \sigma_0^2 \neq \sigma^2$$
$$C(x) = \left(\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}, \right)$$

Remark 5.12. The correspondence between the tests and CS can also be used to develop uniformly most accurate CSs (these correspond to UMP classes of tests.)

5.3 Interpretation of Confidence Sets

•

Example 5.13. Generate a sample of size n = 10 from N(1,2). Suppose for this sample, we observed

$$\bar{x} = 1.1, \quad s^2 = 1.5$$

two-sided CI for
$$\mu$$
 at CL (95%):
 $(\overline{x} - \frac{t_{9, 0.025}}{10}, \frac{11.5}{10}, \overline{x} + - 11 - \frac{1}{10})$
 $z.262$
 $z.262$
Test: $\mu = 1$ m. $\mu \neq 1$.

Since $1 \in (0.224, 1.976) =)$ do not reject at the solution

