MATH 357 Honors Statistics

Yuyan Chen

January 2022
-Lecture 1b

1 Chapter 1: Random Sampling

1.1 Basic Concepts

Definition 1.1. The random variables (vectors) X_{1}, \cdots, X_{n} are called a random sample if they are iid with some common distribution $P . P$ is called the population distribution and n is called the sample size. Data are the observations (or realizations) of X_{1}, \cdots, X_{n}, i.e.

$$
x_{1}, \cdots, x_{n} .
$$

Note: We regard P as unknown; it is a proxy for our lack of knowledge of some phenomenon. Our goal is to infer (learn) P or some of its properties from the basis of the observed data x_{1}, \cdots, x_{n}.

Example 1.2.

Recall the definition of a random sample. This sampling model is also called sampling from an infinite population. Independence implies the distribution of X_{2} is unaffected by having sampled $X_{1}=x_{1}$.

Remark 1.3 (Finite population (N) with $\mathrm{P}($ sampled $)=1 / \mathrm{N})$.

1. Sample with replacement
2. Sample without replacement: X_{1}, \cdots, X_{n} are identically distributed but NOT independent. However when N is much langer than n, the independence assumption may be a good enough approximation.

1.2 Descriptive Statistics

Definition 1.4 (statistic). Let X_{1}, \cdots, X_{n} be a random sample from P on \mathbb{R}^{d}. Let $T: \mathbb{R}^{d} \times \cdots \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{h}$ be a measurable mapping that does NOT depend on any unknown parameters. The random vector $T\left(X_{1}, \cdots, X_{n}\right)$ is called a statistic.

Note that with Borel measure, all continuous functions are measurable.

Example 1.5.

$$
\left(\frac{1}{n} \sum_{i=1}^{n} 1\left(X_{i}=0\right)-p_{0}\right)^{2}
$$

is not a statistic since p_{0} is unknown.
Rule of thumb: You must be able to evaluate a statistic. The observed value must be a scalar, not a term or formula.

Definition 1.6. Let X_{1}, \cdots, X_{n} be a random sample from P on \mathbb{R}. Then

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

is called the sample mean (a measure of central tendency). Furthermore,

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

is called the sample variance (a measure of variability), and S is called the sample standard deviation. The observed values are denoted \bar{x}, s^{2}, s.

Theorem 1.7. For arbitrary $x_{1}, \cdots, x_{n} \in \mathbb{R}$,
(a)

$$
\min _{a \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

(b)

$$
(n-1) s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n(\bar{x})^{2}
$$

Proof.

$$
\sum_{i=1}^{n}\left(x_{i}-a\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-a\right)^{2}
$$

Lemma 1.8. Let X_{1}, \cdots, X_{n} be a random sample from P on $\mathbb{R}, X \sim P, g$ measurable so that $E g(X)$ and var $g(X)$ exist. Then

$$
\begin{aligned}
E\left(\sum_{i=1}^{n} g\left(X_{i}\right)\right) & =n \cdot E(g(X)) \\
\operatorname{var}\left(\sum_{i=1}^{n} g\left(X_{i}\right)\right) & =n \cdot \operatorname{var}(g(X)))
\end{aligned}
$$

Note that

$$
E(g(X))=\int g(x) f(x) d x
$$

Theorem 1.9. Let X_{1}, \cdots, X_{n} be a random sample from P on $\mathbb{R}, X \sim P$, $E X=\mu$ and $\sigma^{2}=$ var X are finite. Then,
(a) $E \bar{X}=\mu$
(b) $\operatorname{var}(\bar{X})=\frac{\sigma^{2}}{n}$
(c) $E\left(S^{2}\right)=\sigma^{2}$.

Note: Theorem 1.9 holds for all P such that $E X=\mu$ and $\sigma^{2}=\operatorname{var} X$ are finite.

Example 1.10.

Definition 1.11 (order statistics). Let X_{1}, \cdots, X_{n} be a random sample from P on \mathbb{R}. Placed in ascending order,

$$
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
$$

the ordered random variables are called the order statistics. $X_{(r)}$ is called the $r^{\text {th }}$ order statistic.

- $X_{(1)} \cdots$ sample minimum
- $X_{(n)} \cdots$ sample maximum
- $R=X_{(n)}-X_{(1)} \cdots$ sample range
- $X_{\text {med }} \cdots$ sample median (a measure of central tendency)

$$
X_{\text {med }}=\left\{\begin{array}{l}
X_{\frac{n+1}{2}}, \text { if } n \text { is odd } \\
\frac{X_{\frac{n}{2}}+X_{\frac{n}{2}+1}}{2}, \text { if } n \text { is even }
\end{array}\right.
$$

- sample $(100 \cdot p)^{t h}$ percentile, where $p \in\left(\frac{1}{2 n}, 1-\frac{1}{2 n}\right)$ is:

$$
\begin{aligned}
& -X_{(\{n p\})} \text { if } p \in\left(\frac{1}{2 n}, \frac{1}{2}\right) \\
& -X_{\text {med }} \text { if } p=\frac{1}{2} \\
& -X_{(\{n+1-n(1-p)\})} \text { if } p \in\left(\frac{1}{2}, 1-\frac{1}{2 n}\right)
\end{aligned}
$$

where $b \in[0, \infty),\{b\}$ is the integer so that

$$
j-\frac{1}{2} \leq b<j+\frac{1}{2}
$$

The definition of the $(100 \cdot p)^{t h}$ percentile is rigged so that if the $(100 \cdot$ $p)^{\text {th }}$ percentile is $X_{(i)}$, the $i^{\text {th }}$ smallest observation, the $(100 \cdot(1-p))^{\text {th }}$ percentile is the $i^{\text {th }}$ largest observation, $X_{(n+1-i)}$.

- the $25^{\text {th }}$ percentiled is called the first quartile (Q1)
- the $75^{\text {th }}$ percentiled is called the third quartile (Q3)
- their differntce $I Q R=Q_{3}-Q_{1}$ (a measure of variability) is called interqurtile range.

Lemma 1.12 (Mean absolute error). For any $x_{1}, \cdots, x_{n} \in \mathbb{R}$, let $X_{\text {med }}$ be the observed value of the sample median. Then for any $a \in \mathbb{R}$,

$$
\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-a\right| \geq \frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-x_{m e d}\right|
$$

Example 1.13.

Graphical data visualization

(a) Boxplot
(b) Histogram (for continuous data)

Partition the range $\left[x_{(i), x_{(n)}}\right]$ into k (chosen) bins.
h_{j} is so that

$$
\begin{aligned}
h_{j} \cdot\left(b_{j+1}-b_{j}\right) & =\frac{1}{n} \sum_{i=1}^{n} 1\left(x_{i} \in\left[b_{j}, b_{j+1}\right]\right) \\
& \approx P\left(X \in\left[b_{j}, b_{j+1}\right]\right)
\end{aligned}
$$

The idea is that the histogram approximates the pdf of P.
(c) Bar chart/ bar plot (for discrete data) We observed k distinct value.

$$
h_{j}=\frac{1}{n} \sum_{i=1}^{n} 1\left(x_{i}=b_{j}\right) \approx P\left(X=b_{j}\right)
$$

Bar chart approximates the pmf of P.

1.3 Sampling distribution

Definition 1.14 (sampling distribution). Consider a statistic $T\left(X_{1}, \cdots, X_{n}\right)$. Its distribution is called the sampling distribution of $T\left(X_{1}, \cdots, X_{n}\right)$.

Theorem 1.15. Consider a random sample from P on $\mathbb{R}, X \sim P$ and assume that X has a MGF (moment generating function) M_{X} on the interval I. Then \bar{X} has MGF

$$
M_{\bar{X}}(t)=\left(M_{X}(t / n)\right)^{n}
$$

Example 1.16.

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right), \bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$
- $X \sim \operatorname{Bin}(m, p), n \cdot \bar{X} \sim \operatorname{Bin}(m \cdot n, p)$
- $X \sim \operatorname{Gamma}(\alpha, \beta), \bar{X} \sim \operatorname{Gamma}(\alpha \cdot n, \beta / n)$.

Observation: the sampling distribution of $T\left(X_{1}, \cdots, X_{n}\right)$ depends on the population distribution P.

Theorem 1.17. Let X_{1}, \cdots, X_{n} be a random sample from P on \mathbb{R}. Then from any $x \in \mathbb{R}, r \in\{1, \cdots, n\}$,

$$
P\left(X_{(r)} \leq x\right)=F_{X_{(r)}}(x)=\sum_{k=r}^{n}\binom{n}{k}\{F(x)\}^{k}\{1-F(x)\}^{n-k}
$$

Proof. Fix $x \in \mathbb{R}, r \in\{1, \cdots, n\}$. Let

$$
\begin{aligned}
Y & =\# i: X_{i} \leq x \\
& =\sum_{i=1}^{n} 1\left(X_{i} \leq x\right), \text { iid Bernoulli}(F(x)), \text { since } P\left(X_{i} \leq x\right)=F(X)
\end{aligned}
$$

Hence, $Y \sim \operatorname{Bin}(n, F(x))$.

$$
\begin{aligned}
P\left(X_{(r)} \leq x\right) & =P(Y \geq r) \\
& =\sum_{k=r}^{n}\binom{n}{k}(F(x))^{k}(1-F(x))^{n-k}
\end{aligned}
$$

Note: if P has a pdf f, then $X_{(r)}$ has a pdf

$$
f_{\left(X_{(r)}\right)}(x)=\frac{n!}{(r-1)!(n-r)!}\{F(x)\}^{r-1} f(x)\{1-F(x)\}^{n-r} .
$$

Example 1.18. Suppose U_{1}, \cdots, U_{n} from $U(0,1)$. Then $U_{(r)}$ has a pdf

$$
f_{U_{(r)}}(u)=\frac{n!}{(r-1)!(n-r)!} u^{r-1}(1-u)^{n-r} .
$$

Note that $\Gamma(n)=(n-1)$! Hence, $U_{(r)} \sim \operatorname{Beta}(r, n-r+1)$. In particular,

$$
E\left(U_{(r)}\right)=\frac{r}{n+1} .
$$

Note: for $\mathcal{U}(a, b), f(x)=1 /(b-a)$ for $x \in[a, b], 0$ otherwise.

1.4 Sampling from the Normal Population

Throughout this section, $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, where μ and σ^{2} are unknown.
Theorem 1.19. Let X_{1}, \cdots, X_{n} be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Let \bar{X} and S^{2} be the sample mean and variance. Then,
(a)

$$
\bar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

(b) \bar{X} and S^{2} are independent.

Proof. (b) Let X_{i}^{*} be the standardized variable such that

$$
X_{i}^{*}=\frac{X_{i}-\mu}{\sigma}
$$

Then, $X_{i}^{*} \sim \mathcal{N}(0,1)$. We have

$$
\begin{aligned}
& \bar{X}^{*}=\frac{\bar{X}-\mu}{\sigma} \\
& \left(S^{*}\right)^{2}=\frac{S^{2}}{\sigma^{2}}
\end{aligned}
$$

Both are one-to-one function to \bar{X} and S^{2}, respectively. Hence, WLOG, we can assume $\mu=0$ and $\sigma^{2}=1$ and if $\bar{X}^{*} \perp\left(S^{*}\right)^{2}, \bar{X} \perp S^{2}$. Note that

$$
S^{2}=\frac{1}{n-1}(\underbrace{\left(-\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)\right)^{2}}_{=X_{1}-\bar{X}}+\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)^{2})
$$

Lemma 1.20. X_{2}, \cdots, X_{n} iid $\mathcal{N}(0,1)$. Then,

$$
\bar{X} \perp\left(X_{2}-\bar{X}, \cdots, X_{n}-\bar{X}\right)
$$

Proof. Define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ as

$$
\left(x_{1}, \cdots, x_{n}\right) \rightarrow\left(\bar{x}, x_{2}-\bar{x}, \cdots, x_{n}-\bar{x}\right) .
$$

Then, $T^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is

$$
\left(y_{n}, \cdots, y_{n}\right) \rightarrow(\underbrace{y_{1}-\sum_{i=2}^{n} y_{i}}_{=n \cdot y_{1}-\sum_{i=2}^{n}\left(y_{i}+y_{1}\right)}, y_{2}+y_{1}, \cdots, y_{n}+y_{1})
$$

Jacobi matrix $|J|=n$.

$$
\begin{aligned}
f_{\left(Y_{1}, \cdots, Y_{n}\right)}\left(y_{1}, \cdots, y_{n}\right) & =f_{\left(X_{1}, \cdots, X_{n}\right)}\left(T^{-1}\left(y_{1}, \cdots, y_{n}\right)\right) \cdot|J| \\
& =\left(\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left(-\frac{1}{2}\left(\left(y_{1}-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n}\left(y_{i}+y_{1}\right)^{2}\right)\right)\right) \cdot n \\
& =\sqrt{n}\left(\frac{1}{\sqrt{2 \pi}}\right) \exp \left(-\frac{1}{2}\left(n y_{1}^{2}\right)\right) \\
& \cdot \sqrt{n}\left(\frac{1}{\sqrt{2 \pi}}\right)^{n-1} \exp \left(-\frac{1}{2}\left(\left(\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}\right)\right) \\
& =f_{1}\left(y_{1}\right) \cdot f_{2}\left(y_{2}, \cdots, y_{n}\right)
\end{aligned}
$$

Theorem 12.7 (from Jacod \& Protter) Let $X=\left(X_{1}, \cdots, X_{n}\right)$ have joint density f. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable and injective, with non-vanishing Jacobian. Then $Y=g(X)$ has density

$$
f_{Y}(y)=\left\{\begin{array}{l}
f_{X}\left(g^{-1}(y)\right)\left|\operatorname{det} J_{g^{-1}}(y)\right|, \text { if } y \text { is in the range of } g \\
0, \text { otherwise }
\end{array}\right.
$$

Since S^{2} is a function of $\left(X_{2}-\bar{X}, \cdots, X_{n}-\bar{X}\right)$ which we now know is independent of \bar{X}.

Definition 1.21 (Chi-squared distribution). The χ_{ν}^{2} distribution has a pdf given, for all $x>0$,

$$
f(x ; \nu)=\frac{1}{2^{\nu / 2} \Gamma\left(\frac{\nu}{2}\right)} \cdot x^{\nu / 2-1} \cdot e^{-x / 2}
$$

and 0 otherwise. The χ_{ν}^{2} distribution is in fact the $\operatorname{Gamma}\left(\frac{\nu}{2}, 2\right)$. The MGF of χ_{ν}^{2} is given, for all $t<\frac{1}{2}$, by $M_{\chi_{\nu}^{2}}=(1-2 t)^{-\nu / 2}$.

Lemma 1.22.

(a) When $X \sim \chi_{\nu}^{2}$, then $E X=\nu$ and var $X=2 \nu$
(b) $X_{1} \sim \chi_{\nu_{1}}^{2}, X_{2} \sim \chi_{\nu_{2}}^{2}$, and $X_{2} \perp X_{1}$, then $X_{1}+X_{2} \sim \chi_{\nu_{1}+\nu_{2}}^{2}$
(c) $X \sim \mathcal{N}(0,1)$ then $X^{2} \sim \chi_{1}^{2}$.

Theorem 1.23. Supposet that X_{1}, \cdots, X_{n} is a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
Then,

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

Lecture 3b

Motivation for t distribution: Consider

$$
\sqrt{n} \frac{\bar{X}-\mu}{\sigma} \sim \mathcal{N}(0,1)
$$

where σ is unknown. Instead:

$$
\sqrt{n} \frac{\bar{X}-\mu}{S} \equiv T
$$

Note that T is a statistic.
Definition 1.24 (Student t distribution). The Student t distribution with ν degrees of freedom, t_{ν}, has pdf

$$
f(x ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \cdot \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}, x \in \mathbb{R} .
$$

Lemma 1.25. Let $X \sim t_{\nu}$. The the following holds:
(a) $E X=0$ if $\nu>1$. If $\nu \leq 1, E X$ does not exist. Note: t_{1} is Cauchy(1).
(b) $\operatorname{var} X=\frac{\nu}{\nu-2}$ if $\nu>2$. If $\nu \leq 2$, then $\operatorname{var} X$ does not exist.
(c)

$$
X \stackrel{d}{=} \frac{Z}{\sqrt{V / \nu}}
$$

where $Z \sim \mathcal{N}(0,1), V \sim \chi_{\nu}^{2}$, and $Z \perp V$.
Theorem 1.26. Suppose that X_{1}, \cdots, X_{n} is a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Then,

$$
T=\sqrt{n} \cdot \frac{\bar{X}-\mu}{S} \sim t_{n-1}
$$

Proof. Lemma 1.25 (c).
Definition 1.27. The Fisher-Snedecor $F_{\nu_{1}, \nu_{2}}$ with ν_{1} and ν_{2} dof is the distribution of

$$
\frac{V_{1} / \nu_{1}}{V_{2} / \nu_{2}}
$$

where $V_{1} \sim \chi_{\nu_{1}}^{2}, V_{2} \sim \chi_{\nu_{2}}^{2}, V_{1} \perp V_{2}$.

Theorem 1.28. Let X_{1}, \cdots, X_{n} be a random sample from $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$. Let Y_{1}, \cdots, Y_{m} be a random sample from $\mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$. Suppose that $\left(X_{1}, \cdots, X_{n}\right)$ and $\left(Y_{1}, \cdots, Y_{n}\right)$ are independent; let S_{X}^{2} and S_{Y}^{2} be their respective sample variances, then

$$
\underbrace{\frac{S_{X}^{2} / \sigma_{1}^{2}}{S_{Y}^{2} / \sigma_{2}^{2}}}_{\text {not a statistic since } \sigma_{1}^{2} \text { and } \sigma_{2}^{2} \text { unknown }} \sim F_{n-1, m-1} .
$$

Remark: Theorem 1.28 will serve as later to derive the so-called F test. Imagine we want to assess whether $\sigma_{1}^{2}=\sigma_{2}^{2}$.

2 Chapter 2: Theory of point estimation

2.1 Parametric model

Throughout this chapter, we will assume that X_{1}, \cdots, X_{n} is a random sample from P and that

$$
P \in \mathcal{P}=\left\{P_{\theta}, \theta \in \Theta\right\}
$$

- \mathcal{P} is called a parametric model for P.
- θ is called a parameter.
- Θ is called a parameter space and we assume that $\Theta \in \mathbb{R}^{k}$.

We will denote the CDF of P_{θ} by F_{θ} and its pdf/pmf by $f(x ; \theta), x \in \mathbb{R}$.
Example 2.1. For Newcomb's measurements, we may assume

$$
\mathcal{P}=\{\underbrace{\mathcal{N}\left(\mu, \sigma^{2}\right)}_{P_{\theta}}, \underbrace{\left(\mu, \sigma^{2}\right)}_{\theta} \in \underbrace{\mathbb{R} \times(0, \infty)}_{\Theta}\}
$$

Note: A parametric model for P is an assumption. It is always an approximation to the reality which may or may NOT be true. Our goal is to estimate the unknown parameter θ from the observed data x_{1}, \cdots, x_{n}.

Definition 2.2. A point estimator is any statistic $W\left(X_{1}, \cdots, X_{n}\right)$ which has been constructed with the aim to estimate θ. The observed value of W, i.e. $W\left(x_{1}, \cdots, x_{n}\right)$ is called the estimate of θ.

Note: we do NOT require that the range of W is Θ.
Notation: estimators are often denoted $\hat{\theta}, \hat{\theta}\left(X_{1}, \cdots, X_{n}\right), \tilde{\theta}$, and θ_{n}.

2.2 Methods of finding estimators

Recall: an estimator is a statistic $W\left(X_{1}, \cdots, X_{n}\right)$.

2.2.1 Method of moments

sample moment:

$$
m_{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}
$$

From Theorem 1.9, we know that if $E X^{j}<\infty, E\left(m_{j}\right)=E X^{j}$. If $E\left(X^{j}\right)^{2}<$ ∞, then from the weak law of large numbers,

$$
m_{j} \xrightarrow{P} E X^{j} \text { as } n \rightarrow \infty
$$

Now suppose $\theta=\left(\theta_{1}, \cdots, \theta_{k}\right)$. The method of moments proceeds as follows:

1. Calculate k moments of P_{θ} (population moments), i.e:

$$
E X^{j}=\mu_{j}(\theta), j=1, \cdots, k
$$

2. Calculate the $j^{\text {th }}$ sample moment

$$
m_{j}=\frac{1}{n} \sum_{i=1}^{n} X_{i}^{j}, j=1, \cdots, k
$$

3. Equate

$$
m_{j}=\mu_{j}(\theta), j=1, \cdots, k
$$

If there is a unique solution, it is called a method of moments estimator of θ.

- "easy"
- usually consistent since

$$
Y \xrightarrow{P} y \Longrightarrow f\left(Y_{n}\right) \xrightarrow{P} f(Y)
$$

- usually biased (e.g. Jensen inequality)

Remark You may need to choose moments other than the first k, depending on the distribution P_{θ}.

Example 2.3. Suppose X_{1}, \cdots, X_{n} is a random sample from the Normal distribution, i.e:

$$
P \in\left\{\mathcal{N}\left(\mu, \sigma^{2}\right),\left(\mu, \sigma^{2}\right) \in \mathbb{R} \times(0, \infty)\right\}
$$

The method-of-moment estimator of $\left(\mu, \sigma^{2}\right)$ is

$$
(\bar{X}, \underbrace{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}_{\frac{n-1}{n} S^{2}})
$$

Example 2.4. Consider a random sample X_{1}, \cdots, X_{n} from $\operatorname{Bin}(N, p)$, i.e.

$$
P \in\{\operatorname{Bin}(N, p), p \in(0,1)\}
$$

where N is known. The method of moment generator of p is

$$
\hat{p}=\frac{1}{N} \bar{X} .
$$

If N is unknown, the method-of-moment estimator of (p, N) is

$$
\left(\frac{\bar{X}-\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\bar{X}}, \frac{(\bar{X})^{2}}{\bar{X}-\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}\right) .
$$

Note: the method of moment estimators above may well be negative. The estimator of N may not be an integer.

Example 2.5. Consider a random sample from $U(-\theta, \theta)$,

$$
P \in\{U(-\theta, \theta), \theta \in(0, \infty)\}
$$

We have

$$
E X=\frac{-\theta+\theta}{2}=0
$$

which is not useful. Use the second moment, we obtain

$$
\hat{\theta}=\sqrt{\frac{1}{2 n} \sum_{i=1}^{n} X_{i}^{2}}
$$

Consider $x_{0}=0, x_{1}=1 \sim U(\theta, \theta)$. We find θ to be

$$
\hat{\theta}=\sqrt{\frac{1}{4}(0+1)}=\frac{1}{2}
$$

However, $0,1 \notin\left(-\frac{1}{2}, \frac{1}{2}\right)$.

2.2.2 Method of Maximum Likelihood

Assume X_{1}, \cdots, X_{n} is a random sample from

$$
P \in\left\{P_{\theta}, \theta \in \Theta\right\} .
$$

Assume also that for each $\theta \in \Theta, P_{\theta}$ has a PMF/PDF.
Definition 2.6. Given the observed data x_{1}, \cdots, x_{n}, the function of θ defined by

$$
L(\theta)=L\left(\theta ; x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

is called the likelihood function.
Note that the likelihood function is a function of θ for a fixed set x_{1}, \cdots, x_{n}.

Example 2.7.

Interpretation of the likelihood function

- If P_{θ} is discrete, then the value of L at θ_{0} is

$$
\begin{aligned}
L\left(\theta_{0}\right) & =P_{\theta_{0}}\left(X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right) \\
& =L\left(\theta_{0} ; x_{1}, \cdots, x_{n}\right)
\end{aligned}
$$

$L\left(\theta_{0}\right)$ is the probability of observing the data we observed if the parameter $\theta=\theta_{0}$. For example, in Example 2.7,

$$
L(1)=3.8 \times 10^{-5}
$$

is the probablity (or "likelihood") of observing $1,2,2,5$ when $\lambda=1$.

- When P_{θ} is continuous, this interpretation is still used, but in an approximation sense. Because $P\left(X_{1}=x_{1}, \cdots, X_{n}=x_{n}\right)=0$, we need to consider

$$
\begin{aligned}
& P\left(X_{1} \in\left(x_{1}-\varepsilon, x_{1}+\varepsilon\right), \cdots, X_{n} \in\left(x_{n}-\varepsilon, x_{n}+\varepsilon\right)\right) \\
= & \int_{x_{1}-\varepsilon}^{x_{1}+\varepsilon} \cdots \int_{x_{n}-\varepsilon}^{x_{n}+e} \prod_{i=1}^{n} f\left(t_{i} ; \theta\right) d t_{n} \cdots d t_{1} \\
\approx & \prod_{i=1}^{n} f\left(t_{i} ; \theta\right) \cdot(2 \varepsilon)^{n} \\
= & L\left(\theta ; x_{1}, \cdots, x_{n}\right) \cdot \underbrace{(2 \varepsilon)^{n}}_{\text {does not contain } \theta}
\end{aligned}
$$

provided that $\varepsilon>0$ is very small. So,

$$
L\left(\theta ; x_{1}, \cdots, x_{n}\right) \propto P\left(X_{1} \in\left(x_{1}-\varepsilon, x_{1}+\varepsilon\right), \cdots, X_{n} \in\left(x_{n}-\varepsilon, x_{n}+\varepsilon\right)\right)
$$

Whether P_{θ} is continuous or discrete, we can say that if

$$
L\left(\theta_{1} ; x_{1}, \cdots, x_{n}\right) \geq L\left(\theta ; x_{1}, \cdots_{2}, x_{n}\right),
$$

it is more "likely" to have observed x_{1}, \cdots, x_{n} when $\theta=\theta_{1}$ than $\theta=\theta_{2}$.
Definition 2.8. For an observed sample x_{1}, \cdots, x_{n}, the maximum likelihood (ML) estimate of θ, denoted $\hat{\theta}\left(x_{1}, \cdots, x_{n}\right)$ is a value such that

$$
L\left(\hat{\theta}(\underset{\sim}{x}) ; x_{1}, \cdots, x_{n}\right)=\sup _{\theta \in \Theta} L\left(\theta ; x_{1}, \cdots, x_{n}\right)
$$

provided it exists. If the $M L$ estimate exists for almost all samples x_{1}, \cdots, x_{n} and if the mapping $\hat{\theta}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{h}$

$$
\left(x_{1}, \cdots, x_{n}\right) \rightarrow \hat{\theta}\left(x_{1}, \cdots, x_{n}\right)
$$

is measurable, $\hat{\theta}\left(X_{1}, \cdots, X_{n}\right)$ is called the $M L$ estimator of θ.
"Almost all samples" means that $\hat{\theta}(\underset{\sim}{x})$ exists for all $\underset{\sim}{x} \in A$ when

$$
P_{\theta}\left(\left(X_{1}, \cdots, X_{n}\right) \in A\right)=1
$$

for all $\theta \in \Theta$.
In Definition 2.8, note that the ML estimate is the value $\hat{\theta}(\underset{\sim}{x})$ in Θ at which the sup is attained.
The log-likelihood function is defined as

$$
l(\theta ; x)=\log L(\theta ; \underset{\sim}{x})=\sum_{i=1}^{n} \log f\left(x_{i} ; \theta\right)
$$

Typically, l is smooth and we can look for its maximum by calculating

$$
\frac{\partial l}{\partial \theta_{j}}\left(\theta ; x_{1}, \cdots, x_{n}\right)=0, j=1, \cdots, k
$$

and inspect the solutions.
Example 2.9. Consider a random sample from a Binomial population with KNOWN size N :

$$
P \in\{\operatorname{Bin}(N, P), p \in[0,1]\} .
$$

The likelihood function is

$$
L\left(p ; x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n}\binom{N}{x_{i}} p^{x_{i}}(1-p)^{N-x_{i}} .
$$

The ML estimator is thus $\hat{p}=\frac{\bar{X}}{N}$ (and the same as the method-of-moment estimator.)

Careful: If we choose

$$
\{\operatorname{Bin}(N, p), p \in(0,1)\}
$$

then ML estimate does not exist when $\bar{x}=0$ or $\bar{x}=N$. Since $P_{p}(\bar{X}=0) \neq 0$, $P_{p}(\bar{X}=N) \neq 0$, the ML estimator does not exist in this case.

Example 2.10. Consider a random sample from

$$
P \in\{\mathcal{N}(\mu, 1), \mu \in \mathbb{R}\}
$$

$M L$ estimator of μ is $\hat{\mu}=\bar{X}$. Suppose now we know that $\mu \geq 0$. In this case, \bar{x} is not the ML estimate when $\bar{x}<0$. Note that

$$
\frac{\partial l}{\partial \mu}=n \cdot(\bar{x}-\mu)<0
$$

if $\bar{x}<\mu$. Hence, l is decreasing on $[0, \infty)$. Hence, l is maximized at $\tilde{\mu}(\underset{\sim}{x})=0$. In this (constrained) estimation problem, the MLE is

$$
\tilde{\mu}=\max (\bar{X}, 0)
$$

Example 2.11. Take a random sample from $P \in\{U(0, \theta), \theta \in(0, \infty)\}$. To calculate the MLE,

$$
\begin{aligned}
L(\theta ; x) & =\prod_{i=1}^{n} \frac{1}{\theta} \cdot 1\left(x_{i} \in[0, \theta]\right) \\
& =\left(\frac{1}{\theta}\right)^{n} \cdot 1\left(\min _{1 \leq i \leq n} x_{i} \geq 0\right) \cdot 1\left(\max _{1 \leq i \leq n} x_{i} \leq \theta\right)
\end{aligned}
$$

The MLE is

$$
\tilde{\theta}(x)=\max _{1 \leq i \leq n} x_{i} .
$$

Note: if the density function has a compact support, use the indicator function to denote the support.

Theorem 2.12 (Invariance Principle of the MLE). Consider a statistical model $\left\{P_{\theta}, \theta \in \Theta\right\}$ and suppose that $g: \Theta \rightarrow \mathbb{R}^{m}$ is an arbitrary measurable function. Set $\Gamma=g(\Theta)$ to be the range of g and suppose we wish to estimate $\gamma=g(\theta)$. Then if $\tilde{\theta}(x)$ is the MLE of θ,

$$
\hat{\gamma}=g(\tilde{\theta}(x))
$$

is the MLE of γ in the following sense: for

$$
L^{*}(\gamma ; x)=\sup _{\theta \in \Theta: g(\theta)=\gamma} L(\theta ; x)
$$

then

$$
L^{*}(\hat{\gamma} ; \underset{\sim}{x})=\sup _{\gamma \in \Gamma}(\gamma ; \underset{\sim}{x})
$$

Proof. WTS: $L^{*}(\hat{\gamma} ; x)=\sup _{\gamma \in \Gamma} L^{*}(\gamma ; x)$.

$$
\begin{aligned}
L^{*}(\hat{\gamma} ; x) & =\sup _{\theta \in \Theta: g(\theta)=\hat{\gamma}} L(\theta ; \underset{\sim}{x}) \\
& =L(\hat{\theta} ; x) \\
& =\sup _{\theta \in \Theta} L(\theta ; x) \\
& =\sup _{\gamma \in \Gamma} \sup _{\theta \in \Theta: g(\theta)=\gamma} L(\theta ; \underset{\sim}{x}) \\
& =\sup _{\gamma \in \Gamma} L^{*}(\gamma ; x)
\end{aligned}
$$

Example 2.13.

- $\{\operatorname{Bin}(N, p), p \in[0,1]\}, N$ is known.
- $\{$ Exponential $(\lambda), \lambda>0\}$. The MLE of λ is \bar{X}.

Example 2.14.

- $\left\{\mathcal{N}\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}, \sigma^{2}>0\right\}$. The MLE of $\left(\mu, \sigma^{2}\right)$ is $\left(\bar{X}, \frac{n-1}{n} S^{2}\right)$.

In the Bayesian approach, our uncertainty (lack of knowledge) of θ is expressed by a probability density $\pi(\theta)$, called the prior. Once we have collected the data, we will update the prior by incorporating the information from the data. This leads to the so-called posterior density. Bayesian estimation tends to perform better for small sample size.
Assume for simplicity that θ is univariate and let π be the pmf/pdf of the prior distribution (i.e. a distribution on Θ of your choice). Suppose the density (pmf/pdf) of $\left(X_{1}, \cdots, X_{n}\right)$ given θ

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)
$$

The posterior density is the conditional density of θ given the observed data (i.e. conditionally on $X_{1}=x_{1}, \cdots, X_{n}=x_{n}$). The posterior density is given by

$$
\pi\left(\theta \mid x_{1}, \cdots, x_{n}\right)=\frac{\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)}{m\left(x_{1}, \cdots, x_{n}\right)} \cdot \pi(\theta)
$$

where

$$
m\left(x_{1}, \cdots, x_{n}\right)=\int_{\Theta} \prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \pi(\theta) d \theta
$$

is the marginal density of X_{1}, \cdots, X_{n} (unconditional). A Bayesian estimate of θ could be the mean of the posterior distribution with density (pmf/pdf) $\pi\left(\theta \mid x_{1}, \cdots, x_{n}\right)$.

Example 2.15. X_{1}, \cdots, X_{n} a Bernoulli random sample, $X_{i} \sim \operatorname{Bernoulli}(p)$. $\Theta(0,1)$. The prior density is chosen to be Beta (α, β). The Bayesian estimate p_{B} as the expected value of the posterior:

$$
p_{B}=\frac{n \bar{x}+\alpha}{n+\alpha+\beta}=\frac{n}{n+\alpha+\beta} \cdot \underbrace{\bar{x}}_{\text {sample mean }}+\frac{\alpha+\beta}{n+\alpha+\beta} \cdot \underbrace{\frac{\alpha}{\alpha+\beta}}_{\text {expectation of the prior }}
$$

Trick to avoid integration:

$$
\begin{aligned}
\pi\left(\theta \mid x_{1}, \cdots, x_{n}\right) & =\underbrace{c\left(x_{1}, \cdots, x_{n}\right)}_{\text {normalizing constant }} \cdot \underbrace{\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)}_{\text {likelihood }} \cdot \underbrace{\pi(\theta)}_{\text {prior }} \\
& \propto \text { likelihood } \times \text { prior }
\end{aligned}
$$

Example 2.16. X_{1}, \cdots, X_{n} a random sample from Exponential (λ). The parameter space is $(0, \infty)$.

- Likelihood is $\lambda^{n} e^{-n \bar{x} \lambda}$
- Prior: $\operatorname{Gamma}(\alpha, \beta)$

$$
\pi(\lambda)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{\lambda \beta}, \lambda>0
$$

- Posterior: $\operatorname{Gamma}(n+\alpha, n \bar{x}+\beta)$
- Bayesian estimator of λ :

$$
\hat{\lambda_{B}}=\frac{n+\alpha}{n \bar{x}+\beta} \underset{n \rightarrow \infty}{\rightarrow} \frac{1}{\bar{x}}
$$

2.3 Method of evaluating estimators

Definition 2.17. Consider a statistical model

$$
P=\left\{P_{\theta}, \theta \in \Theta\right\}
$$

and $\gamma: \Theta \rightarrow \mathbb{R}^{m}$. Let $T\left(X_{1}, \cdots, X_{n}\right)$ be an estimator of $\gamma(\theta)$. Then:
(a) T is called unbiased if $\forall \theta \in \Theta$,

$$
E_{\theta} T\left(X_{1}, \cdots, X_{n}\right)=\gamma(\theta)
$$

The difference $E_{\theta} T\left(X_{1}, \cdots, X_{n}\right)-\gamma(\theta)$ is called the bias of T, and denoted $\operatorname{bias}_{\theta}(T)$.
(b) If for all $\theta \in \Theta$,

$$
\lim _{n \rightarrow \infty} E_{\theta} T\left(X_{1}, \cdots, X_{n}\right)=\gamma(\theta)
$$

then T is called asymtotically unbiased.
(c) (Weak consistency) T is called consistent if for all $\theta \in \Theta$

$$
T\left(X_{1}, \cdots, X_{n}\right) \xrightarrow{P_{\theta}} \gamma(\theta)
$$

as $n \rightarrow \infty$.
(d) The mean square error of T is

$$
M S E_{\theta}=E_{\theta}\left\{T\left(X_{1}, \cdots, X_{n}\right)-\gamma(\theta)\right\}^{2}
$$

Note: the expectation, variance, etc. of T is taken w.r.t. P_{θ} and hence depends on θ. For all $\theta \in \Theta$:

$$
\begin{aligned}
M S E_{\theta} T & =E_{\theta}(T-\gamma(\theta))^{2} \\
& =E_{\theta}\left(T-E_{\theta} T+E_{\theta} T-\gamma(\theta)\right)^{2} \\
& =E_{\theta}\left(T-E_{\theta} T\right)^{2}+\left(E_{\theta} T-\gamma(\theta)\right)^{2}+2\left(E_{\theta} T-\gamma(\theta)\right) \cdot E_{\theta}\left(T-E_{\theta} T\right) \\
& =\operatorname{var}_{\theta} T+\left(\operatorname{bias}_{\theta} T\right)^{2}
\end{aligned}
$$

Example 2.18. Consider a random sample X_{1}, \cdots, X_{n} from $\mathcal{N}\left(\mu, \sigma^{2}\right)$. We know from Theorem 1.9 that $E \bar{X}=\mu, E S^{2}=\sigma^{2}$.

$$
\begin{aligned}
& M S E(\bar{X})=\operatorname{var} \bar{X}=\frac{\sigma^{2}}{n} \\
& M S E\left(S^{2}\right)=\operatorname{var} S^{2}=\frac{2 \sigma^{2}}{n-1}
\end{aligned}
$$

The MLE of σ^{2} is

$$
\hat{\sigma}^{2}=\frac{n-1}{n} S^{2} .
$$

and

$$
\operatorname{bias}\left(\hat{\sigma}^{2}\right)=-\frac{1}{n} \sigma^{2} .
$$

Hence, $\hat{\sigma}^{2}$ is asymptotically unbiased.

$$
\begin{aligned}
\operatorname{MSE}\left(\hat{\sigma}^{2}\right) & =\operatorname{var}\left(\hat{\sigma}^{2}\right)+\left(\operatorname{bias}\left(\hat{\sigma}^{2}\right)\right)^{2} \\
& =\underbrace{\frac{2 \sigma^{4}}{n-1}}_{M S E\left(S^{2}\right)} \cdot \underbrace{\frac{2 n^{2}-3 n+1}{2 n^{2}}}_{\leq 1} \\
& \leq \operatorname{MSE}\left(S^{2}\right)
\end{aligned}
$$

Trade-off between the bias and the variance

- Increasing the (bias) ${ }^{2}$ led to a decrease of the variance and an overall decrease of the MSE.
- The MSE is just a criterion, meaning that we should not discard S^{2} based on the MSE alone.

Example 2.19. The Bayesian estimator of p is

$$
\hat{p}_{B}=\frac{n \bar{X}+\alpha}{n+\alpha+\beta} .
$$

Clearly, \hat{p}_{B} is biased.

$$
M S E \hat{p}_{B}=\frac{\alpha^{2}+p\left(n-2 \alpha^{2}-2 \alpha \beta\right)+p^{2}\left(-n+\alpha^{2}+\beta^{2}+2 \alpha \beta\right)}{(n+\alpha+\beta)^{2}} .
$$

We can decide to choose α and β so that the $M S E_{\hat{p}_{B}}$ does not depend on p. We get $\alpha=\beta=\frac{\sqrt{n}}{2}$.

When $p=1 / 2$, the Bayesian estimator (the blue line) has the biggest advantage over the MLE (the red line), since the expectation of the prior, $\operatorname{Beta}(\alpha, \beta)$, is

$$
\frac{\alpha}{\alpha+\beta}=\frac{1}{2} .
$$

Theorem (2.20). Suppose that T is asymptotically unbiased estimator of $\gamma(\theta)$ and $\operatorname{var}_{\theta} T \rightarrow 0$ as $n \rightarrow \infty$ for all $\theta \in \Theta$. Then T is a consistent estimator of $\gamma(\theta)$.

Proof. Fix an arbitrary $\varepsilon>0$, and $\theta \in \Theta$. By Markov inequality,

$$
\begin{aligned}
P_{\theta}(|T-\gamma(\theta)|>\varepsilon) & \leq \frac{E_{\theta}\left(T\left(X_{1}, \cdots, X_{n}\right)-\gamma(\theta)\right)^{2}}{\varepsilon^{2}} \\
& =\frac{M S E_{\theta}(T)}{\varepsilon^{2}} \\
& =\frac{\operatorname{var}_{\theta} T+\left(\operatorname{bias}_{\theta} T\right)^{2}}{\varepsilon^{2}} \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

Remark:
we see from the proof that if T is an estimator of $\gamma(\theta)$ and $M S E_{\theta} T \rightarrow 0$ as $n \rightarrow \infty$, then T is consistent for $\gamma(\theta)$.

2.4 Best Unbiased Estimators

- Comparisons based on MSE may not yield a clean winner among estimators
- There is no "best MSE" estimator. Consider

$$
\{\operatorname{Bernoulli}(p), p \in(0,1)\}
$$

Let

$$
p_{\text {silly }}=0.5 .
$$

This is silly because the estimator does not use the data at all, but

$$
\begin{aligned}
M S E_{p}\left(\hat{p}_{\text {silly }}\right) & =(0.5-p)^{2} \\
& =0 \text { when } p=0.5
\end{aligned}
$$

Now, we can devise such silly estimator for any $p_{0} \in(0,1)$:

$$
\hat{p}_{s_{\text {illy; }} p_{0}}=p_{0} \rightarrow M S E_{p_{0}}\left(\hat{p}_{\text {silly; } p_{0}}\right)=0 .
$$

- MSE that uniformly minimize MSE of all possible estimators would have to be 0 for any $p \in(0,1)$.

Definition 2.20. An estimator T^{*} is called a uniform minimum variance unbiased estimator (UMVUE) of $\gamma(\theta)$ if:

1. T^{*} is unbiased: $E_{\theta} T^{*}=\gamma(\theta)$
2. T^{*} is "best" in terms of the variance: if T is an arbitrary unbiased estimator of $\gamma(\theta)$,

$$
\forall \theta \in \Theta, \underbrace{\operatorname{var}_{\theta} T^{*}}_{M S E_{\theta} T^{*}} \leq \underbrace{\operatorname{var}_{\theta} T}_{M S E_{\theta} T}
$$

Example 2.21. X_{1}, \cdots, X_{n} a random sample from $\operatorname{Poisson}(\lambda), \lambda \in(0, \infty)$. We derived earlier an estimator of λ :

$$
\hat{\lambda}=\bar{X}
$$

Theorem 2.22 (Cramer-Rao Inequality). Suppose that X_{1}, \cdots, X_{n} is a random sample from $P_{\theta}, \theta \in \Theta \subset \mathbb{R}$. Let $T\left(X_{1}, \cdots, X_{n}\right)$ be an unbiased estimator of $\gamma(\theta)$, i.e.

$$
\forall \theta \in \Theta, E_{\theta} T=\gamma(\theta)
$$

Let $X \sim P_{\theta}$. Assume that the conditions (1), (2), (3) below holds:
(1) For all $\theta \in \Theta, P_{\theta}$ had a pdf/ $p m f f(x ; \theta)$ and

$$
\frac{\partial f}{\partial \theta}
$$

exists for all $\theta \in \Theta$ and all $x \in N_{\theta}$.
(2) $\forall \theta \in \Theta$,

$$
E_{\theta}\left(\frac{\partial \log f}{\partial \theta}(X ; \theta)\right)=0
$$

and

$$
E_{\theta}\left(\left(\frac{\partial \log f}{\partial \theta}(X ; \theta)\right)^{2}\right)=I(\theta) \in(0, \infty)
$$

for all $\theta \in \Theta$. Here, $I(\theta)$ is called the Fisher Information.
(3) $\operatorname{var}_{\theta} T\left(X_{1}, \cdots, X_{n}\right)<\infty$ for all $\theta \in \Theta$ and

$$
\sum_{i=1}^{n} E_{\theta}\left\{T\left(X_{1}, \cdots, X_{n}\right) \cdot \frac{\partial \log f}{\partial \theta}\left(X_{i} ; \theta\right)\right\}=\gamma^{\prime}(\theta)
$$

for all $\theta \in \Theta$.
Then

$$
\operatorname{var}_{\theta} T\left(X_{1}, \cdots, X_{n}\right) \geq \frac{\left(\gamma^{\prime}(\theta)\right)^{2}}{n \cdot I(\theta)}
$$

Proof. Cauchy-Schwarz inequality:

$$
(\operatorname{cov}(Z, W))^{2} \leq \operatorname{var} Z \cdot \operatorname{var} W
$$

Remarks

- Note that if $X \sim P_{\theta}$,

$$
P_{\theta}(X \in\{x: f(x ; \theta)>0\})=1 .
$$

So we can assume wlog that $f(x ; \theta)>0$ for all $x \in N_{\theta}$ and $\theta \in \Theta$. Then

$$
\frac{\partial \log f}{\partial \theta}=\frac{\frac{\partial f}{\partial \theta}}{f}
$$

exists for all $\theta \in \Theta$ and $x \in N_{\theta}$.

- Assumptions (2) and (3) really mean that we can interchange differentiation and either integration or summation as the case may be.
- Check if it is an exponential family

Example 2.23. X_{1}, \cdots, X_{n} us $\operatorname{Bernoulli(p),~} p \in(0,1) . \bar{X}$ is UMVUE for p.

Lecture 7a

Recall that Cauchy-Schwarz inequality,

$$
\operatorname{cov}(X, Y) \leq \sqrt{\operatorname{varXvarY}}
$$

Equality holds if and only if $\exists a, b \in \mathbb{R}$ so that

$$
Y=a X+b \text { a.s. }
$$

Denoting $T=T\left(X_{1}, \cdots, X_{n}\right)$, an unbiased estimator of $\gamma(\theta)$ with finite variance and

$$
W=\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f\left(X_{i} ; \theta\right)
$$

then we have
Corollary 2.24. Under the condition of the $C R$ theorem (Thm 2.22), T attains the CR lower boudn if and only if

$$
a(\theta) \cdot(T-\gamma(\theta))=W P_{\theta}-\text { a.s. }
$$

Example 2.23 (cont'd) X_{1}, \cdots, X_{n}, a random sample from Bernoulli(p), $p \in(0,1)$.

$$
\begin{aligned}
W & =\sum_{i=1}^{n} \frac{\partial}{\partial p} \log f\left(X_{i} ; p\right) \\
& =\sum_{i=1}^{n}\left(\frac{X_{i}}{p}+\frac{\left(1-X_{i}\right)}{1-p}\right) \\
& =\frac{n \bar{X}-n p}{p(1-p)} .
\end{aligned}
$$

Suppose we wish to estimate the ODDs

$$
\gamma(\theta)=\frac{p}{1-p}
$$

In order for T to attain the CR lower bound

$$
\frac{p}{n(1-p)^{3}},
$$

we have to have that $T=a(n) \bar{X}+b(n)$, but $E T=a(n) \cdot p+b(n) \neq \frac{p}{1-p}$ for all $p \in(0,1)$. Hence, the CR lower bound for estimating the odds cannot be attained.

Definition 2.25 (One-parameter exponential family). A family of PDFs/ PMFs is called a one-paramter exponential family in $c(\theta)$ and $T(x)$, if, for all $\theta \in \Theta \subset \mathbb{R}$,

$$
f(x ; \theta)=1_{A}(x) \exp \{c(\theta) T(x)+d(\theta)+S(x)\}
$$

for some set $A \subset \mathbb{R}$ which does not depend on θ and is a Borel set,, $c: \Theta \rightarrow \mathbb{R}$, and $S, T: \mathbb{R} \rightarrow \mathbb{R}$ Borel-measurable, and T is not a.s. constant on A.

Example 2.26. Bernoulli(p):

$$
\begin{gathered}
f(x ; p)={ }_{p} p^{x}(1-p)^{1-x}, x \in\{0,1\} . \\
A=\{0,1\} .
\end{gathered}
$$

On A,

$$
\begin{aligned}
f(x ; p) & =\exp \{x \cdot \log p+(1-x) \cdot \log (1-p)\} \\
& =\exp \{\underbrace{x}_{T(x)} \cdot \underbrace{\log \frac{p}{1-p}}_{c(p)}+\underbrace{\log (1-p)}_{d(p)}\} .
\end{aligned}
$$

Remark

One can prove that for $\Theta=(a, b),-\infty \leq a<b \leq \infty, c: \Theta \rightarrow \mathbb{R}$ is continuously differentiable with $c^{\prime}(\theta)>0$ for all $\theta \in \Theta$, then the assumptions of the CR Theorem 2.22 are fulfilled. Since

$$
\frac{\partial}{\partial \theta} \log f(x ; \theta)=c^{\prime}(\theta) T(x)+d^{\prime}(\theta)
$$

than

$$
Z=\frac{1}{n} \sum_{i=1}^{n} T\left(X_{i}\right)
$$

is an UMVUE of $\gamma(\theta)=E T(X)$ (assuming $\left.E T^{2}(X)<\infty\right)$ by Theorem 2.22.
Example 2.27 (Uniform $(0, \theta)$). A unbiased estimator of θ is

$$
\begin{gathered}
T=\frac{n+1}{n} X(n) . \\
\operatorname{var} T=\frac{\theta^{2}}{n(n+2)} \ll \frac{\theta^{2}}{n}, \text { CR lower bound. }
\end{gathered}
$$

. Hence, we need a deeper theory to find UMVUE.

3 Chapter 3: Sufficiency and Completeness

3.1 Suffiency

Can we summarize the data without losing information about θ ?
Notation: the support of $\left(X_{1}, \cdots, X_{n}\right)$, the so called sample space, is denoted by χ.
Basic observation Any statistic T induces a partition of χ. Indeed, let

$$
\tau=\{t: t=T(\underset{\sim}{x}) \text { for some } \underset{\sim}{x} \in \mathcal{X}\} .
$$

The sets

$$
\left.\mathcal{A}_{t}=T^{-1}\{t\}=\{\underset{\sim}{x} \in \mathcal{X}: T \underset{\sim}{x})=t\right\}
$$

form a partition of the sample space.

The statistic T summarizes the data (i.e. reduces information). $T=t$ really means that $\left(X_{1}, \cdots, X_{n}\right) \in \mathcal{A}_{t}$.
T contains all relevant information about θ if the exact value of $\underset{\sim}{x} \in \mathcal{A}_{t}$ contains no additional information about θ.

Definition 3.1 (Sufficient statistic). A statistic $T\left(X_{1}, \cdots, X_{n}\right)$ is a sufficient statistic for θ if the conditional distribution of $\left(X_{1}, \cdots, X_{n}\right)$ given $T\left(X_{1}, \cdots, X_{n}\right)=t$ does not depend of θ.

Example 3.2.

- $\left(X_{1}, \cdots, X_{n}\right)$ is sufficient for θ : the conditional distribution of $\left(X_{1}, \cdots, X_{n}\right)$ given $\left(X_{1}, \cdots, X_{n}\right)=\underset{\sim}{x}$ is degenerate.
- X_{1}, \cdots, X_{n} be a random sample from $\operatorname{Bernoulli}(p), p \in(0,1)$.

$$
T\left(X_{1}, \cdots, X_{n}\right)=\sum_{i=1}^{n} X_{i} .
$$

Here, $\chi=\{0,1\}^{n}, T=\{0,1, \cdots, n\}$,

$$
\mathcal{A}_{t}=\left\{\left(x_{1}, \cdots, x_{n}\right) \in\{0,1\}^{n}: \sum_{i=1}^{n} x_{i}=t\right\} .
$$

For all $\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{X}, t \in \tau$,

$$
\begin{aligned}
& P_{\theta}\left(\left(X_{1}, \cdots, X_{n}\right)=\left(x_{1}, \cdots, x_{n}\right) \mid T\left(X_{1}, \cdots, X_{n}\right)=t\right) \\
= & \left\{\begin{array}{l}
0 \quad \text { if } \underset{\sim}{x} \notin \mathcal{A}_{t} \\
\frac{1}{\binom{n}{t}} \quad \text { if } \underset{\sim}{x} \in \mathcal{A}_{t}
\end{array}\right.
\end{aligned}
$$

does not depend on p, so $T=\sum_{i=1}^{n}$ is sufficient for p.
Theorem 3.3 (Neyman-Fisher Factorization). Let $f\left(x_{1}, \cdots, x_{n} ; \theta\right)$ denote the joint pdf/pmf of $\left(X_{1}, \cdots, X_{n}\right)$. A statistic T is sufficenit for θ if and only if for all $\theta \in \Theta$, there exists measurable function g_{θ}, h so that

$$
f\left(x_{1}, \cdots, x_{n} ; \theta\right)=g_{\theta}\left(T\left(x_{1}, \cdots, x_{n}\right)\right) \cdot h\left(x_{1}, \cdots, x_{n}\right) .
$$

Proof.

Example 3.4. X_{1}, \cdots, X_{n} is a random sample from $N\left(\mu, \sigma^{2}\right), \mu \in \mathbb{R}, \sigma^{2}>$ 0 .

$$
f\left(x_{1}, \cdots, x_{n} ; \mu, \sigma^{2}\right)=\left(\frac{1}{2 \pi}\right)^{n / 2}\left(\frac{1}{\sigma^{2}}\right)^{n / 2} \exp \left(-\frac{\left.\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right)}{2 \sigma^{2}}\right.
$$

Clearly, $\left(X_{1}, \cdots, X_{n}\right)$ is sufficient for $\left(\mu, \sigma^{2}\right)$. But

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
= & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2} \\
= & (n-1) s^{2}+n(\bar{x}-\mu)^{2} \\
f\left(x_{1}, \cdots, x_{n} ; \mu, \sigma^{2}\right)= & (\underbrace{\left.\frac{1}{2 \pi}\right)^{n / 2}}_{h(\underset{\sim}{x})} \cdot \underbrace{\left(\frac{1}{\sigma^{2}}\right)^{n / 2} \exp \left(-\frac{(n-1) s^{2}+n(\bar{x}-\mu)^{2}}{2 \sigma^{2}}\right)}_{g_{\mu, \sigma^{2}}\left(\bar{x}, s^{2}\right)}
\end{aligned}
$$

Using Thm 3.3 (Neyman-Fisher factorization), we conclude that $\left(\bar{X}, S^{2}\right)$ is sufficient for $\left(\mu, \sigma^{2}\right)$. Assume now that σ^{2} is known. Here, $\left(\bar{X}, S^{2}\right)$ is sufficient for μ. But, we can also write

$$
f\left(x_{1}, \cdots, x_{n} ; \mu, \sigma^{2}\right)=(\underbrace{\left(\frac{1}{2 \pi}\right)^{n / 2}\left(\frac{1}{\sigma^{2}}\right)^{n / 2} \exp \left(-\frac{(n-1) s^{2}}{2 \sigma^{2}}\right)}_{h(\underset{\sim}{x})} \cdot \underbrace{\exp \left(-\frac{n(\bar{x}-\mu)^{2}}{2 \sigma^{2}}\right)}_{g_{\mu}(\bar{x})}
$$

Hence, \bar{X} is sufficient for μ.
Remark: Sufficient statistic is generally not unique. Some statistics achieve greater data reduction than others. Also, the dimension of paramters nad the dimension of statistics are unrelated.

Example 3.5. Consider a random sample form $U(\theta, \theta+1), \theta \in \mathbb{R}$.

$$
\begin{aligned}
& f\left(x_{1}, \cdots, x_{n} ; \theta\right) \\
= & \left\{\begin{array}{l}
1, \text { if } \theta<x_{i}<\theta+1 \\
0, \text { otherwise }
\end{array}\right. \\
= & \underbrace{1\left(\min _{1 \leq i \leq n}>\theta\right) \cdot 1\left(\max _{1 \leq i \leq n}<\theta+1\right)}_{g \theta\left(\min _{1 \leq i \leq n} x_{i} ;\right.}
\end{aligned}
$$

Using the Neyman-Fisher factorization, we have that

$$
\left(\min _{1 \leq i \leq n} X_{i}, \max _{1 \leq i \leq n} X_{i}\right)
$$

is sufficient for θ.
Example 3.6. Consider a random sample from $U(0, \theta)$
Consider a random sample from $U(0, \theta), \theta>0$.

$$
\begin{aligned}
& f\left(x_{1}, \cdots, x_{n} ; \theta\right) \\
= & \left\{\begin{array}{l}
\left(\frac{1}{\theta}\right)^{n}, \text { if } 0<x_{i}<\theta \\
0, \text { otherwise }
\end{array}\right. \\
= & \underbrace{\left(\frac{1}{\theta}\right)^{n} \cdot 1\left(\max _{1 \leq i \leq n} x_{i}<\theta\right)}_{g_{\theta}\left(\max _{1 \leq i \leq n} x_{i}\right)} \cdot \underbrace{1\left(\min _{1 \leq i \leq n} x_{i}>0\right)}_{h\left(x_{1}, \cdots, x_{n}\right)}
\end{aligned}
$$

By the Neyman-Fisher factorization, $\max _{1 \leq i \leq n} X_{i}$ is sufficient for θ.

3.2 The Rao-Blackwell Theorem

Recall X, Y random variables

$$
E(X)=E(E(X \mid Y))
$$

and $E(X \mid Y)$ is a measurable function of Y.

$$
\operatorname{var}(X)=E(\operatorname{var}(X \mid Y))+\operatorname{var}(E(X \mid Y))
$$

Theorem 3.7 (Rao-Blackwell Theorem). Let W be an unbiased estimator of $\gamma(\theta)$ with finite varaince, and T be a sufficient statistic for θ. Let

$$
W^{*}=E(W \mid T)
$$

Then
(a) W^{*} is an unbiased estimator of $\gamma(\theta)$.
(b) For all $\theta \in \Theta$:

$$
\operatorname{var}_{\theta} W^{*} \leq \operatorname{var}_{\theta} W
$$

Example 3.8.

Remark

- Process of conditioning on a sufficient statistic is called "Rao-Blackwellization".
- Theorem 3.7 implies that an UMVUE (if it exists) needs to be based on a sufficient statistic.

Corollary 3.9. Let W be an estimator of $\gamma(\theta)$ with finite variance, but not necessarily unbiased. Let T be a sufficient statistic for θ. Then for

$$
\begin{gathered}
W^{*}=E(W \mid T) \\
M S E_{\theta}\left(W^{*}\right) \leq M S E_{\theta}(W) \quad \forall \theta \in \Theta .
\end{gathered}
$$

3.3 Completeness

Suppose that T is a statistic and g is a measurable function such that

$$
\forall \theta \in \Theta, E_{\theta} g(T)=
$$

we have that

$$
\forall \theta \in \Theta, \quad E_{\theta} g(T)=0
$$

Assume, for simplicity $\Theta \in \mathbb{R}$ and we wish to estimate θ. Suppose W is an unbiased estimator of θ. Suppose that $g(T)$ is not degenerate (i.e. is a constant a.s.). Then for any $a \in \mathbb{R}$,

$$
W_{a}=W+g(T) \cdot a
$$

then W_{a} is also an estimator of θ :

$$
\begin{aligned}
E_{\theta}\left(W_{a}\right) & =E_{\theta}(W)+a \cdot E_{\theta}(g(T)) \\
& =\theta+a \cdot 0=\theta
\end{aligned}
$$

Assume further that W and $g(T)$ have a finite variance. Suppose that $\operatorname{cov}_{\theta_{0}}(W, g(T)) \neq 0$ for some $\theta_{0} \in \Theta$. Then, WLOG assume $\operatorname{cov}_{\theta_{0}}(W, g(T))<$ 0 :

$$
\begin{aligned}
\operatorname{var}_{\theta_{0}} & =\operatorname{var}_{\theta_{0}}(W)+a^{2} \cdot \operatorname{var}_{\theta_{0}}(g(T)) \\
& +2 a \cdot \operatorname{cov}_{\theta_{0}}(W, g(T))
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{var}_{\theta_{0}}-\operatorname{var}_{\theta_{0}}(W) & =a^{2} \cdot \operatorname{var}_{\theta_{0}}(g(T)) \\
& +2 a \cdot \operatorname{cov}_{\theta_{0}}(W, g(T))
\end{aligned}
$$

The RHS is negative if $a>0$ and

$$
\begin{aligned}
a \cdot \operatorname{var}_{\theta_{0}} g(T) & <-2 \cdot \operatorname{cov}_{\theta_{0}}(W, g(T)) \\
a & <\underbrace{\frac{-2 \cdot \operatorname{cov}_{\theta_{0}}(W, g(T))}{\operatorname{var}_{\theta_{0}}(g(T))}}_{=a^{*}>0}
\end{aligned}
$$

Hence, for $a \in\left(0, a^{*}\right)$,

$$
\operatorname{var}_{\theta_{0}} W_{a}<\operatorname{var}_{\theta_{0}} W
$$

Note that if T is complete, no such a^{*} exists.
Definition 3.10 (Completeness). A statistic T is called complete, if the family $\left\{P_{\theta}^{T}, \theta \in \Theta\right\}$ is complete, meaning that if for any measurale $g: T \rightarrow \mathbb{R}$ such that

$$
\forall \theta \in \Theta, \mathbb{E}(g(t))=0
$$

we have

$$
\forall \theta \in \Theta, \quad P_{\theta}(g(T)=0)=1
$$

Remark: $\quad T$ is complete if $\forall \theta \in \Theta, E_{\theta}(g(T))=0$ implies that $g(T)=$ $0[P]$ a.e. Then, clearly, $\operatorname{cov}_{\theta}(W, g(T))=0$ for all $\theta \in \Theta$, for any unbiased estimate W.

Example 3.11. Completeness tells us something about the size of

$$
\left\{P_{\theta}^{T}, \theta \in \Theta\right\}
$$

Consider X_{1}, \cdots, X_{n} a random sample from $\operatorname{Bernoulli}(p), p \in \Theta \subset(0,1)$. Take $T=\sum_{i=1}^{n} X_{i}$. Then $T \sim \operatorname{Binomial}(n, p)$. Hence

$$
E_{p}(g(T))=\sum_{k=0}^{n} g(h)\binom{n}{k} p^{k}(1-p)^{n-k}
$$

So $E_{p}(g(T))=0$ for all $p \in \Theta$ means that

$$
\begin{aligned}
0 & =\sum_{k=0}^{n} \underbrace{g(k)\binom{n}{k}}_{a_{k}} \cdot(1-p)^{n} \cdot \underbrace{\left(\frac{p}{1-p}\right)^{k}}_{r} \\
(*) \quad 0 & =\sum_{k=0}^{n} a_{k} r^{k}, p \in \Theta
\end{aligned}
$$

For T to be complete, we need to conclude that $g(h)=0$ for all $k=\{0, \cdots, n\}$, i.e. $a_{k}=0$ for al $k \in\{0, \cdots, n\}$.

- If $\Theta=(0,1)$, then $r=\frac{p}{1-p} \in(0, \infty)$. Hence, ($\left.{ }^{*}\right)$ means that the polynomial vanishes for all $r \in(0, \infty)$, and that indeed implies that $a_{k}=0$ for all $k \in\{0, \cdots, n\}$, so T is complete.
- If Θ is finite and $|\Theta| \leq n$, it may well happen that $a_{k} \neq 0$ for some k. For example, if $\Theta=\{1 / 2\}$, then $\left(^{*}\right)$ becomes (say $n=1$):

$$
0=g(0)+g(1)
$$

which does not imply

$$
g(0)=g(1)=0 .
$$

Hence, T is NOT complete.
Example 3.12. Consider a random sample X_{1}, \cdots, X_{n} from $U(0, \theta), \theta>0$.

$$
T=\max _{i \leq i \leq n} X_{i} .
$$

Then,

$$
P_{\theta}(T \leq t)=\prod_{i=1}^{n} P_{\theta}\left(X_{i} \leq t\right)=\left\{\begin{array}{l}
(t / \theta)^{n}, t \in(0, \theta) \\
0, t \leq 0 \\
1, t \geq \theta
\end{array}\right.
$$

So T has a pdf:

$$
f_{\theta}^{T}(t)=\frac{n}{\theta^{n}} \cdot t^{n-1}, t \in(0, \theta)
$$

Suppose that g is measurable and such that $E_{\theta} g(T)=0$ for all $\theta>0$. Suppose that g is Riemann-integrable.

$$
E_{\theta} g(T)=0 \Longleftrightarrow 0=\int_{0}^{\theta} g(t) \cdot \frac{n}{\theta^{n}} \cdot t^{n-1} d t
$$

Fix $\theta \in \Theta$ arbitrary. Then $E_{\theta} g(T)=0$ implies

$$
\begin{aligned}
0 & =\frac{\partial}{\partial \theta} \int_{0}^{\theta} g(t) \frac{n}{\theta^{n}} t^{n-1} d t \\
& =\left(\frac{\partial}{\partial \theta} \theta^{-n}\right) \cdot \underbrace{\theta^{n} \int_{0}^{\theta} g(t) \frac{n}{\theta^{n}} t^{n-1} d t}_{=0 \text { because } E_{\theta} g(T)=0} \\
& +\theta^{-n} \cdot \frac{\partial}{\partial \theta} \int_{0}^{\theta} g(t) n \cdot t^{n-1} d t \\
& =\theta^{-n}\left[g(\theta) n \cdot \theta^{n-1}\right] \\
& =\frac{g(\theta) \cdot n}{\theta} \text { by Leibnitz rule }
\end{aligned}
$$

Hence, $g(\theta)=0$ implies $g(t)=0$ for $t>0$ for any $\theta>0$. Then, $P_{\theta}(g(T)=$ $0)=1$ for all $\theta>0$. Hence, T is complete .

Theorem 3.13 (Lehmann-Scheffe). X_{1}, \cdots, X_{n} a random sample from P_{θ}, $\theta \in \Theta$. Suppose that T is a sufficient and complete statistic. Let $\gamma(\theta)$ be a real-valued parameter, and let W be an unbiased estimator of $\gamma(\theta)$ with finite variance. Then

$$
W^{*}=E(W \mid T)
$$

is UMVUE for $\gamma(\theta)$.

Remark:

- We see from the proof that the UMVUE is a.s. unique.
- If T is complete and sufficient and $W=h(T)$ is unbiased, then W is UMVUE.

Example 3.14.

- $T=\max _{i \leq i \leq n} X_{i}$ is complete.
- T is sufficient
- $\frac{n+1}{n} T$ is an unbiased estimator of θ.

Hence, by Lehmann-Scheffe theorem, $\frac{n+1}{n} \max _{1 \leq i \leq n}$ is UMVUE.
Theorem 3.15. Suppose X_{1}, \cdots, X_{n} are iid from a distribution in a Jparameter exponential family, that is, the PDF/PMF has the form

$$
f(x ; \theta)=1(x \in A) \exp \left\{\sum_{i=1}^{J} c_{j}(\theta) T_{j}(x)+d(\theta)+S(x)\right\}
$$

where $J \geq 1, A \subset \mathbb{R}$ is a Borel set independent of $\theta, c_{1}, \cdots, c_{j}, d: \Theta \rightarrow \mathbb{R}$; $T_{1}, \cdots, T_{J}, S: \mathbb{R} \rightarrow \mathbb{R}$ measurable and T_{1}, \cdots, T_{J} are not a.s. constant. Then

$$
T=\left(\sum_{i=1}^{n} T_{1}\left(X_{i}\right), \cdots, \sum_{i=1}^{n} T_{J}\left(X_{i},\right)\right)
$$

is sufficient for θ. If

$$
\left\{\left(c_{1}(\theta), \cdots, c_{J}(\theta): \theta \in \Theta\right)\right\}
$$

contains an open subset in \mathbb{R}^{J}, T is complete.

Example 3.16.

- Bernoulli:

$$
\begin{aligned}
f(x ; p) & =p^{x}(1-p)^{1-x} 1(x \in\{0,1\}) \\
& =1(x \in\{0,1\}) \exp \left\{x \cdot \log \frac{p}{1-p}+\log (1-p)\right\}
\end{aligned}
$$

where $J=1, S(x)=0$. By Theorem 3.15, $\sum_{i=1}^{n} X_{i}$ is sufficient for p. The set

$$
\left\{\log \frac{p}{1-p}, p \in(0,1)\right\}=(-\infty, \infty)
$$

Hence, $\sum_{i=1}^{n} X_{i}$ is complete.

- Uniform: $f(x ; \theta)=\frac{1}{\theta} 1(x \in(0, \theta))$ is not an exponential form since $A=(0, \infty)$ depends on θ.

4 Chapter 4: Hypothesis Tests

4.1 Basic terminology of hypothesis testing

Definition 4.1 (Hypothesis). A hypothesis is a statement about a population parameter. Given a parametric model for the population distribution, viz

$$
\left\{P_{\theta}, \theta \in \Theta\right\}
$$

we have

- the null hypothesis ("the null")

$$
H_{0}: \theta \in \Theta_{0}
$$

where $\Theta_{0} \subset \Theta$ is some fixed subset of the parameter space.

- the alternative hypothesis (the "alternative")

$$
H_{1}: \theta \notin \Theta_{0}
$$

When $\left|\Theta_{0}\right|=1, H_{0}$ is called simple; otherwise, it is called composite, and analogously for H_{1}.

Definition 4.2 (Hypothesis test). A hypothesis test is a decision rule that specfies for which sample values H_{0} is rejected and for which it is not. Formally, a hypothesis test is a measurable map

$$
\psi: \chi \rightarrow[0,1] .
$$

The observed value $\psi\left(x_{1}, \cdots, x_{n}\right)$ is the probablity of rejecting H_{0} when

$$
\left(X_{1}, \cdots, X_{n}\right)=\left(x_{1}, \cdots, x_{n}\right)
$$

$$
R=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{X}: \psi\left(x_{1}, \cdots, x_{n}\right)=1\right\}
$$

is called the rejection region.

$$
A=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{X}: \psi\left(x_{1}, \cdots, x_{n}\right)=0\right\}
$$

is called the acceptance region.
-

$$
U=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{X}: \psi\left(x_{1}, \cdots, x_{n}\right) \in 0,1()\right\}
$$

is called the randomization region.

If $U \neq \emptyset, \psi$ is called a randomized test.
Example 4.3. Coffee bean: good - 0, spoiled - 1
X_{1}, \cdots, X_{n} sample of coffee beans

- test statistic:

$$
T=\sum_{i=1}^{n} X_{i}=\text { "number of spoiled beans" }
$$

- pick $c \in\{0, \cdots, n+1\}$

$$
\psi\left(X_{1}, \cdots, X_{n}\right)=\left\{\begin{array}{l}
1, T \geq c \\
0, T<c
\end{array} \quad=1(T \geq c)\right.
$$

Any trot can have 4 possible outcomes:

- Medical test :
- H_{0} : healthy
- H_{1} : infected
- Trial :
- H_{0} : innocent
- H_{1} : guilty
- Exam :
- H_{0} : student deserves to pass
- H_{1} : student does not deserve to pass

- super tough
- every fails
- type 2 error does not occur
- type 1 error blows up
- Department chair: make sure that at most 5% (or $\alpha \%$) of good students fails \Longrightarrow control the Type 1 error \Longrightarrow LEVEL
- While controlling type 1 error, we can try to minimize the type 2 error, or maximize the power of the test (to detect the alternative, i.e. fail poor students)

Definition 4.4 (Power function). The power function of a hypothesis test ψ is

$$
\begin{aligned}
B_{\psi}: \Theta & \rightarrow[0,1] \\
\theta & \rightarrow E_{\theta}\left(\psi\left(X_{1}, \cdots, X_{n}\right)\right)
\end{aligned}
$$

If ψ is not randomized, $B_{\psi}(\theta)$ is the probablity of rejecting H_{0}. For a given $\alpha \in[0,1], \psi$ is called a level- α test if

$$
\forall \theta \in \Theta_{0}: B_{\psi}(\theta) \leq \alpha
$$

The size of ψ is $\sup _{\theta \in \Theta_{0}} B_{\psi}(\theta)$.

A level $-\alpha$ test controls type 1 error, but not necessarily the type 2 error.

- Rejecting H_{0} is a "safe" decision
- Accpting H_{0} is NOT a "safe" decision. That's why we say "the data do not provide sufficient evidence to reject H_{0} " or "do not reject H_{0} ".
- If possible, the scientific hypothesis we wish to prove should be the alternative. Sometimes, it is not possible. For example, we want to know if the snowfall is from a normal distribution.

Example 4.1 (cont'd)

$$
\begin{gathered}
H_{0}: \theta \leq \frac{1}{100} \quad H_{1}: \theta>\frac{1}{100} \\
T=\sum_{i=1}^{n} X_{i} \sim \operatorname{Binomial}(n, \theta) . \\
B_{\psi}(\theta)=P_{\theta}(T \geq c)=\sum_{k=c}^{n}\binom{n}{k} \theta^{k}(1-\theta)^{n-k}
\end{gathered}
$$

- if $c=0, B_{\psi}(\theta)=1$ for all $\theta \in(0,1)$.
- if $c=n+1, B_{\psi}(\theta)=0$ for all $\theta \in(0,1)$
- if $c \in\{1, \cdots, n\}: B_{\psi}$ is strictly increasing in $\theta . \Longrightarrow$ The size of ψ is $B_{\psi}\left(\frac{1}{100}\right)$.
- To choose c:
- Control type 1 error:

$$
B_{\psi}\left(\frac{1}{100}\right) \leq \alpha=0.05
$$

The larger c, the smaller the size.

- Maximize the power: maximize B_{ψ} for $\theta>1 / 100$. The smaller c, the larger the power.
- Note: typically, increasing the sample size leads to a better power.

4.2 Likelihood Ratio Test

General strategy how to construct tests. Typically, we construct a test statistic

$$
W\left(X_{1}, \cdots, X_{n}\right)
$$

and identify values in the sample space χ for which W has an unlikely value if H_{0} holds. This set of values in χ will form a rejection region R. The (non-randomized) test will be

$$
\psi\left(X_{1}, \cdots, X_{n}\right)=1\left(\left(X_{1}, \cdots, X_{n}\right) \in R\right)
$$

For test problems about the parameter θ,

$$
H_{0}: \theta \in \Theta_{0} \quad H_{1}: \theta \notin \Theta_{0}
$$

a large class of tests can be obtained as follows:
Definition 4.5 (Likelihood ratio test). The likelihood ratio statistic for testing

$$
H_{0}: \theta \in \Theta_{0} \quad H_{1}: \theta \notin \Theta_{0}
$$

is $\lambda\left(X_{1}, \cdots, X_{n}\right)$ given, at any $\left(x_{1}, \cdots, x_{n}\right)$ by,

$$
\lambda=\frac{\sup _{\theta \in \Theta_{0} L\left(\theta ; x_{1}, \cdots, x_{n}\right)}}{\sup _{\theta \in \Theta L\left(\theta ; x_{1}, \cdots, x_{n}\right)}}
$$

A likelihood ratio test(LRT) has the rejection region

$$
R=\left\{\left(x_{1}, \cdots, x_{n}\right): \lambda\left(x_{1}, \cdots, x_{n}\right) \leq c\right\}
$$

for some suitable chosen critical value c, chosen as a function of α (the level of the test).

Illustration:

1) H_{0} holds
2) H_{I} holds

How do we calculate the LR statistic λ ?

- If $\hat{\theta}$ is MLE of θ and $\hat{\theta}_{0}$ is $\hat{\theta}_{0}=\operatorname{argmax}_{\theta \in \Theta_{0}} L\left(\theta ; X_{1}, \cdots, X_{n}\right)$, then

$$
\lambda=\frac{L\left(\hat{\theta_{0}} ; x_{1}, \cdots, x_{n}\right)}{L\left(\hat{\theta} ; x_{1}, \cdots, x_{n}\right)}
$$

Example 4.6. We wish to test $H_{0}: p \leq p_{0}$ vs $H_{1}: p>p_{0}$ based on a random sample X_{1}, \cdots, X_{n} from Bernoulli(p) (viz. Example 4.1). To construct a LRT, recall

$$
L\left(p ; x_{1}, \cdots, x_{n}\right)=p^{n \cdot \bar{x}}(1-p)^{n(1-\bar{x})}, p \in[0,1]
$$

we already know (Ex. 2.9) that the MLE of p is \bar{X}.

$$
\hat{p_{0}}=\arg \max _{0 \leq p \leq p_{0}} L\left(p ; x_{1}, \cdots, x_{n}\right)=\min \left(p_{0}, \bar{x}\right) .
$$

4.3 p-value

Definition 4.7. Let $W\left(X_{1}, \cdots, X_{n}\right)$ be a test statistic such that small (large) value of W give evidence against H_{0} (are unlikely under H_{0}). For each

$$
\left(x_{1}, \cdots, x_{n}\right) \in \mathcal{X}
$$

let

$$
p\left(x_{1}, \cdots, x_{n}\right)=\sup _{\theta \in \Theta_{0}} P_{\theta}(W\left(X_{1}, \cdots, X_{n}\right) \leq(\geq) \underbrace{W\left(x_{1}, \cdots, x_{n}\right)}_{\text {observed value of } W})
$$

"probability of observing a value of W that is even more unlikely under H_{0} than the one actually observed"
The random variable $p\left(X_{1}, \cdots, X_{n}\right)$ is called the p-value.
Definition 4.7 Let $W\left(X_{1}, \ldots, X_{n}\right)$ be a test statistic such that $\frac{\text { small }}{\text { (langer) }}$ values of W give evidence against H_{0} (are unlikely under H_{0}) For each $\left(x_{1}, \ldots, x_{n}\right) \in X$, let
$* p\left(x_{1}, \ldots, x_{n}\right)=\sup _{\theta \in \Theta_{0}} P_{\theta}(W\left(X_{1}, \ldots, x_{n}\right) \geqslant \underbrace{W\left(x_{1}, \ldots, x_{n}\right)}_{\begin{array}{c}\text { observed } \\ \text { value } \\ \text { of } W\end{array}})$
"probability of observing a value of W that is even more urrlibely under to than the one actually observed"
The random variable $p\left(X_{1}, \ldots, X_{n}\right)$ is called the p-value

Note: the p-value is NOT the probability that H_{0} holds!

Example 4.8 (p-value of a LRT).

$$
p\left(x_{1}, \cdots, x_{n}\right)=\sup _{\theta \in \Theta_{0}}\left(\lambda\left(X_{1}, \cdots, X_{n}\right) \leq \lambda\left(x_{1}, \cdots, x_{n}\right)\right)
$$

Example 4.9 (Bernoulli).
Theorem 4.10. In the context of Definition 4.7, the test that rejects H_{0} if $p\left(X_{1}, \cdots, X_{n}\right) \leq \alpha$ is a level- α test for all $\alpha \in[0,1]$.

Lemma 4.11. For any random variable Y with distribution function G, $P(G(Y) \leq u) \leq u$ for all $u \in[0,1]$.

Proof. wlog:

$$
p\left(x_{1}, \cdots, x_{n}\right)=\sup _{\theta \in \Theta_{0}} P_{\theta}\left(W \leq w\left(x_{1}, \cdots, x_{n}\right)\right)
$$

For all $\theta \in \Theta$, let

$$
\begin{aligned}
p_{\theta}\left(x_{1}, \cdots, x_{n}\right) & =P_{\theta}\left(W\left(X_{1}, \cdots, X_{n}\right) \leq w\left(x_{1}, \cdots, x_{n}\right)\right) \\
& =F_{\theta}^{W}\left(W\left(x_{1}, \cdots, x_{n}\right)\right)
\end{aligned}
$$

From Lemma 4.11

$$
\begin{aligned}
& P_{\theta}\left(p_{\theta}\left(X_{1}, \cdots, X_{n}\right) \leq \alpha\right) \\
= & P_{\theta}\left(F_{\theta}^{W}\left(W\left(X_{1}, \cdots, X_{n}\right)\right) \leq \alpha\right) \leq \alpha
\end{aligned}
$$

Hence, for all $\theta^{*} \in \Theta_{0}$

$$
P_{\theta^{*}}\left(p\left(X_{1}, \cdots, X_{n}\right) \leq \alpha\right) \leq P_{\theta^{*}}\left(p_{\theta^{*}}\left(X_{1}, \cdots, X_{n}\right) \leq \alpha\right) \leq \alpha
$$

since

$$
p\left(X_{1}, \cdots, X_{n}\right)=\sup _{\theta \in \Theta_{0}} p_{\theta}\left(X_{1}, \cdots, X_{n}\right) \geq p_{\theta^{*}}\left(X_{1}, \cdots, X_{n}\right)
$$

Note: if you report the p-value

- the reader can choose α
- the smaller the p-value, the stronger the evidence against H_{0}.

4.4 Small Sample Tests for Normal Samples

Throughout this lecture: X_{1}, \cdots, X_{n} is a random sample from $N\left(\mu, \sigma^{2}\right)$.
Example 4.12 (z-test). Assume that $\sigma^{2} \equiv \sigma_{0}^{2}$ is KNOWN and we wish to test

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{1}: \mu \neq \mu_{0}
$$

The Z statistic is

$$
\sqrt{n} \frac{\bar{X}-\mu_{0}}{\sigma_{0}} \sim N(0,1)
$$

Definition $4.13((1-\alpha) \cdot 100 \%$ quantile of $N(0,1))$. The $(1-\alpha) 100 \%$ quantile of $N(0,1)$ is a value z_{α} such that

$$
1-\Phi\left(z_{\alpha}\right)=\alpha=\Phi\left(-z_{\alpha}\right)
$$

where Φ is the CDF of $N(0,1)$.

- Two-sided z test: the level- α LRT for testing

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{1}: \mu \neq \mu_{0}
$$

is

$$
\psi\left(X_{1}, \cdots, X_{n}\right)=1\left(\frac{\sqrt{n}}{\sigma_{0}}\left|\bar{X}-\mu_{0}\right| \geq z_{\alpha / 2}\right)
$$

p-value:

$$
2\left(1-\Phi\left(\left|z_{o b s}\right|\right)\right)
$$

where

$$
z_{o b s}=\frac{\sqrt{n}}{\sigma_{0}}\left(\bar{x}-\mu_{0}\right)
$$

- One-sided z test: if instead, we wish to test

$$
H_{0}: \mu \leq \mu_{0} \text { vs } H_{1}: \mu>\mu_{0}
$$

Recall that the likelihood function L is increasing on $(\infty, \bar{x}]$ and decreasing on $[\bar{x}, \infty)$. Hence,

$$
\begin{aligned}
\hat{\mu}_{0} & =\min \left(\bar{x}, \mu_{0}\right) . \\
\psi\left(X_{1}, \cdots, X_{n}\right) & =1\left(\frac{\sqrt{n}}{\sigma_{0}}\left(\bar{X}-\mu_{0}\right) \geq z_{\alpha}\right) .
\end{aligned}
$$

p-value

$$
1-\Phi\left(z_{o b s}\right)
$$

- One-sided z test:

$$
\begin{gathered}
H_{0}: \mu \geq \mu_{0} \text { vs } H_{1}: \mu<\mu_{0} \\
\psi\left(X_{1}, \cdots, X_{n}\right)=1\left(\frac{\sqrt{n}}{\sigma_{0}}\left(\bar{X}-\mu_{0}\right) \leq-z_{\alpha}\right) .
\end{gathered}
$$

p-value

$$
\Phi\left(z_{o b s}\right)
$$

Exmaple 4.12 (T test).
Suppose that both μ and σ^{2} are unknown. (Note that σ^{2} is a nuisance parameter.)

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{1}: \mu \neq \mu_{0}
$$

The LRT has the form

$$
\psi\left(X_{1}, \cdots, X_{n}\right)=1\left(\frac{\sqrt{n}}{S}\left|\bar{X}-\mu_{0}\right| \geq c^{*}\right)
$$

Recall from Theorem 1.26 that under H_{0},

$$
\text { T statistic }=\frac{\sqrt{n}}{S}\left(\bar{X}-\mu_{0}\right) \sim t_{n-1}
$$

Definition $4.13((1-\alpha) 100 \%$ quantile from the student t distribution) The $(1-\alpha) \cdot 100 \%$ quantitle from the student t distribution with ν dof is $t_{\nu, \alpha}$ such that

$$
P\left(T \geq t_{\nu, \alpha}\right)=\alpha
$$

where $T \sim t_{\nu}$.

- Two-sided T-test:

$$
\begin{gathered}
\psi\left(X_{1}, \cdots, X_{n}\right)=1\left(\frac{\sqrt{n}}{S}\left|\bar{X}-\mu_{0}\right| \geq t_{n-1, \alpha / 2}\right) \\
p-\text { value }=P\left(|T| \geq\left|t_{o b s}\right|\right) \\
t_{o b s}=\frac{\sqrt{n}}{s}\left(\bar{x}-\mu_{0}\right) \\
T \sim t_{n-1}
\end{gathered}
$$

- One-sided T-test:

$$
H_{0}: \mu \leq \mu_{0} \text { vs } H_{1}: \mu>\mu_{0}
$$

The level- α LRT is

$$
\begin{gathered}
\psi\left(X_{1}, \cdots, X_{n}\right)=1\left(\frac{\sqrt{n}}{S}\left(\bar{X}-\mu_{0}\right) \geq t_{n-1, \alpha}\right) \\
p-\text { value }=P\left(T \geq t_{o b s}\right)
\end{gathered}
$$

- One-sided T-test:

$$
H_{0}: \mu \geq \mu_{0} \text { vs } H_{1}: \mu<\mu_{0}
$$

The level- α LRT is

$$
\begin{gathered}
\psi\left(X_{1}, \cdots, X_{n}\right)=1\left(\frac{\sqrt{n}}{S}\left(\bar{X}-\mu_{0}\right) \leq-t_{n-1, \alpha}\right) \\
p-\text { value }=P\left(T \leq t_{o b s}\right)
\end{gathered}
$$

Example 4.14 (F test). Two independent random samples:

$$
\begin{array}{ccc}
\underbrace{X_{1}, \cdots, X_{n}}_{\text {random sample from } \left.N\left(\mu_{1}, \sigma_{1}^{2}\right)\right)} & \& & \underbrace{Y_{1}, \cdots, Y_{n}}_{\text {random sample from } \left.N\left(\mu_{2}, \sigma_{2}^{2}\right)\right)} \\
H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} & \text { vs } & H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{array}
$$

Definition 4.15. The $(1-\alpha) \cdot 100 \%$ quantile of the $F_{\nu_{1}, \nu_{2}}$ distribution is $F_{\nu_{1}, \nu_{2}, \alpha}$ so that

$$
P\left(W \geq F_{\nu_{1}, \nu_{2}, \alpha}\right)=\alpha
$$

where $W \sim F_{\nu_{1}, \nu_{2}}$.

The level- α LRT (F-test)
Assumptions:

- The samples are independent;
- The population distributions are normal for both samples.
$\psi\left(X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}\right)=1\left(S_{X}^{2} / S_{Y}^{2} \in\left(0, F_{m-1, n-1,1-\alpha / 2}\right] \cup\left[F_{m-1, n-1, \alpha / 2}, \infty\right)\right)$ p-values: $W_{\text {obs }}=S_{X}^{2} / S_{Y}^{2}, W \sim F_{m-1, n-1}$

$$
p-\text { value }=\left\{\begin{array}{l}
2 P\left(W \geq w_{o b s}\right), w_{o b s}>1 \\
2 P\left(W \leq w_{o b s}\right), w_{o b s} \leq 1
\end{array}\right.
$$

Remark 4.15 Other classical tests for normla samples that can be derived as LRTs:
(1) Chi-squared test: X_{1}, \cdots, X_{n} random sample from $N\left(\mu, \sigma^{2}\right)$
(2) Two-sample t test: Assumptions:

- The samples are independent;
- The population distributions are normal for both samples, with the same variance
(and possibly different means). $X_{1}, \cdots, X_{m} \& Y_{1}, \cdots, Y_{n}$

$$
\begin{aligned}
& \begin{aligned}
& \text { two independents samples; } X_{i} \sim N\left(\mu, \sigma^{2}\right) \\
& Y_{i} \sim N\left(\nu, \sigma^{2}\right)
\end{aligned} \\
& \begin{aligned}
H_{0}: \mu & \leq v \text { wm. } H_{1}: \mu \\
& \geqslant v \\
& \geqslant \\
& > \\
&
\end{aligned}
\end{aligned}
$$

4.5 Uniformly most powerful tests

Recall the power of a test ψ :

$$
\begin{aligned}
B_{\psi}: \Theta & \rightarrow[0,1] \\
\theta & \rightarrow B_{\psi}(\theta)=E_{\theta} \psi=P_{\theta}(\underset{\sim}{X} \in R)
\end{aligned}
$$

So far, we were controlling the type 1 error (level- α test):

$$
\sup _{\theta \in \Theta_{0}} B_{\psi}(\theta) \leq \alpha
$$

Now we can try to minimize the type 2 error, i.e. maximize $B_{\psi}(\theta), \theta \in \Theta_{1}$, but we cannot minimize both types of error at the same time.

Definition 4.16 (UMP Test). A test ψ is called a uniformly most powerful(UMP) level- α test if its power satistifes
(a)

$$
\sup _{\theta \in \Theta_{0}} B_{\psi}(\theta) \leq \alpha
$$

(b) For any other level- α test ψ^{*} with B_{ψ}^{*}, we have that

$$
\forall \theta \in \Theta_{1}: B_{\psi}(\theta) \geq B_{\psi^{*}}(\theta)
$$

(i.e. ψ minimizes the type 2 error uniformly over Θ_{1})

Definition 4.17. $H_{i}, i \in\{0,1\}$ is called simple if Θ_{i} is a singleton, i.e. $\left|\Theta_{i}\right|=1$. Otherwise, H_{i} is called composite.

We will start developing a theory for finding UMP tests. We will begin by considering the case of testing a simple H_{0} vs a simple H_{1}.
-

$$
\Theta=\left\{\theta_{0}, \theta_{1}\right\}
$$

- $H_{0}: \theta=\theta_{0}$ vs $H_{1}: \theta=\theta_{1}$
- KNAPSACK Problem

Theorem 4.18 (Neyman-Pearson Lemma). Consider $\Theta=\left\{\theta_{0}, \theta_{1}\right\}, H_{0}: \theta=$ θ_{0} vs $H_{1}: \theta=\theta_{1}$. Suppose that

$$
f\left(x_{1}, \cdots, x_{n} ; \theta_{i}\right), i \in\{0,1\}
$$

is the PDF/PMF of $\left(X_{1}, \cdots, X_{n}\right)$ when $\theta=\theta_{i}$. Define the so-called NP test $\psi_{k}, k \in[0, \infty]:$

$$
\psi_{k}\left(x_{1}, \cdots, x_{n}\right)= \begin{cases}1, & f\left(x_{1}, \cdots, x_{n} ; \theta_{1}\right) \geq k \cdot f\left(x_{1}, \cdots, x_{n} ; \theta_{0}\right) \\ 0, & f\left(x_{1}, \cdots, x_{n} ; \theta_{1}\right)<k \cdot f\left(x_{1}, \cdots, x_{n} ; \theta_{0}\right)\end{cases}
$$

Then ψ_{k} is a UMP test for H_{0} vs H_{1} at level

$$
\alpha=P_{\theta_{0}}\left(\psi_{k}\left(X_{1}, \cdots, X_{n}\right)=1\right)
$$

Remark 4.19. If ψ_{k} is randomized test:

$$
\psi_{k}(\underset{\sim}{x})= \begin{cases}1, & f\left(\underset{\sim}{x} ; \theta_{1}\right)>k \cdot f\left(\underset{\sim}{x} ; \theta_{0}\right) \\ \gamma, & f\left(\underset{\sim}{x} ; \theta_{1}\right)=k \cdot f\left(\underset{\sim}{x} ; \theta_{0}\right) \\ 0, & f\left(\underset{\sim}{x} ; \theta_{1}\right)<k \cdot f\left(\underset{\sim}{x} ; \theta_{0}\right)\end{cases}
$$

Example 4.20. X_{1}, \cdots, X_{n} from $N\left(\mu, \sigma_{0}^{2}\right), \sigma_{0}^{2}$ is assumed to be known, so the parameter space is \mathbb{R}. Consider testing:

$$
H_{0}: \mu \leq \mu_{0} \text { vs } H_{1}: \mu>\mu_{0}
$$

Fix an arbitrary $\mu_{1}>\mu$. Consider testing the auxiliary problem:

$$
H_{0}^{*}: \mu=\mu_{0} \text { vs } H_{1}^{*}: \mu=\mu_{1}
$$

If we simply set $k^{*}=z_{\alpha}$,

$$
\begin{aligned}
\psi_{N P}\left(X_{1}, \cdots, X_{n}\right) & =1\left(\frac{\sqrt{n}}{\sigma_{0}}\left(\bar{X}-\mu_{0}\right) \geq z_{\alpha}\right) \\
& =\psi_{z}\left(X_{1}, \cdots, X_{n}\right)
\end{aligned}
$$

which is a one-sided z test. Note that the test $\psi_{N P}$ has nothing to do with μ_{1}. Hence, ψ_{z} is UMP for $H_{0}: \mu=\mu_{0}$ vs $H_{1}: \mu>\mu_{0}$.

Definition 4.21. A family

$$
P=\left\{P_{\theta}: \theta \in \Theta \subset \mathbb{R}\right\}
$$

of distribution with PMF/PDF $f(; \theta), \theta \in \Theta$ is said to have a monotone likelihood ratio(MLR) is a statistic $T: \chi \rightarrow \mathbb{R}$ if
(1)

$$
\begin{aligned}
\Theta & \rightarrow P \\
\theta & \rightarrow P_{\theta}
\end{aligned}
$$

is injective.
(2) For every $\theta_{1}, \theta_{2} \in \Theta, \theta_{1}<\theta_{2}$,, there exists version of $f\left(; \theta_{1}\right) f\left(; \theta_{2}\right)$ and a non-decreasing mapping $h\left(; \theta_{1}, \theta_{2}\right): \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ so that

$$
\frac{f\left(\underset{\sim}{x} ; \theta_{2}\right)}{f\left(\underset{\sim}{x} ; \theta_{1}\right)}=h\left(T(\underset{\sim}{x}) ; \theta_{1}, \theta_{2}\right)
$$

on the set $\left\{x \in \mathcal{X}: f\left(\underset{\sim}{x} ; \theta_{1}\right)>0\right.$ or $\left.f\left(\underset{\sim}{x} ; \theta_{1}\right)>0\right\}$; here " $\underset{\infty}{\infty}=0$ " if $a>0$.

Example 4.22. In the setup of Example 4.20,,

$$
P=\left\{P_{\mu}, \mu \in \mathbb{R}\right\}
$$

has a MLR in $T=\bar{X}$.
Theorem 4.23 (Karlin-Rubin). Let X_{1}, \cdots, X_{n} be a random sample and P the family of distribution of $\left(X_{1}, \cdots, X_{n}\right)$. Suppose

$$
P=\left\{P_{\theta}, \theta \in \Theta \subset \mathbb{R}\right\}
$$

and P has a MLR in a statistic T.

$$
H_{0}: \theta \leqslant \theta_{0} \text { sos. } H_{3}: \theta \geqslant \theta_{0}
$$

let $\alpha \in(0,1)$ and $\psi_{K R}$ be a test given by

$$
\psi_{K R}(x)= \begin{cases}1 & > \\ \gamma & T(\underset{\sim}{x}) \\ 0 & >k \\ & >\end{cases}
$$

Where f and k are such that

$$
\text { (*) } P_{\theta_{0}}(T>k)+\gamma \cdot P_{\theta_{0}}(T=k)=\alpha
$$

Then:
(1) $\psi_{K R}$ minimizes uniformly the type 2 and type 1 error among all tests ψ with $E_{\theta_{0}} \psi=\alpha$.
(2) $\psi_{K R}$ is a UMP level α test for H_{0} vs H_{1}
(3) $B_{\psi_{K R}}$ is non-decreasing (non-increasing) in θ.

Remark 4.24. Let F_{θ}^{T} denote the $C D F$ of T, ie. $F_{\theta}^{T}(t)=P_{\theta}(T \leq t)$,

$$
\left(F_{\theta}^{T}\right)^{-1}(u)=\inf \left\{x: F_{\theta}^{T}(x) \geq u\right\}, u \in(0,1) .
$$

Then: for

$$
H_{0}: \quad \theta \leqslant \theta_{0} \quad \operatorname{sos} H_{3}: \theta>\theta_{0}
$$

we cons set

$$
\begin{aligned}
& k=\left(F_{\theta_{0}}^{\top}\right)^{-1}\left(\frac{\alpha}{1-\alpha}\right) \\
& \gamma=\left\{\begin{array}{l}
\frac{\alpha-P_{\theta_{0}}(T>k)}{P_{\theta_{0}}(T=k)}, \text { if } P_{\theta_{0}}(T=k) \neq 0 \\
1, \text { if } P_{\theta_{0}}(T=k)=0
\end{array}\right.
\end{aligned}
$$

Example 4.25. X_{1}, \cdots, X_{n} random sample from $\operatorname{Poisson}(\lambda), \lambda>0 . P$ has a MLR in $T=\sum_{i=1}^{n} X_{i}$.

The UMP test for testing

$$
H_{0}: \lambda \leqslant \lambda_{0} \quad \text { os. } H_{3}: \lambda>\lambda_{0}
$$

is

$$
\psi\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}1 & > \\ \gamma & \sum_{i=1}^{n} x_{i} \\ 0 & <\end{cases}
$$

For example, when $\alpha=0.05, \quad \omega=10, \lambda_{0}=5$,

$$
\begin{aligned}
k & =\left(F_{\lambda_{0}}^{\top}\right)^{-1}(0.95)=\text { qpois }(0.95,50) \\
& =62 . \\
F & =\frac{0.05-P\left(W^{L}>62\right)}{P(W=62)}=\frac{0.05-1+\text { ppois }(62,50)}{\text { dpoisson }(50)} \\
& =0.573
\end{aligned}
$$

Note: if $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ and X and Y are independent, then $X+Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.

Example 4.26. Consider the setup of Example 4.20. We wish to test

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{1}: \mu \neq \mu_{0}
$$

A UMP level- α test ψ would need to satisfy
-

$$
E_{\mu_{0}} \psi \leq \alpha
$$

$$
E_{\mu} \psi=\sup \left\{E_{\mu} \psi^{*}: \psi^{*} \text { is a test such that } E_{\theta_{0}} \psi^{*} \leq \alpha\right\}
$$

Now for all $\mu>\mu_{0}: \psi$ would be UMP for

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{1}^{*}: \mu>\mu_{0}
$$

for all $\mu<\mu_{0}: \psi$ would be UMP for

$$
\begin{gathered}
H_{0}: \mu=\mu_{0} \text { vs } H_{1}^{* *}: \mu<\mu_{0} \\
\psi=\psi_{1}=1\left(\frac{\sqrt{n}}{\sigma_{0}}\left(\bar{X}-\mu_{0}\right) \geq z_{\alpha}\right) \\
=\psi_{2}=1\left(\frac{\sqrt{n}}{\sigma_{0}}\left(\bar{X}-\mu_{0}\right) \leq-z_{\alpha}\right)
\end{gathered}
$$

But

$$
\left\{\underset{\sim}{x}: \psi_{1} \neq \psi_{2}\right\}=\left\{\underset{\sim}{x}: \frac{\sqrt{n}}{\sigma_{0}}\left(\bar{x}-\mu_{0}\right) \geq z_{\alpha} \text { or } \frac{\sqrt{n}}{\sigma_{0}}\left(\bar{x}-\mu_{0}\right) \leq-z_{\alpha}\right\}
$$

does not have probablity 0. So such a test ψ does not exist.

Convention: we can develop a theory of UMP level- α tests for the two-sided theory problems. $\left(\theta=\theta_{0}\right.$ vs $\left.\theta \neq \theta_{0}\right)$ if we restrict attention to unbiased tests:

$$
B_{\psi}(\theta) \geq \alpha \forall \theta \neq \theta_{0}
$$

5 Chapter 5: Confidence Sets

5.1 Confidence set

Goal: express uncertainty in parametric estimates
Definition 5.1 (Confidence set). Consider a parametric model

$$
P=\left\{P_{\theta, \xi},(\theta, \xi) \in \mathfrak{L}\right\} .
$$

Here, θ is the parameter of interest and ξ is a nuisance parameter. Let $\Theta=\{\theta:(\theta, \xi) \in \mathfrak{L}$, for at least one $\xi\}$. The mapping

$$
\begin{aligned}
& C: \chi \rightarrow 2^{\Theta} \\
& \quad\left(x_{1}, \cdots, x_{n}\right) \rightarrow c(\underset{\sim}{x})
\end{aligned}
$$

is called a confidence set for θ if for all $\theta \in \Theta$ the set $\{\underset{\sim}{x} \in \mathcal{X}: \theta \in c(\underset{\sim}{x})\}$ is measurable.
A confidence set chas confidence level $1-\alpha$ if $\forall \theta \in \Theta, \forall \xi:(\theta, \xi) \in \mathcal{L}$

$$
P_{\theta, \xi}(\theta \in C(\underset{\sim}{X})) \geq 1-\alpha
$$

Remark If there are no nuisance parameters, ξ is simply omitted in Def 5.1 and $\mathcal{L}=\Theta$.

Example 5.2 (Constructing confidence sets using pivots). X_{1}, \cdots, X_{n} random sample from the Exponential distribution with density

$$
\begin{gathered}
f(x ; \lambda)=\lambda e^{-\lambda x}, x>0 \\
P=\{\operatorname{Exp}(\lambda), \lambda \in(0, \infty)\}
\end{gathered}
$$

Goal: construct CS for λ.
Note:

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Gamma}(n, \lambda)
$$

Define

$$
Q=2\left(\sum_{i=1}^{n} X_{i}\right) \cdot \lambda=Q(\underset{\sim}{X}, \lambda) \sim \chi_{2 n}^{2} \text { does not depend on } \lambda
$$

$$
\begin{aligned}
& \text { The MGF of } Q \text { is } \\
& E_{\lambda}\left(e^{t Q}\right)=E_{\lambda}\left(e^{(2 t \lambda) \sum_{i=1}^{n} x_{i}}\right)=\left(E_{\lambda} e^{(2 \lambda t) x_{i}}\right)^{n} \\
& =\left(1-\frac{2 t \lambda}{\lambda}\right)^{-n}=\frac{(1-2 t)^{-n}, t<\frac{1}{2}}{M G F x_{2 n}^{2}} \\
& \left.\Rightarrow Q=Q(\underset{\sim}{x}, \lambda) \sim X_{2 n}^{2}\right)=\text { deces not depend on } \lambda .
\end{aligned}
$$

A quantity which depends on $\left(X_{1}, \cdots, X_{n}\right)$ and the parameter of interest θ, and whose distribution does not depend on θ or ξ is called a PIVOT.

To construct a confidence set for λ from Q, we can simply choose (a, b) so that the CS is at confidence level $1-\alpha$. Here, we choose $a, b \in \mathbb{R}, a<b$, so that

$$
P\left(\chi_{2 n}^{2} \in(a, b)\right)=1-\alpha
$$

For example, we can set $a=\chi_{2 n, 1-\alpha / 2}^{2}, b=\chi_{2 n, \alpha / 2}^{2}$

To obtain the CS from (a, b), we can solve for

$$
\begin{gathered}
a<Q(\underset{\sim}{X}, \lambda)<b \\
\frac{a}{2 \sum_{i=1}^{n} X_{i}}<\lambda<\frac{b}{2 \sum_{i=1}^{n} X_{i}}
\end{gathered}
$$

Set

$$
C(\underset{\sim}{X})=\left(\frac{a}{2 \sum_{i=1}^{n} X_{i}}, \frac{b}{2 \sum_{i=1}^{n} X_{i}}\right)
$$

Then, for any $\lambda>0$,

$$
\begin{aligned}
& P_{\lambda}\left(\lambda \in\left(\frac{a}{2 \sum_{i=1}^{n} X_{i}}, \frac{b}{2 \sum_{i=1}^{n} X_{i}}\right)\right) \\
= & P_{\lambda}\left(a<2\left(\sum_{i=1}^{n} X_{i}\right)<b\right) \\
= & P\left(\chi_{2 n}^{2} \in(a, b)\right)=1-\alpha
\end{aligned}
$$

Hence, $C(\underset{\sim}{X})$ above is a confidence set for λ at confidence level $1-\alpha$.
Example 5.3 (More Pivots). X_{1}, \cdots, X_{n} a random sample from $N\left(\mu, \sigma^{2}\right)$. We wish to construct a confidence set at level $(1-\alpha)$ for μ (i.e. σ^{2} is a nuisance parameter). Define

$$
Q\left(X_{1}, \cdots, X_{n}, \mu\right)=\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}
$$

Choose (a, b), i.e., $a, b \in \mathbb{R}$ so that

$$
P\left(t_{n-1} \in(a, b)\right)=1-\alpha
$$

Definition 5.4. Suppose that $C \underset{\sim}{X})$ is confidence set for θ at level $1-\alpha$.

- If $C(\underset{\sim}{X})$ has the form $(L \underset{\sim}{X}), U(\underset{\sim}{X}))$, then C is called a two-sided confidence interval at confidence level $1-\alpha$.
- If $C(\underset{\sim}{X})$ has the form $(\infty, U(\underset{\sim}{X})$, then C is called upper one-sided confidence interval at confidence level $1-\alpha$.
- If $C(\underset{\sim}{X})$ has the form $(L \underset{\sim}{X}), \infty)$, then C is called lower one-sided confidence interval at confidence level $1-\alpha$.

Definition 5.5 (Unbiased confidence set). For any $\theta \in \Theta$, let k_{θ} be a set of undesirable parameters. A confidence set at confidence level $1-\alpha$ is called unbiased if

$$
\forall \theta \in \Theta, \forall \xi:(\theta, \xi) \in \mathcal{L}, \forall \theta^{*} \in k_{\theta}, P_{\theta, \xi}\left(\theta^{*} \in C(\underset{\sim}{X})\right) \leq 1-\alpha
$$

Example 5.6 (Ex 5.3 continued). X_{1}, \cdots, X_{n} sample from $N\left(\mu, \sigma^{2}\right), \mu$ of interest, σ^{2} nuisance, $k_{\mu}=(\infty, \mu)$. For $\mu^{*} \in k_{\mu}$,

$$
\begin{aligned}
& P_{\mu, \sigma^{2}}\left(\mu^{*} \in\left(\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}, \infty\right)\right) \\
= & P_{\mu, \sigma^{2}}(\frac{\bar{X}-\mu}{S} \sqrt{n}<t_{n-1, \alpha}+\underbrace{\frac{\mu^{*}-\mu}{S} \sqrt{n}}_{<0}) \\
\leq & P_{\mu, \sigma^{2}}(\underbrace{\frac{\bar{X}-\mu}{S} \cdot \sqrt{n}}_{\sim t_{n-1}}<t_{n-1, \alpha})=1-\alpha .
\end{aligned}
$$

- Similarly, if $k_{\mu}=(\mu, \infty)$

$$
\left(-\infty, \bar{X}+\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}\right)
$$

is unbiased

- Similarly, if $k_{\mu}=\{\mu\}^{C}$

$$
\left(\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}, \bar{X}+\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}\right)
$$

is unbiased.

5.2 Correspondence between confidence sets and hypothesis tests

Theorem 5.7. For any confidence set C, there exists a family of nonrandomized tests

$$
\left\{\psi_{\theta_{0}}, \theta_{0} \in \Theta\right\}
$$

with

$$
C(\underset{\sim}{x})=\left\{\theta_{0} \in \Theta: \psi_{\theta_{0}}(\underset{\sim}{x})=0\right\}
$$

is measurable for all θ_{0} since θ_{0} is measurable.
Example 5.8. X_{1}, \cdots, X_{n} random sample from $N\left(\mu, \sigma^{2}\right)$. In Example 5.3, we derived CI for μ using pivots.

- lower one-sided confidence interval for μ :

$$
\left(\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}, \infty\right)
$$

we can calculate, for $\mu_{0} \in \mathbb{R}$,

$$
\begin{aligned}
& \psi_{\mu_{0}}(\underset{\sim}{x})=\left\{\begin{array}{l}
1, \mu_{0} \notin\left(\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}, \infty\right) \\
0, \mu_{0} \in\left(\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}, \infty\right)
\end{array}\right. \\
& =\left\{\begin{array}{l}
1, \mu_{0} \leq \bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}} \\
0, \mu_{0}>\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}
\end{array}\right. \\
& =\left\{\begin{array}{l}
1, \frac{\bar{X}-\mu_{0}}{S} \cdot \sqrt{n} \geq t_{n-1, \alpha} \\
0, \frac{\bar{X}-\mu_{0}}{S} \cdot \sqrt{n}<t_{n-1, \alpha}
\end{array}\right.
\end{aligned}
$$

This is the one-sided t-test (Ex 4.12) for

$$
H_{0}: \mu \leq \mu_{0} \text { vs } H_{1}: \mu>\mu_{0}
$$

- For the two-sided confidence interval for μ :

$$
\left(\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}, \bar{X}+\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}\right)
$$

we can derive the associated family of tests. For any $\mu_{0} \in \mathbb{R}$,

$$
\begin{aligned}
\psi_{\mu_{0}} & =\left\{\begin{array}{l}
1, \mu \notin\left(\bar{x}-\frac{t_{n-1, \alpha / 2} \cdot S}{\sqrt{n}}, \bar{x}+\frac{t_{n-1, \alpha / 2} \cdot S}{\sqrt{n}}\right) \\
0, \mu \in\left(\bar{x}-\frac{t_{n-1, \alpha / 2} \cdot S}{\sqrt{n}}, \bar{x}+\frac{t_{n-1, \alpha / 2} \cdot S}{\sqrt{n}}\right)
\end{array}\right. \\
& = \begin{cases}1, & \sqrt{n}\left|\frac{\bar{x}-\mu_{0}}{s}\right| \geq t_{n-1, \frac{\alpha}{2}} \\
0, & \sqrt{n}\left|\frac{\bar{x}-\mu_{0}}{s}\right|<t_{n-1, \frac{\alpha}{2}}\end{cases}
\end{aligned}
$$

This is the two-sided t test for

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{1}: \mu \neq \mu_{0} .
$$

Theorem 5.9. Consider a confidence set C and the corresponding family of tests $\left\{\psi_{\theta_{0}}, \theta_{0} \in \Theta\right\}$ as specified in Theorem 5.7. Let also, for any $\theta \in \Theta, k_{\theta}$ be the set of undesirable parameters. For each $\theta_{0} \in \Theta$, let

$$
\Theta_{1}^{\theta_{0}}=\left\{\theta \in \Theta: \theta_{0} \in k_{\theta}\right\}
$$

Then the following holds:
(1) C has confidence level $1-\alpha$ if and only if $\forall\left(\theta_{0}, \xi\right) \in \mathcal{L}$:

$$
E_{\left(\theta_{0}, \xi\right)} \psi_{\theta_{0}}(\underset{\sim}{X}) \leq \alpha
$$

(2) C is an unbiased level- $(1-\alpha)$ confidence set for θ if and only if, for each $\theta_{0} \in \Theta, \psi_{\theta_{0}}$ is an unbiased level- α test of

$$
H_{0}: \theta=\theta_{0} \text { vs } H_{1}: \theta \in \Theta_{1}^{\theta_{0}}
$$

Note that Theorem 5.9 only guarantees the null hypothesis that $\theta=\theta_{0}$. unbiased means type 2 error $\leq 1-\alpha$.

Example 5.10. From 5.6, we know that if $k_{\mu}=(-\infty, \mu)$, then

$$
\left(\bar{X}-\frac{t_{n-1, \alpha} \cdot S}{\sqrt{n}}, \infty\right)
$$

is an unbiased level- $(1-\alpha)$ CI for μ. For $\mu_{0} \in \mathbb{R}$:

$$
\left\{\mu \in \mathbb{R}: \mu_{0} \in(-\infty, \mu)\right\}=\left(\mu_{0}, \infty\right)
$$

Hence, from Theorem 5.9, the one-sided t-test

$$
\psi_{\mu_{0}}=\left\{\begin{array}{l}
1, \sqrt{n} \frac{\bar{x}-\mu_{0}}{S} \geq t_{n-1, \alpha} \\
0, \sqrt{n} \frac{\bar{x}-\mu_{0}}{S}<t_{n-1, \alpha}
\end{array}\right.
$$

is unbiased, level- α test for

$$
H_{0}: \mu=\mu_{0} \text { vs } H_{1}: \mu>\mu_{0}
$$

(unbiased, level- $(t-\alpha)$)

$$
\left\{\mu \in \mathbb{R}: \mu_{0} \in\left\{\mu^{c}\right\}=\left\{\mu \in \mathbb{R}: \mu \neq \mu_{0}\right\}\right.
$$

Two-sided t-test is an urbiasell, level- α test for $H_{0}: \mu=\mu_{0}$ os. $H_{1}: \mu \neq \mu_{0}$.

Example 5.11 (Constructing CS from tests). X_{1}, \cdots, X_{n} random sample from $N\left(\mu, \sigma^{2}\right)$, μ nuisance; our goal is to construct confidence sets for σ^{2}. Recall chi-square test

\bullet

$$
\begin{gathered}
k_{\sigma^{2}}=\left(0, \sigma^{2}\right) \rightarrow H_{1}: \sigma_{0}^{2}<\sigma^{2} \\
C(\underset{\sim}{x})=\left(\frac{(n-1) S^{2}}{\chi_{n-1, \alpha}^{2}}, \infty\right)
\end{gathered}
$$

\bullet

$$
\begin{gathered}
k_{\sigma^{2}}=\left\{\sigma^{2}\right\}^{C} \rightarrow H_{1}: \sigma_{0}^{2} \neq \sigma^{2} \\
C(\underset{\sim}{x})=\left(\frac{(n-1) S^{2}}{\chi_{n-1, \alpha / 2}^{2}}, \frac{(n-1) S^{2}}{\chi_{n-1,1-\alpha / 2}^{2}},\right)
\end{gathered}
$$

Remark 5.12. The correspondence between the tests and CS can also be used to develop uniformly most accurate CSs (these correspond to UMP classes of tests.)

5.3 Interpretation of Confidence Sets

Example 5.13. Generate a sample of size $n=10$ from $N(1,2)$. Suppose for this sample, we observed

$$
\bar{x}=1.1, \quad s^{2}=1.5
$$

two-sided CI for μ at $C L$ (95%):

$$
(\bar{x}-\underbrace{\frac{t_{9,0.025}^{\sqrt{10}} \cdot(\sqrt{1.5}}{t^{2}}}_{2.262}]
$$

$$
\Rightarrow(0.224,1.976)
$$

Test: $\mu=1$ vas. $\mu \neq 1$.
Since $1 \in(0.224,1.976) \Rightarrow$ do not reject at the

- Interpreting (0.224, 1.976)?
"This is the interval in which the true μ lies with prepability $95 \% "$

- set of "plausible values of μ ".

