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Lecture 1b

1 Chapter 1: Random Sampling

1.1 Basic Concepts

Definition 1.1. The random variables (vectors) X1, · · · , Xn are called a

random sample if they are iid with some common distribution P . P is

called the population distribution and n is called the sample size. Data

are the observations (or realizations) of X1, · · · , Xn, i.e.

x1, · · · , xn.

Note: We regard P as unknown; it is a proxy for our lack of knowledge of

some phenomenon. Our goal is to infer (learn) P or some of its properties

from the basis of the observed data x1, · · · , xn.

Example 1.2.
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Lecture 2a

Recall the definition of a random sample. This sampling model is also called

sampling from an infinite population. Independence implies the distribution

of X2 is unaffected by having sampled X1 = x1.

Remark 1.3 (Finite population (N) with P(sampled) = 1/N).

1. Sample with replacement

2. Sample without replacement: X1, · · · , Xn are identically distributed but

NOT independent. However when N is much langer than n, the inde-

pendence assumption may be a good enough approximation.

1.2 Descriptive Statistics

Definition 1.4 (statistic). Let X1, · · · , Xn be a random sample from P on

Rd. Let T : Rd × · · · × Rd → Rh be a measurable mapping that does NOT

depend on any unknown parameters. The random vector T (X1, · · · , Xn) is

called a statistic.

Note that with Borel measure, all continuous functions are measurable.

Example 1.5.

(
1

n

n∑
i=1

1(Xi = 0)− p0)
2

is not a statistic since p0 is unknown.

Rule of thumb: You must be able to evaluate a statistic. The observed value

must be a scalar, not a term or formula.

Definition 1.6. Let X1, · · · , Xn be a random sample from P on R. Then

X̄ =
1

n

n∑
i=1

Xi
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is called the sample mean (a measure of central tendency). Furthermore,

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

is called the sample variance (a measure of variability), and S is called

the sample standard deviation. The observed values are denoted x̄, s2, s.

Theorem 1.7. For arbitrary x1, · · · , xn ∈ R,

(a)

min
a∈R

1

n

n∑
i=1

(xi − a)2 =
1

n

n∑
i=1

(xi − x̄)2.

(b)

(n− 1)s2 =
n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2i − n(x̄)2

Proof.
n∑
i=1

(xi − a)2 =
n∑
i=1

(xi − x̄+ x̄− a)2

Lemma 1.8. Let X1, · · · , Xn be a random sample from P on R, X ∼ P , g

measurable so that E g(X) and var g(X) exist. Then

E

(
n∑
i=1

g(Xi)

)
= n · E(g(X))

var

(
n∑
i=1

g(Xi)

)
= n · var(g(X)))

Note that

E(g(X)) =

∫
g(x)f(x)dx

Theorem 1.9. Let X1, · · · , Xn be a random sample from P on R, X ∼ P ,

EX = µ and σ2 = var X are finite. Then,
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(a) EX̄ = µ

(b) var (X̄) = σ2

n

(c) E(S2) = σ2.

Note: Theorem 1.9 holds for all P such that EX = µ and σ2 = var X are

finite.

Example 1.10.
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Lecture 2b

Definition 1.11 (order statistics). Let X1, · · · , Xn be a random sample from

P on R. Placed in ascending order,

X(1) ≤ X(2) ≤ · · · ≤ X(n),

the ordered random variables are called the order statistics. X(r) is called

the rth order statistic.

• X(1) · · · sample minimum

• X(n) · · · sample maximum

• R = X(n) −X(1) · · · sample range

• Xmed · · · sample median (a measure of central tendency)

Xmed =


Xn+1

2
, if n is odd

Xn
2
+Xn

2 +1

2
, if n is even

• sample (100 · p)th percentile, where p ∈ ( 1
2n
, 1− 1

2n
) is:

– X({np}) if p ∈ ( 1
2n
, 1
2
)

– Xmed if p = 1
2

– X({n+1−n(1−p)}) if p ∈ (1
2
, 1− 1

2n
)

where b ∈ [0,∞), {b} is the integer so that

j − 1

2
≤ b < j +

1

2
.

The definition of the (100 · p)th percentile is rigged so that if the (100 ·
p)th percentile is X(i), the i

th smallest observation, the (100 · (1− p))th

percentile is the ith largest observation, X(n+1−i).
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• the 25th percentiled is called the first quartile (Q1)

• the 75th percentiled is called the third quartile (Q3)

• their differntce IQR = Q3 − Q1 (a measure of variability) is called

interqurtile range.

Lemma 1.12 (Mean absolute error). For any x1, · · · , xn ∈ R, let Xmed be

the observed value of the sample median. Then for any a ∈ R,

1

n

n∑
i=1

|xi − a| ≥ 1

n

n∑
i=1

|xi − xmed|.

Example 1.13.

Graphical data visualization

(a) Boxplot

(b) Histogram (for continuous data)

Partition the range [x(i),x(n)
] into k (chosen) bins.

hj is so that

hj · (bj+1 − bj) =
1

n

n∑
i=1

1(xi ∈ [bj, bj+1])

≈ P (X ∈ [bj, bj+1])

The idea is that the histogram approximates the pdf of P .

(c) Bar chart/ bar plot (for discrete data) We observed k distinct value.

hj =
1

n

n∑
i=1

1(xi = bj) ≈ P (X = bj)

Bar chart approximates the pmf of P .
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1.3 Sampling distribution

Definition 1.14 (sampling distribution). Consider a statistic T (X1, · · · , Xn).

Its distribution is called the sampling distribution of T (X1, · · · , Xn).

Theorem 1.15. Consider a random sample from P on R, X ∼ P and

assume that X has a MGF (moment generating function) MX on the interval

I. Then X̄ has MGF

MX̄(t) = (MX(t/n))
n

Example 1.16.

• X ∼ N (µ, σ2), X̄ ∼ N (µ, σ2/n)

• X ∼ Bin(m, p), n · X̄ ∼ Bin(m · n, p)

• X ∼ Gamma(α, β), X̄ ∼ Gamma(α · n, β/n).

Observation: the sampling distribution of T (X1, · · · , Xn) depends on the

population distribution P .

Theorem 1.17. Let X1, · · · , Xn be a random sample from P on R. Then

from any x ∈ R, r ∈ {1, · · · , n},

P (X(r) ≤ x) = FX(r)
(x) =

n∑
k=r

(
n

k

)
{F (x)}k{1− F (x)}n−k

Proof. Fix x ∈ R, r ∈ {1, · · · , n}. Let

Y = #i : Xi ≤ x

=
n∑
i=1

1(Xi ≤ x), iid Bernoulli(F (x)), since P (Xi ≤ x) = F (X)
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Hence, Y ∼ Bin(n, F (x)).

P (X(r) ≤ x) = P (Y ≥ r)

=
n∑
k=r

(
n

k

)
(F (x))k(1− F (x))n−k

Note: if P has a pdf f , then X(r) has a pdf

f(X(r))(x) =
n!

(r − 1)!(n− r)!
{F (x)}r−1f(x){1− F (x)}n−r.

Example 1.18. Suppose U1, · · · , Un from U(0, 1). Then U(r) has a pdf

fU(r)
(u) =

n!

(r − 1)!(n− r)!
ur−1(1− u)n−r.

Note that Γ(n) = (n− 1)! Hence, U(r) ∼ Beta(r, n− r + 1). In particular,

E(U(r)) =
r

n+ 1
.

Note: for U(a,b), f(x) = 1/(b− a) for x ∈ [a, b], 0 otherwise.
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Lecture 3a

1.4 Sampling from the Normal Population

Throughout this section, X ∼ N (µ, σ2), where µ and σ2 are unknown.

Theorem 1.19. Let X1, · · · , Xn be a random sample from N (µ, σ2). Let X̄

and S2 be the sample mean and variance. Then,

(a)

X̄ ∼ N (µ,
σ2

n
)

(b) X̄ and S2 are independent.

Proof. (b) Let X∗
i be the standardized variable such that

X∗
i =

Xi − µ

σ
.

Then, X∗
i ∼ N (0, 1). We have

X̄∗ =
X̄ − µ

σ

(S∗)2 =
S2

σ2
.

Both are one-to-one function to X̄ and S2, respectively. Hence, WLOG, we

can assume µ = 0 and σ2 = 1 and if X̄∗ ⊥ (S∗)2, X̄ ⊥ S2. Note that

S2 =
1

n− 1

(−
n∑
i=2

(Xi − X̄)︸ ︷︷ ︸
=X1−X̄

)2 +
n∑
i=2

(Xi − X̄)2

 .

Lemma 1.20. X2, · · · , Xn iid N (0, 1). Then,

X̄ ⊥ (X2 − X̄, · · · , Xn − X̄).
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Proof. Define T : Rn → Rn as

(x1, · · · , xn) → (x̄, x2 − x̄, · · · , xn − x̄).

Then, T−1 : Rn → Rn is

(yn, · · · , yn) → ( y1 −
n∑
i=2

yi︸ ︷︷ ︸
=n·y1−

∑n
i=2(yi+y1)

, y2 + y1, · · · , yn + y1).

Jacobi matrix |J | = n.

f(Y1,··· ,Yn)(y1, · · · , yn) = f(X1,··· ,Xn)(T
−1(y1, · · · , yn)) · |J |

= ((
1√
2π

)n exp(−1

2
((y1 −

n∑
i=2

yi)
2 +

n∑
i=2

(yi + y1)
2))) · n

=
√
n(

1√
2π

) exp(−1

2
(ny21))

·
√
n(

1√
2π

)n−1 exp(−1

2
((

n∑
i=2

yi)
2 +

n∑
i=2

y2i ))

= f1(y1) · f2(y2, · · · , yn)

Theorem 12.7 (from Jacod & Protter) Let X = (X1, · · · , Xn) have joint

density f . Let g : Rn → Rn be continuously differentiable and injective, with

non-vanishing Jacobian. Then Y = g(X) has density

fY (y) =

fX(g−1(y))| det Jg−1(y)|, if y is in the range of g

0, otherwise.

Since S2 is a function of (X2 − X̄, · · · , Xn − X̄) which we now know is

independent of X̄.
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Definition 1.21 (Chi-squared distribution). The χ2
ν distribution has a pdf

given, for all x > 0,

f(x; ν) =
1

2ν/2Γ(ν
2
)
· xν/2−1 · e−x/2

and 0 otherwise. The χ2
ν distribution is in fact the Gamma(ν

2
, 2). The MGF

of χ2
ν is given, for all t < 1

2
, by Mχ2

ν
= (1− 2t)−ν/2.

Lemma 1.22.

(a) When X ∼ χ2
ν, then EX = ν and var X = 2ν

(b) X1 ∼ χ2
ν1
, X2 ∼ χ2

ν2
, and X2 ⊥ X1, then X1 +X2 ∼ χ2

ν1+ν2

(c) X ∼ N (0, 1) then X2 ∼ χ2
1.

Theorem 1.23. Supposet that X1, · · · , Xn is a random sample from N (µ, σ2).

Then,
(n− 1)S2

σ2
∼ χ2

n−1.
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Lecture 3b

Motivation for t distribution: Consider

√
n
X̄ − µ

σ
∼ N (0, 1),

where σ is unknown. Instead:

√
n
X̄ − µ

S
≡ T.

Note that T is a statistic.

Definition 1.24 (Student t distribution). The Student t distribution with ν

degrees of freedom, tν, has pdf

f(x; ν) =
Γ(ν+1

2
)

√
νπ · Γ(ν

2
)
(1 +

x2

ν
)−

ν+1
2 , x ∈ R.

Lemma 1.25. Let X ∼ tν . The the following holds:

(a) EX = 0 if ν > 1. If ν ≤ 1, EX does not exist. Note: t1 is Cauchy(1).

(b) varX = ν
ν−2

if ν > 2. If ν ≤ 2, then varX does not exist.

(c)

X
d
=

Z√
V/ν

where Z ∼ N (0, 1), V ∼ χ2
ν, and Z ⊥ V.

Theorem 1.26. Suppose that X1, · · · , Xn is a random sample from N (µ, σ2).

Then,

T =
√
n · X̄ − µ

S
∼ tn−1

Proof. Lemma 1.25 (c).

Definition 1.27. The Fisher-Snedecor Fν1,ν2 with ν1 and ν2 dof is the dis-

tribution of
V1/ν1
V2/ν2

where V1 ∼ χ2
ν1
, V2 ∼ χ2

ν2
, V1 ⊥ V2.
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Theorem 1.28. Let X1, · · · , Xn be a random sample from N (µ1, σ
2
1). Let

Y1, · · · , Ym be a random sample from N (µ2, σ
2
2). Suppose that (X1, · · · , Xn)

and (Y1, · · · , Yn) are independent; let S2
X and S2

Y be their respective sample

variances, then

S2
X/σ

2
1

S2
Y /σ

2
2︸ ︷︷ ︸

not a statistic since σ2
1 and σ2

2 unknown

∼ Fn−1,m−1.

Remark: Theorem 1.28 will serve as later to derive the so-called F test. Imag-

ine we want to assess whether σ2
1 = σ2

2.

S2
X

S2
Y︸︷︷︸

is a statistic

̸= 1 ∼ Fn−1,m−1.

2 Chapter 2: Theory of point estimation

2.1 Parametric model

Throughout this chapter, we will assume thatX1, · · · , Xn is a random sample

from P and that

P ∈ P = {Pθ, θ ∈ Θ}.

• P is called a parametric model for P .

• θ is called a parameter.

• Θ is called a parameter space and we assume that Θ ∈ Rk.

We will denote the CDF of Pθ by Fθ and its pdf/pmf by f(x; θ), x ∈ R.

Example 2.1. For Newcomb’s measurements, we may assume

P = {N (µ, σ2)︸ ︷︷ ︸
Pθ

, (µ, σ2)︸ ︷︷ ︸
θ

∈ R× (0,∞)︸ ︷︷ ︸
Θ

}
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Note: A parametric model for P is an assumption. It is always an ap-

proximation to the reality which may or may NOT be true. Our goal is to

estimate the unknown parameter θ from the observed data x1, · · · , xn.

Definition 2.2. A point estimator is any statistic W (X1, · · · , Xn) which

has been constructed with the aim to estimate θ. The observed value of W ,

i.e. W (x1, · · · , xn) is called the estimate of θ.

Note: we do NOT require that the range of W is Θ.

Notation: estimators are often denoted θ̂, θ̂(X1, · · · , Xn), θ̃, and θn.
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Lecture 4a

2.2 Methods of finding estimators

Recall: an estimator is a statistic W (X1, · · · , Xn).

2.2.1 Method of moments

sample moment:

mj =
1

n

n∑
i=1

Xj
i .

From Theorem 1.9, we know that if EXj <∞, E(mj) = EXj. If E(Xj)2 <

∞, then from the weak law of large numbers,

mj
P→ EXj as n→ ∞

Now suppose θ = (θ1, · · · , θk). The method of moments proceeds as follows:

1. Calculate k moments of Pθ (population moments), i.e:

EXj = µj(θ), j = 1, · · · , k.

2. Calculate the jth sample moment

mj =
1

n

n∑
i=1

Xj
i , j = 1, · · · , k.

3. Equate

mj = µj(θ), j = 1, · · · , k.

If there is a unique solution, it is called a method of moments estimator

of θ.

• “easy”
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• usually consistent since

Y
P−→ y =⇒ f(Yn)

P−→ f(Y )

• usually biased (e.g. Jensen inequality)

Remark You may need to choose moments other than the first k, depending

on the distribution Pθ.

Example 2.3. Suppose X1, · · · , Xn is a random sample from the Normal

distribution, i.e:

P ∈ {N (µ, σ2), (µ, σ2) ∈ R× (0,∞)}.

The method-of-moment estimator of (µ, σ2) is

(X̄,
1

n

n∑
i=1

(Xi − X̄)2︸ ︷︷ ︸
n−1
n
S2

).

Example 2.4. Consider a random sample X1, · · · , Xn from Bin(N, p), i.e.

P ∈ {Bin(N, p), p ∈ (0, 1)}

where N is known. The method of moment generator of p is

p̂ =
1

N
X̄.

If N is unknown, the method-of-moment estimator of (p,N) is(
X̄ − 1

n

∑n
i=1(Xi − X̄)2

X̄
,

(X̄)2

X̄ − 1
n

∑n
i=1(Xi − X̄)2

)
.

Note: the method of moment estimators above may well be negative. The

estimator of N may not be an integer.
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Example 2.5. Consider a random sample from U(−θ, θ),

P ∈ {U(−θ, θ), θ ∈ (0,∞)}.

We have

EX =
−θ + θ

2
= 0,

which is not useful. Use the second moment, we obtain

θ̂ =

√√√√ 1

2n

n∑
i=1

X2
i .

Consider x0 = 0, x1 = 1 ∼ U(θ, θ). We find θ to be

θ̂ =

√
1

4
(0 + 1) =

1

2
.

However, 0, 1 /∈ (−1
2
, 1
2
).
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Lecture 4b

2.2.2 Method of Maximum Likelihood

Assume X1, · · · , Xn is a random sample from

P ∈ {Pθ, θ ∈ Θ}.

Assume also that for each θ ∈ Θ, Pθ has a PMF/PDF.

Definition 2.6. Given the observed data x1, · · · , xn, the function of θ defined

by

L(θ) = L(θ;x1, · · · , xn) =
n∏
i=1

f(xi; θ)

is called the likelihood function.

Note that the likelihood function is a function of θ for a fixed set x1, · · · , xn.

Example 2.7.

Interpretation of the likelihood function

• If Pθ is discrete, then the value of L at θ0 is

L(θ0) = Pθ0(X1 = x1, · · · , Xn = xn)

= L(θ0;x1, · · · , xn)

L(θ0) is the probability of observing the data we observed if the pa-

rameter θ = θ0. For example, in Example 2.7,

L(1) = 3.8× 10−5

is the probablity (or “likelihood”) of observing 1,2,2,5 when λ = 1.

18



• When Pθ is continuous, this interpretation is still used, but in an ap-

proximation sense. Because P (X1 = x1, · · · , Xn = xn) = 0, we need to

consider

P (X1 ∈ (x1 − ε, x1 + ε), · · · , Xn ∈ (xn − ε, xn + ε))

=

∫ x1+ε

x1−ε
· · ·
∫ xn+e

xn−ε

n∏
i=1

f(ti; θ)dtn · · · dt1

≈
n∏
i=1

f(ti; θ) · (2ε)n

=L(θ;x1, · · · , xn) · (2ε)n︸ ︷︷ ︸
does not contain θ

provided that ε > 0 is very small. So,

L(θ;x1, · · · , xn) ∝ P (X1 ∈ (x1 − ε, x1 + ε), · · · , Xn ∈ (xn − ε, xn + ε))

Whether Pθ is continuous or discrete, we can say that if

L(θ1;x1, · · · , xn) ≥ L(θ;x1, · · ·2 , xn),

it is more “likely” to have observed x1, · · · , xn when θ = θ1 than θ = θ2.

Definition 2.8. For an observed sample x1, · · · , xn, the maximum likeli-

hood (ML) estimate of θ, denoted θ̂(x1, · · · , xn) is a value such that

L(θ̂(
˜
x);x1, · · · , xn) = sup

θ∈Θ
L(θ;x1, · · · , xn)

provided it exists. If the ML estimate exists for almost all samples x1, · · · , xn
and if the mapping θ̂ : Rn → Rh

(x1, · · · , xn) → θ̂(x1, · · · , xn)

is measurable, θ̂(X1, · · · , Xn) is called the ML estimator of θ.

19



“Almost all samples” means that θ̂(
˜
x) exists for all

˜
x ∈ A when

Pθ((X1, · · · , Xn) ∈ A) = 1

for all θ ∈ Θ.

In Definition 2.8, note that the ML estimate is the value θ̂(
˜
x) in Θ at which

the sup is attained.

The log-likelihood function is defined as

l(θ;x) = logL(θ;
˜
x) =

n∑
i=1

log f(xi; θ).

Typically, l is smooth and we can look for its maximum by calculating

∂l

∂θj
(θ;x1, · · · , xn) = 0, j = 1, · · · , k

and inspect the solutions.

Example 2.9. Consider a random sample from a Binomial population with

KNOWN size N:

P ∈ {Bin(N,P ), p ∈ [0, 1]}.

The likelihood function is

L(p;x1, · · · , xn) =
n∏
i=1

(
N

xi

)
pxi(1− p)N−xi .

The ML estimator is thus p̂ = X̄
N

(and the same as the method-of-moment

estimator.)

Careful: If we choose

{Bin(N, p), p ∈ (0, 1)}

then ML estimate does not exist when x̄ = 0 or x̄ = N . Since Pp(X̄ = 0) ̸= 0,

Pp(X̄ = N) ̸= 0, the ML estimator does not exist in this case.
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Lecture 5a

Example 2.10. Consider a random sample from

P ∈ {N (µ, 1), µ ∈ R}.

ML estimator of µ is µ̂ = X̄. Suppose now we know that µ ≥ 0. In this case,

x̄ is not the ML estimate when x̄ < 0. Note that

∂l

∂µ
= n · (x̄− µ) < 0

if x̄ < µ. Hence, l is decreasing on [0,∞). Hence, l is maximized at µ̃(
˜
x) = 0.

In this (constrained) estimation problem, the MLE is

µ̃ = max(X̄, 0).

Example 2.11. Take a random sample from P ∈ {U(0, θ), θ ∈ (0,∞)}. To
calculate the MLE,

L(θ;
˜
x) =

n∏
i=1

1

θ
· 1(xi ∈ [0, θ])

= (
1

θ
)n · 1( min

1≤i≤n
xi ≥ 0) · 1(max

1≤i≤n
xi ≤ θ).

The MLE is

θ̃(
˜
x) = max

1≤i≤n
xi.

Note: if the density function has a compact support, use the indicator func-

tion to denote the support.

Theorem 2.12 (Invariance Principle of the MLE). Consider a statistical

model {Pθ, θ ∈ Θ} and suppose that g : Θ → Rm is an arbitrary measurable

function. Set Γ = g(Θ) to be the range of g and suppose we wish to estimate

γ = g(θ). Then if θ̃(
˜
x) is the MLE of θ,

γ̂ = g(θ̃(
˜
x))
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is the MLE of γ in the following sense: for

L∗(γ;
˜
x) = sup

θ∈Θ:g(θ)=γ

L(θ;
˜
x)

then

L∗(γ̂;
˜
x) = sup

γ∈Γ
(γ;

˜
x)

Proof. WTS: L∗(γ̂;
˜
x) = supγ∈Γ L

∗(γ;
˜
x).

L∗(γ̂;
˜
x) = sup

θ∈Θ:g(θ)=γ̂

L(θ;
˜
x)

= L(θ̂;
˜
x)

= sup
θ∈Θ

L(θ;
˜
x)

= sup
γ∈Γ

sup
θ∈Θ:g(θ)=γ

L(θ;
˜
x)

= sup
γ∈Γ

L∗(γ;
˜
x)

Example 2.13.

• {Bin(N, p), p ∈ [0, 1]}, N is known.

• {Exponential(λ), λ > 0}. The MLE of λ is X̄.

Example 2.14.

• {N (µ, σ2), µ ∈ R, σ2 > 0}. The MLE of (µ, σ2) is (X̄, n−1
n
S2).
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Lecture 5b

In the Bayesian approach, our uncertainty (lack of knowledge) of θ is ex-

pressed by a probability density π(θ), called the prior. Once we have col-

lected the data, we will update the prior by incorporating the information

from the data. This leads to the so-called posterior density. Bayesian

estimation tends to perform better for small sample size.

Assume for simplicity that θ is univariate and let π be the pmf/pdf of the

prior distribution (i.e. a distribution on Θ of your choice). Suppose the

density (pmf/pdf) of (X1, · · · , Xn) given θ

n∏
i=1

f(xi; θ).

The posterior density is the conditional density of θ given the observed data

(i.e. conditionally on X1 = x1, · · · , Xn = xn). The posterior density is given

by

π(θ|x1, · · · , xn) =
∏n

i=1 f(xi; θ)

m(x1, · · · , xn)
· π(θ)

where

m(x1, · · · , xn) =
∫
Θ

n∏
i=1

f(xi; θ)π(θ)dθ

is the marginal density of X1, · · · , Xn (unconditional). A Bayesian estimate

of θ could be the mean of the posterior distribution with density (pmf/pdf)

π(θ|x1, · · · , xn).

Example 2.15. X1, · · · , Xn a Bernoulli random sample, Xi ∼ Bernoulli(p).

Θ(0, 1). The prior density is chosen to be Beta(α, β). The Bayesian esti-

mate pB as the expected value of the posterior:

pB =
nx̄+ α

n+ α + β
=

n

n+ α + β
· x̄︸︷︷︸
sample mean

+
α + β

n+ α + β
· α

α + β︸ ︷︷ ︸
expectation of the prior
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Trick to avoid integration:

π(θ|x1, · · · , xn) = c(x1, · · · , xn)︸ ︷︷ ︸
normalizing constant

·
n∏
i=1

f(xi; θ)︸ ︷︷ ︸
likelihood

·π(θ)︸︷︷︸
prior

∝ likelihood × prior

Example 2.16. X1, · · · , Xn a random sample from Exponential(λ). The

parameter space is (0,∞).

• Likelihood is λne−nx̄λ

• Prior: Gamma(α, β)

π(λ) =
βα

Γ(α)
λα−1eλβ, λ > 0

• Posterior: Gamma(n+ α, nx̄+ β)

• Bayesian estimator of λ:

λ̂B =
n+ α

nx̄+ β
→
n→∞

1

x̄
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Lecture 6a

2.3 Method of evaluating estimators

Definition 2.17. Consider a statistical model

P = {Pθ, θ ∈ Θ}

and γ : Θ → Rm. Let T (X1, · · · , Xn) be an estimator of γ(θ). Then:

(a) T is called unbiased if ∀θ ∈ Θ,

EθT (X1, · · · , Xn) = γ(θ).

The difference EθT (X1, · · · , Xn) − γ(θ) is called the bias of T , and

denoted biasθ(T ).

(b) If for all θ ∈ Θ,

lim
n→∞

EθT (X1, · · · , Xn) = γ(θ),

then T is called asymtotically unbiased.

(c) (Weak consistency) T is called consistent if for all θ ∈ Θ

T (X1, · · · , Xn)
Pθ−→ γ(θ)

as n→ ∞.

(d) The mean square error of T is

MSEθ = Eθ{T (X1, · · · , Xn)− γ(θ)}2.
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Note: the expectation, variance, etc. of T is taken w.r.t. Pθ and hence

depends on θ. For all θ ∈ Θ:

MSEθT = Eθ(T − γ(θ))2

= Eθ(T − EθT + EθT − γ(θ))2

= Eθ(T − EθT )
2 + (EθT − γ(θ))2 + 2(EθT − γ(θ)) · Eθ(T − EθT )

= varθT + (biasθT )
2

Example 2.18. Consider a random sample X1, · · · , Xn from N (µ, σ2). We

know from Theorem 1.9 that EX̄ = µ, ES2 = σ2.

MSE(X̄) = varX̄ =
σ2

n

MSE(S2) = varS2 =
2σ2

n− 1
.

The MLE of σ2 is

σ̂2 =
n− 1

n
S2.

and

bias(σ̂2) = − 1

n
σ2.

Hence, σ̂2 is asymptotically unbiased.

MSE(σ̂2) = var(σ̂2) + (bias(σ̂2))2

=
2σ4

n− 1︸ ︷︷ ︸
MSE(S2)

· 2n
2 − 3n+ 1

2n2︸ ︷︷ ︸
≤1

≤MSE(S2)

Trade-off between the bias and the variance

• Increasing the (bias)2 led to a decrease of the variance and an overall

decrease of the MSE.
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• The MSE is just a criterion, meaning that we should not discard S2

based on the MSE alone.

Example 2.19. The Bayesian estimator of p is

p̂B =
nX̄ + α

n+ α + β
.

Clearly, p̂B is biased.

MSEp̂B =
α2 + p(n− 2α2 − 2αβ) + p2(−n+ α2 + β2 + 2αβ)

(n+ α + β)2
.

We can decide to choose α and β so that the MSEp̂B does not depend on p.

We get α = β =
√
n
2
.

When p = 1/2, the Bayesian estimator (the blue line) has the biggest ad-

vantage over the MLE (the red line), since the expectation of the prior,

Beta(α, β), is
α

α + β
=

1

2
.

Theorem (2.20). Suppose that T is asymptotically unbiased estimator of

γ(θ) and varθT → 0 as n → ∞ for all θ ∈ Θ. Then T is a consistent

estimator of γ(θ).
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Proof. Fix an arbitrary ε > 0, and θ ∈ Θ. By Markov inequality,

Pθ(|T − γ(θ)| > ε) ≤ Eθ(T (X1, · · · , Xn)− γ(θ))2

ε2

=
MSEθ(T )

ε2

=
varθT + (biasθT )

2

ε2
n→∞−−−→ 0.

Remark:

we see from the proof that if T is an estimator of γ(θ) and MSEθT → 0 as

n→ ∞, then T is consistent for γ(θ).
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Lecture 6b

2.4 Best Unbiased Estimators

• Comparisons based on MSE may not yield a clean winner among esti-

mators

• There is no “best MSE” estimator. Consider

{Bernoulli(p), p ∈ (0, 1)}.

Let

psilly = 0.5.

This is silly because the estimator does not use the data at all, but

MSEp(p̂silly) = (0.5− p)2

= 0 when p = 0.5.

Now, we can devise such silly estimator for any p0 ∈ (0, 1) :

p̂silly;p0 = p0 →MSEp0(p̂silly;p0) = 0.

• MSE that uniformly minimize MSE of all possible estimators would

have to be 0 for any p ∈ (0, 1).

Definition 2.20. An estimator T ∗ is called a uniform minimum variance

unbiased estimator (UMVUE) of γ(θ) if:

1. T ∗ is unbiased: EθT
∗ = γ(θ)

2. T ∗ is “best” in terms of the variance: if T is an arbitrary unbiased

estimator of γ(θ),

∀θ ∈ Θ, varθT
∗︸ ︷︷ ︸

MSEθT ∗

≤ varθT︸ ︷︷ ︸
MSEθT

.
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Example 2.21. X1, · · · , Xn a random sample from Poisson(λ), λ ∈ (0,∞).

We derived earlier an estimator of λ:

λ̂ = X̄.

Theorem 2.22 (Cramer-Rao Inequality). Suppose that X1, · · · , Xn is a ran-

dom sample from Pθ, θ ∈ Θ ⊂ R. Let T (X1, · · · , Xn) be an unbiased estima-

tor of γ(θ), i.e.

∀θ ∈ Θ, EθT = γ(θ).

Let X ∼ Pθ. Assume that the conditions (1), (2), (3) below holds:

(1) For all θ ∈ Θ, Pθ had a pdf/ pmf f(x; θ) and

∂f

∂θ

exists for all θ ∈ Θ and all x ∈ Nθ.

(2) ∀θ ∈ Θ,

Eθ

(
∂logf

∂θ
(X; θ)

)
= 0

and

Eθ

(
(
∂logf

∂θ
(X; θ))2

)
= I(θ) ∈ (0,∞)

for all θ ∈ Θ. Here, I(θ) is called the Fisher Information.

(3) varθT (X1, · · · , Xn) <∞ for all θ ∈ Θ and

n∑
i=1

Eθ

{
T (X1, · · · , Xn) ·

∂logf

∂θ
(Xi; θ)

}
= γ′(θ)

for all θ ∈ Θ.

Then

varθT (X1, · · · , Xn) ≥
(γ′(θ))2

n · I(θ)
.
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Proof. Cauchy-Schwarz inequality:

(cov(Z,W ))2 ≤ varZ · varW.

Remarks

• Note that if X ∼ Pθ,

Pθ(X ∈ {x : f(x; θ) > 0}) = 1.

So we can assume wlog that f(x; θ) > 0 for all x ∈ Nθ and θ ∈ Θ. Then

∂logf

∂θ
=

∂f
∂θ

f

exists for all θ ∈ Θ and x ∈ Nθ.

• Assumptions (2) and (3) really mean that we can interchange differen-

tiation and either integration or summation as the case may be.

• Check if it is an exponential family

Example 2.23. X1, · · · , Xn us Bernoulli(p), p ∈ (0, 1). X̄ is UMVUE for

p.
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Lecture 7a

Recall that Cauchy-Schwarz inequality,

cov(X, Y ) ≤
√
varXvarY .

Equality holds if and only if ∃a, b ∈ R so that

Y = aX + b a.s.

Denoting T = T (X1, · · · , Xn), an unbiased estimator of γ(θ) with finite vari-

ance and

W =
n∑
i=1

∂

∂θ
logf(Xi; θ)

then we have

Corollary 2.24. Under the condition of the CR theorem (Thm 2.22), T

attains the CR lower boudn if and only if

a(θ) · (T − γ(θ)) = W Pθ − a.s.

Example 2.23 (cont’d) X1, · · · , Xn, a random sample from Bernoulli(p),

p ∈ (0, 1).

W =
n∑
i=1

∂

∂p
logf(Xi; p)

=
n∑
i=1

(
Xi

p
+

(1−Xi)

1− p
)

=
nX̄ − np

p(1− p)
.

Suppose we wish to estimate the ODDs

γ(θ) =
p

1− p
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In order for T to attain the CR lower bound

p

n(1− p)3
,

we have to have that T = a(n)X̄ + b(n), but ET = a(n) · p+ b(n) ̸= p
1−p for

all p ∈ (0, 1). Hence, the CR lower bound for estimating the odds cannot be

attained.

Definition 2.25 (One-parameter exponential family). A family of PDFs/

PMFs is called a one-paramter exponential family in c(θ) and T (x), if, for

all θ ∈ Θ ⊂ R,

f(x; θ) = 1A(x) exp {c(θ)T (x) + d(θ) + S(x)}

for some set A ⊂ R which does not depend on θ and is a Borel set,, c : Θ → R,
and S, T : R → R Borel-measurable, and T is not a.s. constant on A.

Example 2.26. Bernoulli(p):

f(x; p) =p p
x(1− p)1−x, x ∈ {0, 1}.

A = {0, 1}.

On A,

f(x; p) = exp {x · log p+ (1− x) · log(1− p)}

= exp { x︸︷︷︸
T (x)

· log p

1− p︸ ︷︷ ︸
c(p)

+ log(1− p)︸ ︷︷ ︸
d(p)

}.

Remark

One can prove that for Θ = (a, b), −∞ ≤ a < b ≤ ∞, c : Θ → R is

continuously differentiable with c′(θ) > 0 for all θ ∈ Θ, then the assumptions

of the CR Theorem 2.22 are fulfilled. Since

∂

∂θ
logf(x; θ) = c′(θ)T (x) + d′(θ)
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than

Z =
1

n

n∑
i=1

T (Xi)

is an UMVUE of γ(θ) = ET (X) (assuming ET 2(X) <∞) by Theorem 2.22.

Example 2.27 (Uniform (0, θ)). A unbiased estimator of θ is

T =
n+ 1

n
X(n).

varT =
θ2

n(n+ 2)
<<

θ2

n
, CR lower bound.

. Hence, we need a deeper theory to find UMVUE.
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3 Chapter 3: Sufficiency and Completeness

3.1 Suffiency

Can we summarize the data without losing information about θ?

Notation: the support of (X1, · · · , Xn), the so called sample space, is de-

noted by χ.

Basic observation Any statistic T induces a partition of χ. Indeed, let

τ = {t : t = T (x
∼
) for some x

∼
∈ X}.

The sets

At = T−1{t} = {x
∼
∈ X : T (x

∼
) = t}

form a partition of the sample space.

The statistic T summarizes the data (i.e. reduces information). T = t really

means that (X1, · · · , Xn) ∈ At.

T contains all relevant information about θ if the exact value of x
∼

∈ At

contains no additional information about θ.
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Definition 3.1 (Sufficient statistic). A statistic T (X1, · · · , Xn) is a suf-

ficient statistic for θ if the conditional distribution of (X1, · · · , Xn) given

T (X1, · · · , Xn) = t does not depend of θ.

Example 3.2.

• (X1, · · · , Xn) is sufficient for θ: the conditional distribution of (X1, · · · , Xn)

given (X1, · · · , Xn) = x
∼
is degenerate.

• X1, · · · , Xn be a random sample from Bernoulli(p), p ∈ (0, 1).

T (X1, · · · , Xn) =
n∑
i=1

Xi.

Here, χ = {0, 1}n, T = {0, 1, · · · , n},

At = {(x1, · · · , xn) ∈ {0, 1}n :
n∑
i=1

xi = t}.

For all (x1, · · · , xn) ∈ X , t ∈ τ ,

Pθ ((X1, · · · , Xn) = (x1, · · · , xn)|T (X1, · · · , Xn) = t)

=


0 if x

∼
/∈ At

1

(nt)
if x

∼
∈ At

does not depend on p, so T =
∑n

i=1 is sufficient for p.

Theorem 3.3 (Neyman-Fisher Factorization). Let f(x1, · · · , xn; θ) denote

the joint pdf/pmf of (X1, · · · , Xn). A statistic T is sufficenit for θ if and

only if for all θ ∈ Θ, there exists measurable function gθ, h so that

f(x1, · · · , xn; θ) = gθ(T (x1, · · · , xn)) · h(x1, · · · , xn).

Proof.
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Example 3.4. X1, · · · , Xn is a random sample from N(µ, σ2), µ ∈ R, σ2 >

0.

f(x1, · · · , xn;µ, σ2) = (
1

2π
)n/2(

1

σ2
)n/2 exp (−

∑n
i=1(xi − µ)2)

2σ2
.

Clearly, (X1, · · · , Xn) is sufficient for (µ, σ2). But

n∑
i=1

(xi − µ)2

=
n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

=(n− 1)s2 + n(x̄− µ)2

f(x1, · · · , xn;µ, σ2) = (
1

2π
)n/2︸ ︷︷ ︸

h(x
∼
)

· ( 1
σ2

)n/2 exp (−(n− 1)s2 + n(x̄− µ)2

2σ2
)︸ ︷︷ ︸

gµ,σ2 (x̄,s2)

Using Thm 3.3 (Neyman-Fisher factorization), we conclude that (X̄, S2) is

sufficient for (µ, σ2). Assume now that σ2 is known. Here, (X̄, S2) is suffi-

cient for µ. But, we can also write

f(x1, · · · , xn;µ, σ2) = (
1

2π
)n/2(

1

σ2
)n/2 exp (−(n− 1)s2

2σ2
)︸ ︷︷ ︸

h(x
∼
)

· exp (−n(x̄− µ)2

2σ2
)︸ ︷︷ ︸

gµ(x̄)

Hence, X̄ is sufficient for µ.

Remark: Sufficient statistic is generally not unique. Some statistics achieve

greater data reduction than others. Also, the dimension of paramters nad

the dimension of statistics are unrelated.
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Example 3.5. Consider a random sample form U(θ, θ + 1), θ ∈ R.

f(x1, · · · , xn; θ)

=

1, if θ < xi < θ + 1

0, otherwise

=1( min
1≤i≤n

> θ) · 1(max
1≤i≤n

< θ + 1)︸ ︷︷ ︸
gθ(min1≤i≤n xi; max1≤i≤n xi)

Using the Neyman-Fisher factorization, we have that

( min
1≤i≤n

Xi, max
1≤i≤n

Xi)

is sufficient for θ.

Example 3.6. Consider a random sample from U(0, θ)

Consider a random sample from U(0, θ), θ > 0.

f(x1, · · · , xn; θ)

=

(1
θ
)n, if 0 < xi < θ

0, otherwise

= (
1

θ
)n · 1(max

1≤i≤n
xi < θ)︸ ︷︷ ︸

gθ(max1≤i≤n xi)

· 1( min
1≤i≤n

xi > 0)︸ ︷︷ ︸
h(x1,··· ,xn)

By the Neyman-Fisher factorization, max1≤i≤nXi is sufficient for θ.

3.2 The Rao-Blackwell Theorem

Recall X, Y random variables

E(X) = E(E(X|Y ))

and E(X|Y ) is a measurable function of Y .

var(X) = E(var(X|Y )) + var(E(X|Y )).
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Theorem 3.7 (Rao-Blackwell Theorem). Let W be an unbiased estimator

of γ(θ) with finite varaince, and T be a sufficient statistic for θ. Let

W ∗ = E(W |T ).

Then

(a) W ∗ is an unbiased estimator of γ(θ).

(b) For all θ ∈ Θ :

varθW
∗ ≤ varθW.

Example 3.8.

Remark

• Process of conditioning on a sufficient statistic is called “Rao-Blackwellization”.

• Theorem 3.7 implies that an UMVUE (if it exists) needs to be based on

a sufficient statistic.

Corollary 3.9. Let W be an estimator of γ(θ) with finite variance, but not

necessarily unbiased. Let T be a sufficient statistic for θ. Then for

W ∗ = E(W |T ),

MSEθ(W
∗) ≤MSEθ(W ) ∀θ ∈ Θ.
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3.3 Completeness

Suppose that T is a statistic and g is a measurable function such that

∀θ ∈ Θ, Eθg(T ) =

we have that

∀θ ∈ Θ, Eθg(T ) = 0.

Assume, for simplicity Θ ∈ R and we wish to estimate θ. Suppose W is

an unbiased estimator of θ. Suppose that g(T ) is not degenerate (i.e. is a

constant a.s.). Then for any a ∈ R,

Wa = W + g(T ) · a

then Wa is also an estimator of θ :

Eθ(Wa) = Eθ(W ) + a · Eθ(g(T ))

= θ + a · 0 = θ.

Assume further that W and g(T ) have a finite variance. Suppose that

covθ0(W, g(T )) ̸= 0 for some θ0 ∈ Θ. Then, WLOG assume covθ0(W, g(T )) <

0:

varθ0 = varθ0(W ) + a2 · varθ0(g(T ))

+ 2a · covθ0(W, g(T ))

Then,

varθ0 − varθ0(W ) = a2 · varθ0(g(T ))

+ 2a · covθ0(W, g(T )).
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The RHS is negative if a > 0 and

a · varθ0g(T ) < −2 · covθ0(W, g(T ))

a <
−2 · covθ0(W, g(T ))

varθ0(g(T ))︸ ︷︷ ︸
=a∗>0

Hence, for a ∈ (0, a∗),

varθ0Wa < varθ0W.

Note that if T is complete, no such a∗ exists.

Definition 3.10 (Completeness). A statistic T is called complete, if the

family {P T
θ , θ ∈ Θ} is complete, meaning that if for any measurale g : T → R

such that

∀θ ∈ Θ,E(g(t)) = 0,

we have

∀θ ∈ Θ, Pθ(g(T ) = 0) = 1.

Remark: T is complete if ∀θ ∈ Θ, Eθ(g(T )) = 0 implies that g(T ) =

0 [P ] a.e. Then, clearly, covθ(W, g(T )) = 0 for all θ ∈ Θ, for any unbiased

estimate W .

Example 3.11. Completeness tells us something about the size of

{P T
θ , θ ∈ Θ}.

Consider X1, · · · , Xn a random sample from Bernoulli(p), p ∈ Θ ⊂ (0, 1).

Take T =
∑n

i=1Xi. Then T ∼ Binomial(n, p). Hence

Ep(g(T )) =
n∑
k=0

g(h)

(
n

k

)
pk(1− p)n−k.

41



So Ep(g(T )) = 0 for all p ∈ Θ means that

0 =
n∑
k=0

g(k)

(
n

k

)
︸ ︷︷ ︸

ak

·(1− p)n · ( p

1− p
)k︸ ︷︷ ︸

r

(∗) 0 =
n∑
k=0

akr
k, p ∈ Θ

For T to be complete, we need to conclude that g(h) = 0 for all k = {0, · · · , n},
i.e. ak = 0 for al k ∈ {0, · · · , n}.

• If Θ = (0, 1), then r = p
1−p ∈ (0,∞). Hence, (*) means that the

polynomial vanishes for all r ∈ (0,∞), and that indeed implies that

ak = 0 for all k ∈ {0, · · · , n}, so T is complete.

• If Θ is finite and |Θ| ≤ n, it may well happen that ak ̸= 0 for some k.

For example, if Θ = {1/2}, then (*) becomes (say n = 1):

0 = g(0) + g(1)

which does not imply

g(0) = g(1) = 0.

Hence, T is NOT complete.

Example 3.12. Consider a random sample X1, · · · , Xn from U(0, θ), θ > 0.

T = max
i≤i≤n

Xi.

Then,

Pθ(T ≤ t) =
n∏
i=1

Pθ(Xi ≤ t) =


(t/θ)n, t ∈ (0, θ)

0, t ≤ 0

1, t ≥ θ
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So T has a pdf:

fTθ (t) =
n

θn
· tn−1, t ∈ (0, θ).

Suppose that g is measurable and such that Eθg(T ) = 0 for all θ > 0. Suppose

that g is Riemann-integrable.

Eθg(T ) = 0 ⇐⇒ 0 =

∫ θ

0

g(t) · n
θn

· tn−1dt

Fix θ ∈ Θ arbitrary. Then Eθg(T ) = 0 implies

0 =
∂

∂θ

∫ θ

0

g(t)
n

θn
tn−1dt

= (
∂

∂θ
θ−n) · θn

∫ θ

0

g(t)
n

θn
tn−1dt︸ ︷︷ ︸

=0 because Eθg(T )=0

+ θ−n · ∂
∂θ

∫ θ

0

g(t)n · tn−1dt

= θ−n[g(θ)n · θn−1]

=
g(θ) · n

θ
by Leibnitz rule

Hence, g(θ) = 0 implies g(t) = 0 for t > 0 for any θ > 0. Then, Pθ(g(T ) =

0) = 1 for all θ > 0. Hence, T is complete.

Theorem 3.13 (Lehmann-Scheffe). X1, · · · , Xn a random sample from Pθ,

θ ∈ Θ. Suppose that T is a sufficient and complete statistic. Let γ(θ) be a

real-valued parameter, and let W be an unbiased estimator of γ(θ) with finite

variance. Then

W ∗ = E(W |T )

is UMVUE for γ(θ).

Remark:

• We see from the proof that the UMVUE is a.s. unique.
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• If T is complete and sufficient and W = h(T ) is unbiased, then W is

UMVUE.

Example 3.14.

• T = maxi≤i≤nXi is complete.

• T is sufficient

• n+1
n
T is an unbiased estimator of θ.

Hence, by Lehmann-Scheffe theorem, n+1
n

max1≤i≤n is UMVUE.

Theorem 3.15. Suppose X1, · · · , Xn are iid from a distribution in a J-

parameter exponential family, that is, the PDF/PMF has the form

f(x; θ) = 1(x ∈ A) exp{
J∑
i=1

cj(θ)Tj(x) + d(θ) + S(x)}

where J ≥ 1, A ⊂ R is a Borel set independent of θ, c1, · · · , cj, d : Θ → R;
T1, · · · , TJ , S : R → R measurable and T1, · · · , TJ are not a.s. constant.

Then

T =

(
n∑
i=1

T1(Xi), · · · ,
n∑
i=1

TJ(Xi, )

)
is sufficient for θ. If

{(c1(θ), · · · , cJ(θ) : θ ∈ Θ)}

contains an open subset in RJ , T is complete.

Example 3.16.

• Bernoulli:

f(x; p) = px(1− p)1−x1(x ∈ {0, 1})

= 1(x ∈ {0, 1}) exp{x · log p

1− p
+ log(1− p)}
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where J = 1, S(x) = 0. By Theorem 3.15,
∑n

i=1Xi is sufficient for p.

The set

{log p

1− p
, p ∈ (0, 1)} = (−∞,∞).

Hence,
∑n

i=1Xi is complete.

• Uniform: f(x; θ) = 1
θ
1(x ∈ (0, θ)) is not an exponential form since

A = (0,∞) depends on θ.
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4 Chapter 4: Hypothesis Tests

4.1 Basic terminology of hypothesis testing

Definition 4.1 (Hypothesis). A hypothesis is a statement about a population

parameter. Given a parametric model for the population distribution, viz

{Pθ, θ ∈ Θ}

we have

• the null hypothesis (“the null”)

H0 : θ ∈ Θ0

where Θ0 ⊂ Θ is some fixed subset of the parameter space.

• the alternative hypothesis (the “alternative”)

H1 : θ /∈ Θ0

When |Θ0| = 1, H0 is called simple; otherwise, it is called composite,

and analogously for H1.

Definition 4.2 (Hypothesis test). A hypothesis test is a decision rule that

specfies for which sample values H0 is rejected and for which it is not. For-

mally, a hypothesis test is a measurable map

ψ : χ→ [0, 1].

The observed value ψ(x1, · · · , xn) is the probablity of rejecting H0 when

(X1, · · · , Xn) = (x1, · · · , xn).
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•
R = {(x1, · · · , xn) ∈ X : ψ(x1, · · · , xn) = 1}

is called the rejection region.

•
A = {(x1, · · · , xn) ∈ X : ψ(x1, · · · , xn) = 0}

is called the acceptance region.

•
U = {(x1, · · · , xn) ∈ X : ψ(x1, · · · , xn) ∈ 0, 1()}

is called the randomization region.

If U ̸= ∅, ψ is called a randomized test.

Example 4.3. Coffee bean: good - 0, spoiled - 1

X1, · · · , Xn sample of coffee beans

• test statistic:

T =
n∑
i=1

Xi = “number of spoiled beans”

• pick c ∈ {0, · · · , n+ 1}

•

ψ(X1, · · · , Xn) =

1, T ≥ c

0, T < c
= 1(T ≥ c)
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• Medical test :

– H0: healthy

– H1: infected

• Trial :

– H0: innocent

– H1: guilty

• Exam :

– H0: student deserves to pass

– H1: student does not deserve to pass
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• super tough

– every fails

– type 2 error does not occur

– type 1 error blows up

• Department chair: make sure that at most 5% (or α%) of good students

fails =⇒ control the Type 1 error =⇒ LEVEL

• While controlling type 1 error, we can try to minimize the type 2 error,

or maximize the power of the test (to detect the alternative, i.e. fail

poor students)

Definition 4.4 (Power function). The power function of a hypothesis test ψ

is

Bψ :Θ → [0, 1]

θ → Eθ(ψ(X1, · · · , Xn))

If ψ is not randomized, Bψ(θ) is the probablity of rejecting H0. For a given

α ∈ [0, 1], ψ is called a level-α test if

∀θ ∈ Θ0 : Bψ(θ) ≤ α.

The size of ψ is supθ∈Θ0
Bψ(θ).
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A level-α test controls type 1 error, but not necessarily the type 2 error.

• Rejecting H0 is a “safe” decision

• Accpting H0 is NOT a “safe” decision. That’s why we say “the data

do not provide sufficient evidence to reject H0” or “do not reject H0”.

• If possible, the scientific hypothesis we wish to prove should be the

alternative. Sometimes, it is not possible. For example, we want to

know if the snowfall is from a normal distribution.

Example 4.1 (cont’d)

H0 : θ ≤ 1
100

H1 : θ >
1

100

T =
n∑
i=1

Xi ∼ Binomial(n, θ).

Bψ(θ) = Pθ(T ≥ c) =
n∑
k=c

(
n

k

)
θk(1− θ)n−k
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• if c = 0, Bψ(θ) = 1 for all θ ∈ (0, 1).

• if c = n+ 1, Bψ(θ) = 0 for all θ ∈ (0, 1)

• if c ∈ {1, · · · , n} : Bψ is strictly increasing in θ. =⇒ The size of ψ is

Bψ(
1

100
).

• To choose c:

– Control type 1 error:

Bψ(
1

100
) ≤ α = 0.05

The larger c, the smaller the size.

– Maximize the power: maximize Bψ for θ > 1/100. The smaller c,

the larger the power.

– Note: typically, increasing the sample size leads to a better power.
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4.2 Likelihood Ratio Test

General strategy how to construct tests. Typically, we construct a test statis-

tic

W (X1, · · · , Xn)

and identify values in the sample space χ for which W has an unlikely value

if H0 holds. This set of values in χ will form a rejection region R. The

(non-randomized) test will be

ψ(X1, · · · , Xn) = 1((X1, · · · , Xn) ∈ R).

For test problems about the parameter θ,

H0 : θ ∈ Θ0 H1 : θ /∈ Θ0

a large class of tests can be obtained as follows:

Definition 4.5 (Likelihood ratio test). The likelihood ratio statistic for test-

ing

H0 : θ ∈ Θ0 H1 : θ /∈ Θ0

is λ(X1, · · · , Xn) given, at any (x1, · · · , xn) by,

λ =
supθ∈Θ0L(θ;x1,··· ,xn)

supθ∈ΘL(θ;x1,··· ,xn)
.

A likelihood ratio test(LRT) has the rejection region

R = {(x1, · · · , xn) : λ(x1, · · · , xn) ≤ c}

for some suitable chosen critical value c, chosen as a function of α (the level

of the test).
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How do we calculate the LR statistic λ?

• If θ̂ is MLE of θ and θ̂0 is θ̂0 = argmaxθ∈Θ0L(θ;X1, · · · , Xn), then

λ =
L(θ̂0;x1, · · · , xn)
L(θ̂;x1, · · · , xn)

Example 4.6. We wish to test H0 : p ≤ p0 vs H1 : p > p0 based on a random

sample X1, · · · , Xn from Bernoulli(p) (viz. Example 4.1). To construct a

LRT, recall

L(p;x1, · · · , xn) = pn·x̄(1− p)n(1−x̄), p ∈ [0, 1]

we already know (Ex. 2.9) that the MLE of p is X̄.

p̂0 = arg max
0≤p≤p0

L(p;x1, · · · , xn) = min(p0, x̄).
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4.3 p-value

Definition 4.7. LetW (X1, · · · , Xn) be a test statistic such that small (large)

value of W give evidence against H0 (are unlikely under H0). For each

(x1, · · · , xn) ∈ X ,

let

p(x1, · · · , xn) = sup
θ∈Θ0

Pθ(W (X1, · · · , Xn) ≤ (≥)W (x1, · · · , xn)︸ ︷︷ ︸
observed value of W

),

“probablity of observing a value of W that is even more unlikely under H0

than the one actually observed”

The random variable p(X1, · · · , Xn) is called the p-value.

Note: the p-value is NOT the probability that H0 holds!
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Example 4.8 (p-value of a LRT).

p(x1, · · · , xn) = sup
θ∈Θ0

(λ(X1, · · · , Xn) ≤ λ(x1, · · · , xn)).

Example 4.9 (Bernoulli).

Theorem 4.10. In the context of Definition 4.7, the test that rejects H0 if

p(X1, · · · , Xn) ≤ α is a level-α test for all α ∈ [0, 1].

Lemma 4.11. For any random variable Y with distribution function G,

P (G(Y ) ≤ u) ≤ u for all u ∈ [0, 1].

Proof. wlog:

p(x1, · · · , xn) = sup
θ∈Θ0

Pθ(W ≤ w(x1, · · · , xn)).

For all θ ∈ Θ, let

pθ(x1, · · · , xn) = Pθ(W (X1, · · · , Xn) ≤ w(x1, · · · , xn))

= FW
θ (W (x1, · · · , xn))

From Lemma 4.11

Pθ(pθ(X1, · · · , Xn) ≤ α)

=Pθ(F
W
θ (W (X1, · · · , Xn)) ≤ α) ≤ α

Hence, for all θ∗ ∈ Θ0

Pθ∗(p(X1, · · · , Xn) ≤ α) ≤ Pθ∗(pθ∗(X1, · · · , Xn) ≤ α) ≤ α

since

p(X1, · · · , Xn) = sup
θ∈Θ0

pθ(X1, · · · , Xn) ≥ pθ∗(X1, · · · , Xn)

Note: if you report the p-value

• the reader can choose α

• the smaller the p-value, the stronger the evidence against H0.
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4.4 Small Sample Tests for Normal Samples

Throughout this lecture: X1, · · · , Xn is a random sample from N(µ, σ2).

Example 4.12 (z-test). Assume that σ2 ≡ σ2
0 is KNOWN and we wish to

test

H0 : µ = µ0 vs H1 : µ ̸= µ0

The Z statistic is
√
n
X̄ − µ0

σ0
∼ N(0, 1).

Definition 4.13 ((1-α)· 100% quantile of N(0, 1)). The (1−α)100% quantile

of N(0, 1) is a value zα such that

1− Φ(zα) = α = Φ(−zα)

where Φ is the CDF of N(0, 1).

• Two-sided z test: the level-α LRT for testing

H0 : µ = µ0 vs H1 : µ ̸= µ0
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is

ψ(X1, · · · , Xn) = 1(

√
n

σ0
|X̄ − µ0| ≥ zα/2).

p-value:

2(1− Φ(|zobs|))

where

zobs =

√
n

σ0
(x̄− µ0)

• One-sided z test: if instead, we wish to test

H0 : µ ≤ µ0 vs H1 : µ > µ0

Recall that the likelihood function L is increasing on (∞, x̄] and de-

creasing on [x̄,∞). Hence,

µ̂0 = min(x̄, µ0).

ψ(X1, · · · , Xn) = 1(

√
n

σ0
(X̄ − µ0) ≥ zα).

p-value

1− Φ(zobs)

• One-sided z test:

H0 : µ ≥ µ0 vs H1 : µ < µ0

ψ(X1, · · · , Xn) = 1(

√
n

σ0
(X̄ − µ0) ≤ −zα).

p-value

Φ(zobs)

Exmaple 4.12 (T test).

Suppose that both µ and σ2 are unknown. (Note that σ2 is a nuisance

parameter.)

H0 : µ = µ0 vs H1 : µ ̸= µ0
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The LRT has the form

ψ(X1, · · · , Xn) = 1(

√
n

S
|X̄ − µ0| ≥ c∗)

Recall from Theorem 1.26 that under H0,

T statistic =

√
n

S
(X̄ − µ0) ∼ tn−1

Definition 4.13 ((1−α)100% quantile from the student t distribution) The

(1−α) ·100% quantitle from the student t distribution with ν dof is tν,α such

that

P (T ≥ tν,α) = α

where T ∼ tν .

• Two-sided T-test:

ψ(X1, · · · , Xn) = 1(

√
n

S
|X̄ − µ0| ≥ tn−1,α/2)

p− value = P (|T | ≥ |tobs|)

tobs =

√
n

s
(x̄− µ0)

T ∼ tn−1
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• One-sided T-test:

H0 : µ ≤ µ0 vs H1 : µ > µ0

The level-α LRT is

ψ(X1, · · · , Xn) = 1(

√
n

S
(X̄ − µ0) ≥ tn−1,α)

p− value = P (T ≥ tobs)

• One-sided T-test:

H0 : µ ≥ µ0 vs H1 : µ < µ0

The level-α LRT is

ψ(X1, · · · , Xn) = 1(

√
n

S
(X̄ − µ0) ≤ −tn−1,α)

p− value = P (T ≤ tobs)
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Example 4.14 (F test). Two independent random samples:

X1, · · · , Xn︸ ︷︷ ︸
random sample from N(µ1,σ2

1))

& Y1, · · · , Yn︸ ︷︷ ︸
random sample from N(µ2,σ2

2))

H0 : σ
2
1 = σ2

2 vs H1 : σ
2
1 ̸= σ2

2

Definition 4.15. The (1 − α) · 100% quantile of the Fν1,ν2 distribution is

Fν1,ν2,α so that

P (W ≥ Fν1,ν2,α) = α

where W ∼ Fν1,ν2.

The level-α LRT (F-test)

Assumptions:

• The samples are independent;

• The population distributions are normal for both samples.
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ψ(X1, · · · , Xm, Y1, · · · , Yn) = 1
(
S2
X/S

2
Y ∈ (0, Fm−1,n−1,1−α/2] ∪ [Fm−1,n−1,α/2,∞)

)
p-values: Wobs = S2

X/S
2
Y , W ∼ Fm−1,n−1

p− value =

2P (W ≥ wobs), wobs > 1

2P (W ≤ wobs), wobs ≤ 1

Remark 4.15 Other classical tests for normla samples that can be derived

as LRTs:

(1) Chi-squared test: X1, · · · , Xn random sample from N(µ, σ2)

(2) Two-sample t test: Assumptions:

• The samples are independent;

• The population distributions are normal for both samples, with

the same variance

(and possibly different means). X1, · · · , Xm & Y1, · · · , Yn
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4.5 Uniformly most powerful tests

Recall the power of a test ψ:

Bψ :Θ → [0, 1]

θ → Bψ(θ) = Eθψ = Pθ(X∼
∈ R)

So far, we were controlling the type 1 error (level-α test):

sup
θ∈Θ0

Bψ(θ) ≤ α.

Now we can try to minimize the type 2 error, i.e. maximize Bψ(θ), θ ∈ Θ1,

but we cannot minimize both types of error at the same time.

Definition 4.16 (UMP Test). A test ψ is called a uniformly most power-

ful(UMP) level-α test if its power satistifes

(a)

sup
θ∈Θ0

Bψ(θ) ≤ α
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(b) For any other level-α test ψ∗ with B∗
ψ, we have that

∀θ ∈ Θ1 : Bψ(θ) ≥ Bψ∗(θ)

(i.e. ψ minimizes the type 2 error uniformly over Θ1)

Definition 4.17. Hi, i ∈ {0, 1} is called simple if Θi is a singleton, i.e.

|Θi| = 1. Otherwise, Hi is called composite.

We will start developing a theory for finding UMP tests. We will begin by

considering the case of testing a simple H0 vs a simple H1.

•
Θ = {θ0, θ1}

• H0 : θ = θ0 vs H1 : θ = θ1

• KNAPSACK Problem

Theorem 4.18 (Neyman-Pearson Lemma). Consider Θ = {θ0, θ1}, H0 : θ =

θ0 vs H1 : θ = θ1. Suppose that

f(x1, · · · , xn; θi), i ∈ {0, 1}

is the PDF/PMF of (X1, · · · , Xn) when θ = θi. Define the so-called NP test

ψk, k ∈ [0,∞]:

ψk(x1, · · · , xn) =

1, f(x1, · · · , xn; θ1) ≥ k · f(x1, · · · , xn; θ0)

0, f(x1, · · · , xn; θ1) < k · f(x1, · · · , xn; θ0)

Then ψk is a UMP test for H0 vs H1 at level

α = Pθ0(ψk(X1, · · · , Xn) = 1).

Remark 4.19. If ψk is randomized test:

ψk(x∼
) =


1, f(x

∼
; θ1) > k · f(x

∼
; θ0)

γ, f(x
∼
; θ1) = k · f(x

∼
; θ0)

0, f(x
∼
; θ1) < k · f(x

∼
; θ0)
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Example 4.20. X1, · · · , Xn from N(µ, σ2
0), σ

2
0 is assumed to be known, so

the parameter space is R. Consider testing:

H0 : µ ≤ µ0 vs H1 : µ > µ0

Fix an arbitrary µ1 > µ. Consider testing the auxiliary problem:

H∗
0 : µ = µ0 vs H∗

1 : µ = µ1

If we simply set k∗ = zα,

ψNP (X1, · · · , Xn) = 1(

√
n

σ0
(X̄ − µ0) ≥ zα)

= ψz(X1, · · · , Xn)

which is a one-sided z test. Note that the test ψNP has nothing to do with

µ1. Hence, ψz is UMP for H0 : µ = µ0 vs H1 : µ > µ0.

Definition 4.21. A family

P = {Pθ : θ ∈ Θ ⊂ R}

of distribution with PMF/PDF f(; θ), θ ∈ Θ is said to have a monotone

likelihood ratio(MLR) is a statistic T : χ→ R if

(1)

Θ → P

θ → Pθ

is injective.
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(2) For every θ1, θ2 ∈ Θ, θ1 < θ2,, there exists version of f( ; θ1) f( ; θ2)

and a non-decreasing mapping h( ; θ1, θ2) : R → R ∪ {∞} so that

f(x
∼
; θ2)

f(x
∼
; θ1)

= h(T (x
∼
); θ1, θ2)

on the set {x ∈ X : f(x
∼
; θ1) > 0 or f(x

∼
; θ1) > 0}; here “ a

∞ = 0” if

a > 0.

Example 4.22. In the setup of Example 4.20,,

P = {Pµ, µ ∈ R}

has a MLR in T = X̄.

Theorem 4.23 (Karlin-Rubin). Let X1, · · · , Xn be a random sample and P

the family of distribution of (X1, · · · , Xn). Suppose

P = {Pθ, θ ∈ Θ ⊂ R},

and P has a MLR in a statistic T .
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(1) ψKR minimizes uniformly the type 2 and type 1 error among all tests

ψ with Eθ0ψ = α.

(2) ψKR is a UMP level α test for H0 vs H1

(3) BψKR
is non-decreasing (non-increasing) in θ.

Remark 4.24. Let F T
θ denote the CDF of T , i.e. F T

θ (t) = Pθ(T ≤ t),

(F T
θ )

−1(u) = inf{x : F T
θ (x) ≥ u}, u ∈ (0, 1).

Example 4.25. X1, · · · , Xn random sample from Poisson(λ), λ > 0. P has

a MLR in T =
∑n

i=1Xi.
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Note: if X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) and X and Y are indepen-

dent, then X + Y ∼ Poisson(λ1 + λ2).

Example 4.26. Consider the setup of Example 4.20. We wish to test

H0 : µ = µ0 vs H1 : µ ̸= µ0

A UMP level-α test ψ would need to satisfy

•
Eµ0ψ ≤ α

•
Eµψ = sup{Eµψ∗ : ψ∗ is a test such that Eθ0ψ

∗ ≤ α}
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Now for all µ > µ0 : ψ would be UMP for

H0 : µ = µ0 vs H∗
1 : µ > µ0

for all µ < µ0 : ψ would be UMP for

H0 : µ = µ0 vs H∗∗
1 : µ < µ0

ψ = ψ1 = 1(

√
n

σ0
(X̄ − µ0) ≥ zα)

= ψ2 = 1(

√
n

σ0
(X̄ − µ0) ≤ −zα)

But

{x
∼
: ψ1 ̸= ψ2} = {x

∼
:

√
n

σ0
(x̄− µ0) ≥ zα or

√
n

σ0
(x̄− µ0) ≤ −zα}

does not have probablity 0. So such a test ψ does not exist.

Convention: we can develop a theory of UMP level-α tests for the two-sided

theory problems. (θ = θ0 vs θ ̸= θ0) if we restrict attention to unbiased tests:

Bψ(θ) ≥ α ∀θ ̸= θ0
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5 Chapter 5: Confidence Sets

5.1 Confidence set

Goal: express uncertainty in parametric estimates

Definition 5.1 (Confidence set). Consider a parametric model

P = {Pθ,ξ, (θ, ξ) ∈ L}.

Here, θ is the parameter of interest and ξ is a nuisance parameter. Let

Θ = {θ : (θ, ξ) ∈ L, for at least one ξ}. The mapping

C :χ→ 2Θ

(x1, · · · , xn) → c(x
∼
)

is called a confidence set for θ if for all θ ∈ Θ the set {x
∼
∈ X : θ ∈ c(x

∼
)} is

measurable.

A confidence set c has confidence level 1− α if ∀θ ∈ Θ, ∀ξ : (θ, ξ) ∈ L

Pθ,ξ(θ ∈ C(X
∼
)) ≥ 1− α

Remark If there are no nuisance parameters, ξ is simply omitted in Def 5.1

and L = Θ.

Example 5.2 (Constructing confidence sets using pivots). X1, · · · , Xn ran-

dom sample from the Exponential distribution with density

f(x;λ) = λe−λx, x > 0

P = {Exp(λ), λ ∈ (0,∞)}
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Goal: construct CS for λ.

Note:
n∑
i=1

Xi ∼ Gamma(n, λ)

Define

Q = 2(
n∑
i=1

Xi) · λ = Q(X
∼
, λ) ∼ χ2

2n does not depend on λ

A quantity which depends on (X1, · · · , Xn) and the parameter of interest θ,

and whose distribution does not depend on θ or ξ is called a PIVOT.

To construct a confidence set for λ from Q, we can simply choose (a, b) so

that the CS is at confidence level 1− α. Here, we choose a, b ∈ R, a < b, so

that

P (χ2
2n ∈ (a, b)) = 1− α.

For example, we can set a = χ2
2n,1−α/2, b = χ2

2n,α/2
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To obtain the CS from (a, b), we can solve for

a < Q(X
∼
, λ) < b

a

2
∑n

i=1Xi

< λ <
b

2
∑n

i=1Xi

Set

C(X
∼
) =

(
a

2
∑n

i=1Xi

,
b

2
∑n

i=1Xi

)
Then, for any λ > 0,

Pλ

(
λ ∈

(
a

2
∑n

i=1Xi

,
b

2
∑n

i=1Xi

))
=Pλ

(
a < 2

(
n∑
i=1

Xi

)
< b

)
=P (χ2

2n ∈ (a, b)) = 1− α

Hence, C(X
∼
) above is a confidence set for λ at confidence level 1− α.

Example 5.3 (More Pivots). X1, · · · , Xn a random sample from N(µ, σ2).

We wish to construct a confidence set at level (1 − α) for µ (i.e. σ2 is a

nuisance parameter). Define

Q(X1, · · · , Xn, µ) =

√
n(X̄ − µ)

S
∼ tn−1
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Choose (a, b), i.e., a,b ∈ R so that

P (tn−1 ∈ (a, b)) = 1− α

Definition 5.4. Suppose that C(X
∼
) is confidence set for θ at level 1− α.

• If C(X
∼
) has the form (L(X

∼
), U(X

∼
)), then C is called a two-sided con-

fidence interval at confidence level 1− α.

• If C(X
∼
) has the form (∞, U(X

∼
), then C is called upper one-sided con-

fidence interval at confidence level 1− α.

• If C(X
∼
) has the form (L(X

∼
),∞), then C is called lower one-sided con-

fidence interval at confidence level 1− α.

Definition 5.5 (Unbiased confidence set). For any θ ∈ Θ, let kθ be a set of

undesirable parameters. A confidence set at confidence level 1 − α is called

unbiased if

∀θ ∈ Θ, ∀ξ : (θ, ξ) ∈ L, ∀θ∗ ∈ kθ, Pθ,ξ(θ
∗ ∈ C(X

∼
)) ≤ 1− α

Example 5.6 (Ex 5.3 continued). X1, · · · , Xn sample from N(µ, σ2), µ of

interest, σ2 nuisance, kµ = (∞, µ). For µ∗ ∈ kµ,

Pµ,σ2(µ∗ ∈ (X̄ − tn−1,α · S√
n

,∞))

=Pµ,σ2(
X̄ − µ

S

√
n < tn−1,α +

µ∗ − µ

S

√
n︸ ︷︷ ︸

<0

)

≤Pµ,σ2

X̄ − µ

S
·
√
n︸ ︷︷ ︸

∼tn−1

< tn−1,α

 = 1− α.

• Similarly, if kµ = (µ,∞)

(−∞, X̄ +
tn−1,α · S√

n
)

is unbiased
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• Similarly, if kµ = {µ}C

(X̄ − tn−1,α · S√
n

, X̄ +
tn−1,α · S√

n
)

is unbiased.

5.2 Correspondence between confidence sets and hy-

pothesis tests

Theorem 5.7. For any confidence set C, there exists a family of non-

randomized tests

{ψθ0 , θ0 ∈ Θ}

with

C(x
∼
) = {θ0 ∈ Θ : ψθ0(x∼

) = 0}

is measurable for all θ0 since θ0 is measurable.

Example 5.8. X1, · · · , Xn random sample from N(µ, σ2). In Example 5.3,

we derived CI for µ using pivots.

• lower one-sided confidence interval for µ:

(X̄ − tn−1,α · S√
n

,∞)

we can calculate, for µ0 ∈ R,

ψµ0(x∼
) =

1, µ0 /∈ (X̄ − tn−1,α·S√
n

,∞)

0, µ0 ∈ (X̄ − tn−1,α·S√
n

,∞)

=

1, µ0 ≤ X̄ − tn−1,α·S√
n

0, µ0 > X̄ − tn−1,α·S√
n

=

1, X̄−µ0
S

·
√
n ≥ tn−1,α

0, X̄−µ0
S

·
√
n < tn−1,α
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This is the one-sided t-test (Ex 4.12) for

H0 : µ ≤ µ0 vs H1 : µ > µ0

• For the two-sided confidence interval for µ:

(X̄ − tn−1,α · S√
n

, X̄ +
tn−1,α · S√

n
)

we can derive the associated family of tests. For any µ0 ∈ R,

ψµ0 =

1, µ /∈ (x̄− tn−1,α/2·S√
n

, x̄+
tn−1,α/2·S√

n
)

0, µ ∈ (x̄− tn−1,α/2·S√
n

, x̄+
tn−1,α/2·S√

n
)

=

1,
√
n
∣∣ x̄−µ0

s

∣∣ ≥ tn−1,α
2

0,
√
n
∣∣ x̄−µ0

s

∣∣ < tn−1,α
2

This is the two-sided t test for

H0 : µ = µ0 vs H1 : µ ̸= µ0.

Theorem 5.9. Consider a confidence set C and the corresponding family of

tests {ψθ0 , θ0 ∈ Θ} as specified in Theorem 5.7. Let also, for any θ ∈ Θ, kθ

be the set of undesirable parameters. For each θ0 ∈ Θ, let

Θθ0
1 = {θ ∈ Θ : θ0 ∈ kθ}

Then the following holds:

(1) C has confidence level 1− α if and only if ∀(θ0, ξ) ∈ L :

E(θ0,ξ)ψθ0(X∼
) ≤ α

(2) C is an unbiased level-(1 − α) confidence set for θ if and only if, for

each θ0 ∈ Θ, ψθ0 is an unbiased level-α test of

H0 : θ = θ0 vs H1 : θ ∈ Θθ0
1
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Note that Theorem 5.9 only guarantees the null hypothesis that θ = θ0. un-

biased means type 2 error ≤ 1− α.

Example 5.10. From 5.6, we know that if kµ = (−∞, µ), then

(X̄ − tn−1,α · S√
n

,∞)

is an unbiased level-(1− α) CI for µ. For µ0 ∈ R:

{µ ∈ R : µ0 ∈ (−∞, µ)} = (µ0,∞).

Hence, from Theorem 5.9, the one-sided t-test

ψµ0 =

1,
√
n X̄−µ0

S
≥ tn−1,α

0,
√
n X̄−µ0

S
< tn−1,α

is unbiased, level-α test for

H0 : µ = µ0 vs H1 : µ > µ0

Example 5.11 (Constructing CS from tests). X1, · · · , Xn random sample

from N(µ, σ2), µ nuisance; our goal is to construct confidence sets for σ2.

Recall chi-square test
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•
kσ2 = (0, σ2) → H1 : σ

2
0 < σ2

C(x
∼
) =

(
(n− 1)S2

χ2
n−1,α

,∞
)

•
kσ2 = {σ2}C → H1 : σ

2
0 ̸= σ2

C(x
∼
) =

(
(n− 1)S2

χ2
n−1,α/2

,
(n− 1)S2

χ2
n−1,1−α/2

,

)

Remark 5.12. The correspondence between the tests and CS can also be used

to develop uniformly most accurate CSs (these correspond to UMP classes of

tests.)

5.3 Interpretation of Confidence Sets

Example 5.13. Generate a sample of size n = 10 from N(1, 2). Suppose

for this sample, we observed

x̄ = 1.1, s2 = 1.5
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