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0.1 lecture 9/21

Theorem 0.1. Poisson’s Formula for the Ball
Let g € C(0B,(0)) and v be defined by

2 12
= " |x| f 8 ds = f K(x,y)g(y)dS
P B(0.r)

na(n)r B,(0) |x — yI?

Then
o v e C¥(BL(0))
e —Av =0in B,(0)
o for all xo € 8B,(0), im v(x) = g(xg) = v € C(B,(0))

XX

Proof. Recall K(x,y) = —%—f. We also showed

G(x,y)=Gy,x) = -AGx,y)=0VYx#y

Soif x € B,(0), y € 8B,(0), then A, %% = 0 = AK(x,y)

Since v(x) = faB(O,r) K(x,y)g(y)dS, smoothness of K implies v € C*(B,(0)). To
prove claim 2, we have —A,v(x) = faB(o,r) AK(x,y)g(»)dS = 0.

To prove continuity up to the boundary, we first claim

f K(x,y)dS(y) =1 Vx € B,(0) (%)
8B,(0)

Let w(x) := fﬁB,.(O) K(x,y)dS (), w satisfies

~Aw=0, B,0)
w=1 0B,(0)

P -x? 1 rr —|x|? 1
K(x,y) = W) = f
i

na(nr |x —yf" B, na(mr [x—y["
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by the maximum principle for harmonic function, w(x) = 1
S0 assuming (%),

lu(x) — g(x0)| = | K(x,y)(g(y) — g(x0))dS (y)
B,(0)

<| K(x, y)(8(y) = (x0)dS ()| + | K(x, y)(g(y) = g(x0))dS (y)l

9B,(0)NBs(xo) 9B:(0)\Bs(xo)

since g is continuous on dB,(0), it is uniformly continuous, i.e. there is some § > 0

such that

| K(x,y)(g(y) — g(x0))dS (y)| < €
9B, (0)NBs(x0)

for the other term, let |x — xg| < % we have

lxo =¥l > 6, [y — xol < |y — xl + |x — xol

5 1
= ly—xol<ly—x+ 5 < [y —xl + Ely—xol
2
<
ly—x =y - xol
we let C := 2|gllz~@50.7) = 18(y) — §(x0)l, then we have

1
= Ely—xolsw—xl =

| K(x,y)(g(y) — g(x0)dS )
B, (0)\B5(x0)

r2 _ |X|2 on

OB.(O)\Bs(xo) (T [y — xol"

<C|f r2—|x|22"|
— JoBO\Byxy R(m)r 6"

$0 as X — Xp, (7 — |x]?) = 0, so (% *) = 0, 50 |u(x) — g(x)] = 0 as x = xp

<(|

Remark. we can also do a representation formula for

—Au = fin B,(0)
u = gon dB,(0)

energy method (dirichlet principle)
consider the dirichlet problem

—Au = finU U open, bounded
u=gondlU OUeC!

we take the associated energy functional
1 2
Iw] := —|Dw|* —wfdx
v 2

let A := {we C2(U) : w = g on U}
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Theorem 0.2. Dirichlet’s principle
u € C*(U) solves the above dirichlet problem iff u € A satisfies

I[u] = min I[w]
weA

Proof. (= ):
clearly if u satisfies the dirichlet problem, then u € A. let w € A, then

f(—Au - Hlu-wydx=0
U

:fDu-D(u—w)—f(u—w)dx—f Du - v(u —w)dS =0
U ou

the second term is equal to 0 because u = g = w on dU, so

f(Du-Du—Du-Dw—fu+fw)dx=O
U

= f(lDuIz —uf)dx = f(Du -Dw — fw)dx
U U
because 2ab < a* + b2, we also have
1 2 1 2

Du - Dw < |Du| - |Dw| < EIDuI + §|DW|

2 1 2, 1 2

e (Dul” —uf)dx < | (z|Dul” + =|Dw|" —wf)dx

U v 2 2

= Iu] <I[w]VYweHA

(&=):

suppose we have u € A such that Iu] < I[w]Vw e A

letve CF(U) and leti(r) :=I[u+1v],T€R

because v is compactly supported in U we will have u + v € A for all 7, so i(1)
reaches a minimum when 7 = 0, so i’(0) = 0 assuming i is differentiable at 0, so

1
i(t) = f §|DM + TDVI2 —(u+1v)fdx
U
1 2 1,00
= —|Du|” + Du - tDv + —7°|Dv|" — (u + 7v) fdx
v?2 2
= i'(t) = f(T|DV|2 + Du - Dv —vf)dx
U
= (0) :waDv—vf:O
U

:f—Auv—vfdx+f Du -yvdS =0
U au
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the second term will equal 0 because v = 0 on dU, so

f(—Au — fvdx =0
U

because this holds for every v € CZ(U), this implies —~Au = f everywhere in U.
|

Remark. we can prove the uniqueness of the dirichlet principle using the energy func-
tional

-Aw=0inU
w = 0ondU

= w=0

the heat equation

letu : R" X [0, 00) — R, we study the equation
u;— Au=0

physical motivation: derived from studying the rate of change (in time) of a density

let u(x, r) be equal to the density of some quantity (heat, ink, chemical concentra-
tion) at position x and time ¢

for any V C U smooth subdomain, "the rate of change in time is the negation of the
net flux through 9V ”

d
—fu(x,t)dx:—f F-vdS:—fdidex
dr Jy av 4

where F : R" — R” is the flux density

because V is arbitrary, this implies u, = —divF pointwise.

as in laplaces equation, F' = —aDu, so u; —aAu = 0
Remark. solutions of laplaces equation can be seen as the steady states of solutions of
the heat equation, where a steady state is im u(x, f) = v(x) so u; — 0 as r — oo implies
-Av =0

this implies the properties we saw for harmonic functions should be true (or maybe
more complicated) for the heat equation.

Remark. the heat equation is critical to the study of diffusion processes (and probability
in general).

the fundamental solution

we want to solve the global cauchy problem

u; — Au=0in R" x (0, c0)
u(x,0) = g(x) in R*
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just like before, we want to construct a fundamental solution ®@(x, f) such that

®, — APhi = 0in R" X (0, 00)
®(x,0) = 6(x) in R”

and we should see
u(x, 1) := (O, 1) * g)(x)

solves the GCP
to identify @, we seek symmetries of the PDE. we first note if u(x, ¢) solves u;,—Au =
0, then
v(x, 1) 1= u(Ax, 1%1)

solves
v, —Av = /lzut - PAu = /lz(u, - Au)y=0

, we call this transformation (x, ) = (Ax, A%¢) parabolic scaling.
solutions of the heat equation are invariant under parabolic scaling and rotation in

X, SO

O(x, 1) = w(ﬂ)
t2

forsomew : R —» R

we will in fact look for solutions invariant under dilation scaling u(x, t) — A* u(/l% x, At)
let A = %, then we get

1 1 1
— 2 —+B -3
7 u(xtz, 1) =t Pw(|x|t 2)

0.2 lecture 9/23
last time u : R” X [0, 0) —» R
{u,—Au = 0inR" X (0, 00)
u(x,0) = g(x) in R*
trying to construct a fundamental solution
v(x, 1) = t‘ﬁw(lxlt_%)
where w : R —» R, we have
b= Bl + P D5

X;i _1
— 12

1
vy, = P (e 2)
|x]

2 2

IRV E S BN S SN R
Vi, = P2 [ (6l 2) S+ w (e[ - ]
|x I
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let r = |x|"7, then

B! n—1
Ve — Av = =B P w(r) = —w (r)r — [t‘ﬂ_lw”(r) +17P1 1 w’(r)]
2 x|tz

= t‘ﬁ_l[ - Bw(r) - %w’(r)r -w"’(r) - ?w’(r)] =0

n—

= w'(r)+ %w'(r)r + . 1w’(r) +Bw(r)=0

now,ﬁz’i'

n-—1

w’(r) + w(r) + %[w'(r)r + nw(r)] =0

we multiply by ~! to get

WA + (= DF7wW () + %[w’(r)r" + nr"_lw(r)]
=W+ %[w(r)r"]' =0

= w(rr + %w(r)r" =a

if we assume M w(r), w'(r) = 0, then a = 0, so we say

r—oo

w () + %w(r)r" =0

w(r) = —%rw(r)

= w(r) = Ce%

1 2

v(x,t) = —Ce ™™
12

Definition 0.3. (fundamental solution of the heat equation)

i,
—L e ift>0

O(x, £) := { @)l
0ift<0

Remark. if x # 0, then
lim 1 e% =

" (4’

if x = 0, then

. 1 2
lim e
=Y (Ant):

so im @(x, 1) ~ 6(x)
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how did we choose C?

Lemma 0.4.

1 2
Yt > 0,f (I)(x, t)dx = f —e ‘4/| =1
R re (4mt)2

we now want to solve
u; — Au = 01in R” x (0, 00)
u(x,0) = g(x) in R*

we “expect” that

Loy

1 e
u(x, ) == (O, 1) * g)x) = — f gye 7 dy (%)
Ant)2 Jgn
Theorem 0.5. (solution of cauchy problem)
let g € CR™) N L®(R"), and define u by (%), then
e ue CR"x(0,00)
e u,—Au=0inR" X (0, 00)

o Jim Cu(x,t) = g(xo)

Proof. since O(x,t) = m lt)% e is co-differentiable with uniformly bounded (and in-
TT

tegrable) derivatives of all orders on R” X [d, c0) V6 > 0,

u(x, 1) = f D,(x —y,0)g(y)dy
Rﬂ

<lgll | Pi(x—y,0dy < C(S) < o0
RIX

similarly, u,, < C(0) <00 = u € C*(R" X (4,0)) V6 > 0
= u € C*(R" x (0, ))
we also have

= du= [ [~ 80 y.0g0) =0

finally, fix xg € R", let 6 = 6(xp) > 0 s.t. g(y) — g(xo) < € whenever |y — xp| < ¢
then as before,

iyl

e 7 [g(y) — g(xo)]dyl

u(x. ) - g(xo)l = | fR o

1 - 1 "
< f L5 160) - glldy + f 7 g() — g(xo)ldy
B(xo.0) (4m1)2 RM\B(xp.0) (471)2
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by definition of 6 > 0, we have

1 oy
e 7 |g(y) — g(xo)ldy
jz;(xo,é) (4n1)2

1 —lx—y?
<e e dy <e€
B(xo,0) (471)2

also, if y € R" \ B(xp, ) but |x — xo| < g, [y — xol > 6, then

0 [y — xol
Iy—xOISly—x|+|x—xo|S|y—x|+5Sly—xl+—

2
) 'y_—;”' <ly—x
thus,
I a2
e 7 (g(y) — g(x0))dy
RM\B(xo,0) (47T1)2
1 —ly-xg?
< 21lgl f R dy
e R™\B(x0,0) (4771)2
= f _eTo P ldr
s (4m)t
let r’ = -

o then this is equal to

S| ,
c f _ e 4Ny A Ndr
2 (@mi):

0 72
=C ey ar
fi )
4+t
which is equal to O as t — 0, so as x — xp, |x — xo| < ‘—; and ¢t — 0, we have
lu(x, 1) — g(xo)l < 2€

|
Remark. if g is bounded, continuous, g > 0 but g # 0, then

1 [
_e™7 g(y) dy >0 VxeR" Vi >0
R~ (471'1‘)7 S~
~—————— >0

u(x,t) =

>0

this means the heat equation has an infinite speed of propagation (the effect of
disturbances are felt immediately everywhere).

duhamels formula and source terms

u; — Au = f(x,t) in R" x (0, c0)
u(x,0) =0in R"
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heustic idea

1
u — Au = f(x,1) ~ %.

suppose we begin at temperature u = 0, let As > 0, we begin at time t = —As. we
turn on the heat source in the time interval (—As, 0) and shut it off. at time ¢ = 0, the
temp = f(x,0)As (if f is continuous).

after time 0, we let the heat equation run, then at time ¢, the time should be like
w(x, t)As where w solves

w; — Aw = 0in R” X (0, 00)
w(x,0) = f(x,0) in R?

more generally, if we turn on the heat source (s—As, §), you get at a later time ¢ > s,
the temp should be w(x, t; s)As where w(-, -; 5) solves

w; —Aw = 01in R" X (s, 00)
w(x, s) = f(x,s)inR"

S0,

O<As<--<t
u(x,0) =0

{Mt - Au= f(x, t) = Z f(xa S)l[s—As,s]

by linearity,

u(x,t) = Z w(x, t; S)Assz(x,t; s)ds
0

O<As<--<t

remember, w(x, t; s) solves heat equation in R” X (s, o)

= w(x,t;5) = v(x,t—s;5)

where v solves

v, —Av=01in R" X (0, c0)
v(x,0;5) = f(x,s) in R"

V(x5 £55) = [, 1) % f(, 9)]|)

v(x,t = s:5) = [, 1 = 8) * £ 9)](0)

! 1 o2
= . —— (O K A
= [ [ e 0 s ()

!
=fv(x,t—s;s)ds
0
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Theorem 0.6. (solutions of a nonhomogenous problem)
let u be defined by A, where f € C>'(R" x [0, o)) and f has compact support in
space & for large t, then

o ue CH(R"x (0, 0))
o u,—Au= f(x,1) € R" X (0, 00)
u(x,t) =0V¥xy € R*

lim
® =000

2.
Proof. note ®(x,1) = ™ 10% e~ is singular at (0, 0).
T

_n_q b 1, b _n _
O, ~ Criles +Cip e (——) ~ 1217

f f O,(x — y.1 — 5)f (. $)dyds
0 Rz

! o2
~ f f Ct = 52t — sy 2e 5 f(y, s)dyds
() n

~ f C(s)(t—s)2ds
0

which is not integrable at s = ¢

lecture 9/28

instead, we consider
I3
u(x,t) = f f D@, ) f(x—y,t — s)dyds
0 Jr»

we notice O(y, s)|S:t is smooth

= u = f f Oy, 5)fi(x =y, — s)dyds + f O(y, $)f(x = y,0)dy < co
0 JRrr Rr

similarly,
!
Uyx, = f f DOy, §) frx,(x =y, t = s)dyds < oo
0 n

Remark. f is compactly supported in space (do not need f(x,0) =0)

= u,, D’u e CR" x (0,)) = ue C>'(R" x (0, ))
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then

! 0
w — Au = f f (. 9)[(5 = Af(x =y = 9)|dyds + f O(y, 1) f(x - y,0)dy
0 JR® R"

' d
:j(; fn QJ(y’s)[(—a —Ay)f(x—y,t—s)]dyds+jl;n O(y, 1) f(x — y,0)dy

= f ‘ f O(y, 5)| - |dyds + f I f Oy, 5)| - |dyds + f Oy, 1) f(x — y,0)dy
0 R € R R

SO

€ 0
O(y, —— = A, —y,t—5)|dyd
fofR 0. 9| (-5 = ANf =yt = 5)|dyds

< (lfllg + |0 f]] ) f f D(y, s)dyds
0 R"

=1
=Ce—0

' d
f f (. )| (= 5= = A)f(x = y.1 = 5)|dyds
€ R N

5 a t
= f f (_(9_ —A)D(y, s) f(x—y,t— s)dyds — f Oy, ) f(x -y, t — 5)dy
€ R" s R €
=0

+ terms for which f has compact support, so = 0
= —f Oy, 1) f(x—y,0)dy + —f Dy, e)f(x —y,t —e)dy
R? R

= u,—Au= f Dy, €)f(x —y,t —e)dy
take € — 0 to get .
f OMSf(x =y, 0dy = f(x.1)
as desired. §

finally, by duhamel,

luC, Ol < Al flles = M0 fluC, Hllzs =0

1—-0

more generally,
u; —Au = fin R" X (0, c0)
{u(x, 0)=ginR"
is solved by

u(x,t) = f O(x —y,Hg(y)dy + f f O(x -y, t = 8)f(Q, s)dyds
R” 0 Jrr
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boundary value problems and some results

let U c R" open bounded, we call
Ur :=Ux(0,T]

a parabolic cylinder
we call
0,Ur :=0U x[0,T]U U x {t = 0}

the parabolic boundary.

U_T= UTU(9PUT

we are interested in solving the dirichlet problem

u; — Au=0in Urp
u=gond,Ur

or the neumann problem

u; — Au=01in Uy
u(x,0) = g(x)in U x {r = 0}
Ou(x,t) = h(x,t) on U x [0, T]

Remark. there IS a mean value property for the heat equation, there are space time
domains

1
E(x,t;r) :=={(, s) eR™ 1 5< t,d(x—-y,t—s)>—}cUr
rl‘l

“heat ball”

1 -
1) = — , dvd
uan = g ffa) uO )G R s

consequences

Theorem 0.7. (regularity)
u € C>(Uy) solves the heat equation in Uy = u € C*(Uy)

let O.(x,1) := B(x, ) X (t — 1, 1]

Theorem 0.8. (derivative bounds) if u solves the heat equation in Ur, then
k ~C Ckl
YO, (x,1) C Ur Jmax. |DDyu < m“u”Ll(Q,.(x,r))

we also get the same comparison/max principle results.
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Theorem 0.9. (harnack inequality) let u be a nonnegative solution of the heat equation

inUr. let K cCc U, lett € (0,T). there exists C = C(K, 1,t — 1) s.t. Yt € (1, T),

supu(-,t —7) < Cinf u(-, 1)
K K

this is an example of causality, the future cannot influence the past.
this also shows the infinite speed of propagation!

u(,t—-17)>0 = u(,1)>0

Theorem 0.10. (strong max principle)

if U is connected and I(xo, ty) € Ur s.t. u(xo, ty) = max u, then u is constant in U_,D

Ur

Proof. let w(x,t) := max u — u(x,t) > 0 and w(xo, tp) =0
Ur

by harnack inequality,

0 <supw(,tH—-1)<0 V7 €(0,19)
K

= w=0¢€U, = uconstantin U,

Theorem 0.11. (max and comparison principle)
letu € C*'(Ur) N C(Uy) satisfy u; — Au < 0 in Uy, then

maxu = maxu
Ur 017UT

this gives

Theorem 0.12. (uniqueness of DP) L
there is at most one solution u € C>'(Ur) N C(Ur) s.t.

u—Au= finUr
u=gond,Ur

energy methods

{u,—Au:finUT

® BC.

Theorem 0.13. (uniqueness) 3 at most 1 solution of (%) belonging to C*'(Ur)

Proof. uniqueness is equivalent to showing

w;—Aw=0in U7y
w(x,0)=0in U
w has 0 B.C.

0-13
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= w=0

let
E(0) = f w?(x, f)dx E(f) > 0
U
E'@® = f 2ww,dx = f 2wAwdx
U U
=- f 2)Aw|Pdx + f 2wA - vdS <0
U U
| ————
=0
SO
E(0) = f w?(x,0)dx =0
U
0<EN<E0)=0= f w?(x, )dx = 0 Vi
U
= w=0
|
lecture 9/30
Theorem 0.14. (maximum principle for cauchy problem)
letu e C*'(R" x (0,T)) N C(R" x [0, T])
solve
u;—Au=0inR" x (0,T]
u(x,0) = g(x) in R”
and suppose u(x,t) < Ae™™ i R x [0, T] for some A,a > 0
then
sup u=supg
R7x[0,¢] R
Proof. assume 4aT < 1
= de>0st. 4a(T +e) < 1 (%)
fixyeR", u>0,let
M by
v(xX, 1) = u(x, 1) — —————e4T+en
(x-2) (x.2) (T +e—-1)2

this is like ® but 7 — T + € — 1, e — "1 this still solves the heat equation, so

vi—Av=0inR" x (0, T]

0-14



letr >0,U = B(y,r), Ur := B(y,r) X (0,T]

since v, — Av = 0 in Uy, by the maximum principle max v = gnax v
Ur pUr

note

M Loy

— B ¢iT6 < u(x,0) = g(x) < supg

(T + E)E R”

if (x,1) € 0,Ur, Ix—yl=r,1t€(0,T]

v(x,0) = u(x,0) —

72
V1) = u(x, 1) — ——L e
(T +e—1)}
2
<Ae - B wte
(T+e—-1):2
Xl < Iy + [x =yl
< Aet? _ K 7
(T +e)>

1 1
by(*),m> 1,m=a+yf0rsomey>0

< AW+ _ w(da + w)%erz(aw)

we can choose r sufficiently large (depending on y ) s.t.
<supg = v(x,t) <supgond,Ur
R" R"

we can then send u — 0 to see u(y, ) < supp. g fory € R", 1 € (0, T'] as desired.
if () does not hold, we can repeat this argument and apply to time intervals

(0,711, [T1,2Ty], ...[kT,,T]
where 4aT < 1, and using that u;(x, ) := u(x,t + T}) solves

(u); —A(u)) =0inR"x (0, T —T)
u1(x,0) = u(x,Ty)

Theorem 0.15. (uniqueness for maximum principle)
let g € CR"), f € CR" x [0,T)). there exists at most 1 solution u € C>'(R" x
O, TDHDNCR" x[0,T]) of

u—Au = f(x,t) in R" x (0, T]
u(x,0) = g(x) in R”

satisfying |u(x, 1)| < A
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Proof. let uy,u; be two such solutions, apply maximum principle for cauchy problem
to u := u; — up, which will solve

u;—Au=0inR" x (0,T]
u(x,0) = 0in R”
sosup|ul =0 [ |

Remark. sufficient condition for growth bound is
gl < CeM Cy >0 (%)

= u(x,t) := (O, 1) * g)(x)

satisfies |u(x, 1)] < Ae?M
so this is the unique solution, for any initial condition satisfying (%)

Remark. |u(x,1)| < Ae™ is called a tychonoft condition, without it, there is no unique-
ness! there are infinitely many solutions to

u;—Au=0inR" x (0, T]
u(x,0) =0in R"

and for the nonzero solutions, [u(x, 1)| £ Ae?™’
the tychonoff condition picks up physically relevant solutions.

the wave equation
u:R"x(0,0) > R

Uy —Au:=ou=0
and
Uy —Au=0u = f(x,1)
physical interpretation

u(x, t) represents displacement of vibrating string/membrane/solid ( n = 1/2/3 respec-
tively)

newtons law: F' = ma

VVCR', ~ [ F-vdS = |, uydx

—fdiv(F)dx:fu,,dx YV CcR"
14 v

= uy; = —divF

if F = F(Du) ~ —aDu
uy; = adiv(Du) = aAu
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= uy;—alhu=0
we will study the wave equation
Uy — Au = 01in R" X (0, 00)

ucx,0) = g(x) in R" displacement
u,(x,0) = h(x) in R” velocity

why do we need u,(x, 0)? without it, if u solves the wave equation, then u+kt solves
itforallk e R

dalemberts formula

n=1
Uy — Uy, = 01n R X (0, 00)
ux,0) = g(x)in R
u(x,0) = h(x) in R
((% + %)(3% - %)u = Uy — Uy =0
let

6 0
v(x, 1) = (G_I_a)u = v +v,=0inR X (0, )

we note that
vix, 1) :=alx—1)

satisfies
v+ v, =—d(x—1)+ad(x—1) =0 with v(x,0) = a(x)
thus,
alx—1) = u; — u,
claim:
1 X+1
u(x,t) = 3 f ay)dy + b(x +1)
x—t
check:
1 1 ,
;= —alx+tH+—-alx—-0+b'(x+1
2 2
1 1 ,
Uy =-a(x+1)— —alx—1)+b'(x+1)
2 2
= u—u,=alx—1
SO

u(x,0) = b(x) = g(x)
v(x,0) = a(x) = u,(x,0) — u(x,0) = h(x) — g'(x)
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1 X+1
= u(x,1) = 5 f h(y) — g (dy + g(x + 1)

—t
X+1

1 1 1
:—Eg(x+t)+§g(x—t)+§j; h(y)dy + g(x+ 1)

—t
'X+1

1 1 1
u(x,t) = Eg(x +1)+ zg(x -1+ 5 f h(y)dy

-t
Theorem 0.16. (dalemberts formula) assume g € C*R), h € C'(R), u defined as
above. then

o ueCA(Rx (0,00)

® uy — Uy, =0in R x(0,00)

* (x,r)lir(rl‘),o) u(x, 1) = g(xo)

uy(x, 1) = h(xo)

* B

Proof. clearly, u € C%(R % (0, 0))

X+1

1 1 1
u(x,t) = Eg(x +1)+ Eg(x -1+ 3 fx h(y)dy

—t

1 1 1 1
Uy = 5g’(x+ ) — Eg'(x— )+ zh(x +1)+ Eh(x —1)

1// 1// 1/ 1/
u,,—zg (x+t)+§g (x t)+2h(x+t) 2h(x 1)

] ’ ] 4 ] ’ ] ’
—Eg (x+t)+§g (x-0+ h(x+t) 2h(x 1)
= Uy — Uy, = 0in R X (0, )

lim
(et 0y Ue (X5 1)

1 1 1 1
=, m 78 (x+1)— 8 (x—0+ Eh(x +1)+ Eh(x -1
= h(xo)

(x, f)*)(xo 0) M(x t)

X+1

1
(”)1_>(t00) 2g(x + t) + g(x - t) + = f); h()’)dy

—t

= g(xo)
Remark. g € C*,h € Cv"! = u e C*, nothing better! no regularizing effect!!
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Remark. this in fact is the unique solution! this is a consequence of the factoring and
first order uniqueness theory

ux,t)=Fx+1)+Gx—1)

and this is enough to deduce the dalembert formula.
Remark. using the dalembert formula, you can get “max principle” and stability esti-
mates.

lu(x, 1) — v(x, t)] < max |u(x, 0) — v(x, 0)| + 2t max |u,(x, 0) — v,(x, 0)|

lecture 10/5

reflection method

Uy — Au=0in R, X (0, 00)
ux,0) = g(x) in R,
u(x,0) = h(x) in R,
u0,=0
8(0) =h(0) =0
how do we extend to all of R to use dalembert so that u(0, #) = 0 ? we seek to build

a solution ii(x, t) defined on all of R X (0, 00), with ii(-, t) odd.
to ensure ii(0, ) is odd, we use odd reflection.

30 = {g(x) x20

-g(-x) x<0
Ewy:{mn x>0
—h(-x) x<0

fiy — iy = 0in R X (0, 00)
= {ix,0)=2x)inR
ii,(x,0) = A(x) in R

by dalembert,

X+1

1 1 1 -
i(x,t) = Eg(x +1)+ Eg(x -1+ 3 f h(y)dy

x—t

and
—X+1

1 1 1 -
ﬁ(—x, l) = Eg(—x + I) + zg(—x — t) + E f h(y)dy

—x—t

X—1

1 1 1 -
o CRUREL f F(=y)dy

+t
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- Lae-n-tgen -1 fx+t/‘1(y>d
-8 28 2. Y
= —i(x,t) = u(-,t)isodd
so now letting u(x, t) := ii(x, 1) in Ry X (0, 00),
%g(x+t)+ %g(x—t)+%fx+th(y)dy ifx>1t
M(.X, t) = 1 1 1 xx_-il-t .
Jg(x+0—3gt-x0)+ % [Th(dy ifx<t

Remark. we need g’’(0) = 0 to make this C?

solutions of wave equation in higher dimensions

u[[_AM = Olan X(0,00)
(CP)qux,0) = g(x) in R”
u;(x,0) = h(x) in R"

ueC™"R"x(0,00) m>2

idea: we want to identity a quantity which solves a 1D wave equation. that quantity
is going to be averages of u on spherical shells.

in odd dimensions, this works, in even dimensions, we project down.

letxeR",t>0,r>0

U(r,t;x) = J[ u(y, )dS (y)
dB(x,r)

G(r;x) = JC g(ndS (y)
dB(x,r)

H(rsx) = f h()dS ()
AB(x,r)

Lemma 0.17. (euler-poisson-darboux equation)
if u e C™ solves (CP), then U € C"R X (0, )) and
Utt_ Urr_ %Ur =0
U(r,0;x) = G(r, x)
Ui(r,0;x) = H(r; x)

Proof. recall MVP prood

Uy(rt;x) = % ﬁ u(y, 1)dS (y)
JB(x,r)

1

- Au(y, yd
0B, Sy 1O OD
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1
= — f Au(y, t)dy
na(m)r'=! Jpi.rn

L JC Au(y, H)dy
n JBx,rn

ueC" m>2,U,is definted in R, x (0, c0) and im U,.(r, 1; x) = 0
similarly,

1
Ut = 2 (™ [ sutrnay)
B(x,r)

or \na(n) "

[ soar= [ [ rousao
B(x,r) 0 dB(x,0)

f)dy) = f fG)dS

dB(x,r)

Remark.

= E( B(x,r)

(%) = i[rH f Au(y, DdS () + (1 = n)r™ f Au(y, Hdy|
dB(x,r)

an B(x,r)

1 -
= f Au(y, 0dS (v) + —”f Au(y, 1)dy
OB(x,r) n B(x,r)

. 1
lim (7 (7, ¢; x) = Au(x, t) + (; — DAu(x, 1)

=0
1

= —Au(x,t) < o0
n

similarly, U,,,
so from above,

v, =" f Au(y. iy
n JBx,r
r
== JC uy(y, t)dy
n JBx,n

),
= utdy
nw(n)r" 1 B(x,r) g

n—1

1
= U, =

= Ugdy
na'(n) B(x,r)

note,
UL, + (= DU, = (FTU),

1
= uydS (y) = " f ugdS = r-'u,
na(n) Jop 8B(x,1)

~1
"y =0

= Uy-U, -

0-21
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solution of wave equation,n = 3
suppose u € C2(R? x [0, o)) solves
Uy — Au = 0 in R? x (0, o)

u(x,0) = ginR3
u(x,0) = hin R3

let U(r, t; x), G(r; x), H(r; x) as before

U, t;x) := rU(r, t; x)
G(r; x) := rG(r; x)
H(r;x) := rU(r; x)

= U, =rU,

U =rU,+U
U,=rU,+U +U,=rU,+2U,

N 2
Uy=rU,;=r[U,+ -U,]
r

=rU,+2U, =0,

Us—- U, =0inR, X (0, )
U(r,0;x) = G(r; x) in R,
U,(r,0;x) = H(r; x) in R,
U(0, t; x) = 0 in (0, 00)

Remark. g e C™, G, =G +rG,

G, = rG,, +2G,

= limG,, =1lim2gG,

r—0

.2
=lin = £ Ag()dy =0

r—0
B(x,r)
= G, (0,1;x)=0
= by reflection and dalembert, if 0 < r <1,
B l 5 B 1 v+t 5
Ut x) := E[G(r +1) -Gt -]+ 3 H()dy

—r+t

ueC"
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also, by continuity,

M&0=E3f7 u(y, )dS
dB(x,r)

=M U(r, 1; x)

r—0
U(r,1;x)
r

— lim
50

) 1 B " 1 1+r N
=¢Wﬁ=m;pmw—apﬂ+zliH@@

=G'()+ H@)

0
wen =2l goaso] i noaso
ott Jopeen 9B(x,1)

kirchoffs formula of (CP) in R3 x (0, o)
Remark. e only need g, i defined on shells

e regularity is dependant on g,h, g€ C™'! = ueC™

wave equation in n=2

we use the formula from n = 3 and the method of descent
idea: embed a 2D problem in 3D

Uy — Au = 0 in R? x (0, o)
u(x,0) = g in R?
u,(x,0) = hin R?
let u(xy, x2, x3, 1) 1= u(xy, X2, 1), u : R3 x (0,00) > R
——— —
constant in R3
u(xy, x2, x3,0) := g(xg, x2) = g(x1, X2, X3)
Uy (x1, X2, 63, 0) := h(x1, %) = h(x1, %2, %3)

then we still have

%, — A = 0in R? x (0, )
#(x,0) = gin R3
u(x,0) = hin R?
_ 0 - -
= u(xl,xz,x3,t)=—[z - gdS(y)]+t ~ hdS(y)
ott JaBen 9B(x.1)

Eg, t) is ball in R3 centered at X, ¢
das = surfa_ce measure in R3
observe, dB(x, 1) € R3 is the union of 2 hemispheres,
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3=y x(y,y) = x3+ 22—y - af?

1 i
(y:) = i5<r2 —ly = 27220 — x1)

dS(y) = /1 +(D,)2dy

_ \/1+ (x1 —y1)? N (x2 = y2)? dy

g-ly-x  2-ly-af

on each hemisphere,

|x — yI?
=1+ —"—d
2y

t
= —dy

Ve = x—yP
0 _ _
u(xy, xp, x3,1) = a[t fi 2dS()| +1 ch hdS (y)

OB(x,t) OB(x,t)

lecture 10/7

@ ar 1 st 2 h(y)t
u(xi, x,x3,1) = —|t——2 — o ayl = dy
6t[ 472" Jpen NP —x =P e ] ant Jpeny P = =3P

note: RHS is independent of x3!!
note: B(x, f) refers to the ball in R?

a1 = h
_ _(_JC — 0 ). —][ M 4
022 Jpieny A2 =[x =P 2 U 2 = |x—y]?
this is poissons formula for the wave equation in R? x (0, c0)

Remark. stillneed g € C"™' he C" = ueC”

propagation speed, domain of dependance, region of influence
taken =1

X+1

1 1 1
u(x,t) = Eg(x +1)+ Eg(x -1+ 3 f h(y)dy

x—t

if g has compact support, & = 0, the graph of g will propagate to the left and right
as time passes at a constant speed.
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1, .
0 /\ —domain

-4 -3 -2 -1 0 1 2 3 4
if g, h # 0, the graph will propagate taking values from a larger subset of the support
of h as t grows.
we say the wave equation has a finite speed of propagation because disturbances
propagate with finite speed (1)

Remark. u, — c*Au = 0 implies propatation speed is ¢

Definition 0.18. (domain of dependance) cone for each (xy,ty) € R x (0, ), places
which can influence (xo, to)

n=3

0
ux,1) = |1 2)dS ()] + h(y)dS ()
ott Jopixs

0B(x,1)

need g, h on OB(x, 1)
region of influence

{(x,7) : 0B(x,1) N (supp(g) U supp(h)) # 0}
domain of dependance of (x, fp) dB(xo, o) X {t = 0}

n=2

& 80 r h(y)
u(x,t) = — —JC —dy) + _JC ——dy
3t( 2 Iy A2 = x—yP? ) 2 Iy A2 = x =P
region of influence: {(x, ) : B(x, ) N (supp(g) U supp(h)) # 0}
domain of dependence: B(xy,#) X {t = 0}
we can prove this via energy method

Theorem 0.19. (finite propagation speed) if u = u, = 0 in B(x, tp) X {t = 0}

— u=0inC = cone
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Proof. (via energy) let

1
e(t) = —f u,2 + |Dul’dx
2 JBxoto-0)

e(t) =20
1
e(0) = = f u? + |Duf* dx =0
B

2 JBixoo) -

1 1
e == f 2uuy + 2Du - Du,dx — — f ut2 + |Dul?dS
B(xo,to—1) OB(xo,to—1)

(integration by parts)

1 1
= f Uiy — Auutdx+f u;Du - v — —u,2 - —IDMIZdS
B(xo,to—1) II)B(X(),[()*[) 2 2

=0 by wave equation

= f u,@ - 1u,2 - l|Du|2ds
AB(xp,t0—1) av 2 2
lu, 41 < lu|Dul < Su? + 3Duf?

= (%) <0

= 0<e(®<e0)=0 YOt

0=~ f u? + |Dul*dx
2 Bt

= u,=Du=0

and u(x,0) = 0 in B(xo, tp)
— u=0inC

o
C= U B(xo, o — 1)
=0

duhamel for the wave equation

Uy — Au = f(x,1) in R" X (0, o0)
u(x,0) =0in R"
u;(x,0) = 0in R"

same analysis as before,

13
u(x,t) = f v(x,t—s;8)ds
0

where

0-26
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V,,—Al/t = Olan X(0,00)
v(x,0)=0inR”
vi(x,0) = f(x,s) in R"
Theorem 0.20. assume n > 2, f € C2, let u defined by (%), then
e ue C*(R" X (0, ))
® uy —Au= f(x,1) in R" X (0, 00)
(o 1) =0

u(x, 1) = 0

lim
® =000

Proof.
feC® = vx,t—s;5) € C2(R" X (0, 0))

= u(x, 1) € C3(R" x (0, o))

13
u(x, 1) = f v(x,t—s;8)ds
0

f
u; = v(x,t—t;t) +f vi(x,t—s;8)ds
A/_/ 0

!
:fv,(x,t—s;s)ds
0

!
uy = vi(x,t—1,1) + f ve(x,t — 55 8)ds
0
!
=v(x,0;0) + f Vi(x,t — 55 8)ds
0
!
= fx, 0+ f Vu(x,t — 55 8)ds
0
15
Au = f Av(x,t— s;8)ds
0

!
= uy — Au= f(x, t)+f Vi — Avds
0

= f(x,1)
0
u(x,0) = f (0,0 —s5;5)ds =0
0

0
u(x,0) = f V(0,0 —s5;8)ds =0
0
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lecture 10/15

lecture 11/2

last time, u; + H(Du, x) = 0 in R" X (0, o)

hamiltons equations

X(s) = DpH(p(s), x(5))
p(s) = =D H(p(s), x(s))

where for L : R” X R” — R smooth, x(s) minimizes

Iw()] = fo L(w(s), w(s))ds

minimizing / implies the EL equations

—%(DqL(X(S)» x(5))) + DL(%(s), x(5)) = 0

letting p(s) := DyL(x(s), x(s)) and assuming the hypothesis

¥Yx, p € R", 3!qg smooth s.t.

p = dgL(q(p, x), %)
and we saw that for H defined by

H(p, x) := p - q(p, x) — L(g(p, x), X)

then x(s), p(s) solve hamiltons equations

legendre transform and hopf lax formula

we now work with u, + H(Du) = 0 in R” X (0, c0)
suppose L : R" — R satisfies
e g — L(g) is convex (hence continuous)

o lim L@

= oo superlinear
lgl—eo gl

Definition 0.21. (legendre transform)
L*(p) := supyepilp - 4 — L(g)}
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motivation: note that since % = 00,

sup{p - ¢ — L(q)} < sup{Ipllql - L(q)}
q q

as |g| — oo, L(g) — oo faster than p - ¢

= p - q is bounded for |g| large

= sup is achieved by a max

ie. d¢" s.t. L*(p) = p-q" — L(q")
thus, ¢ — p - ¢ — L(g) is maximized at ¢ = ¢*

= Dy(p-q-L@)|_,. =0

— p=D,L(g")

& dq" = q"(p)s.t. p=DyL(g"(p))

so L*(p) = p-q"(p) - L(q"(p)) = H(p)

so the lagrangian implies the hamiltonian with H = L*

Theorem 0.22. (convex duality of hamiltonian and lagrangian)
assume L is convex and superlinear, define H(p) = L*(p) = sup,{p - ¢ — L(¢)}
then

e p — H(p) is convex

o lim H® _
Ipi= |pl

also L = H*, so H = L*, L = H*, and we call L, H convex duals of each other.

Proof. claim: p — H(p) = L*(p) = sup,{p - ¢ — L(q)} is convex
by the definition, V71 € [0, 1], Vp, p e R",

H(rp+ 1 -1)p) =sup{(rp + (1 —1p) - g — L(g)}
q
=sup{r(p-q - L(@) + (1 -1)[p-q—- L@}
q
<tsup{p-q— L@} + (1 -1)sup{p-q—L(g)}
q

=1H(p) + (1 - 1)H(p)

claim: liminfj,) .o 52 > 1Y >0

fix1>0,p#0.
H(p) = sup{p - q — L(q)}
q
_Ap
let q= m
A 1
>p- L1t
|pl 1pl
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> dpi- s

L
Hp) _ | _ Maxsoy
Ip| Ipl

—0 as |p|ooco

claim: L = H*
recall

H(p) = L*(p) = sup{p - q — L(g)}
q
= H(p)>2p-q-Lg) Yp,qeR"
L(g) > p-q—H(p)

= L(g) 2 suplp-q - H(p)} = H (q)
p

also,
H"(q) = sup{p - q — H(p)}
p
=sup{p-qg—sup{p-r— L)}
4 r

= supinf{p - (g - r) + L(r)}
p r
since ¢ — L(q) is convex, s € Rs.t.

Lir)>L(g) +s-(r—q)

>supinf{p-(g—r)+L(g) +s-(r—q)}
p r
letp=s

>inf{s-(g—r)+ L(g) +s-(r—q)}

= L(g)
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hopf lax formula
recall we were minimizing fot L(w(s))ds over

we A :={weC'(0,11;R") : w(0) = y,w(r) = x}

fixx e R* = ”cost to get to x”
what about y? and how do we involve u(x, 0) = g(x)?
try

fo LOv()ds + g(w(0)

15
= u(x,1) = inf { f LOi(s))ds + g(y) : w(0) = y, w(t) = x} (*)
w,y 0
so now we want to relate this to
u,+ H(Du) =0 inR" x (0, 00)
u(x,0) = g(x) in R”

where H is smooth, convex, and superlinear and g is lipschitz continuous i.e.

lg(x) — gl

K = sup —} < 00
x,yeR” |X—y|

= |g(x) — gl < Klx -y

Theorem 0.23. (equivalence to hopf lax formula)
if u is defined by (x), then

u(x,1) = min{rL(—=) + g0)

hopf lax formula

Proof. fixy € R", let w(x) := y + {(x —y), note w(0) = y and w(?) = x
= u(x,t) < f LOw(s))ds + g(y)
0
- [ s g
0 t
= 1L(—2) + )

(e p) < inf{tL(x—;y) +80))
n

also, note that Yw(:) € C! with w(¢) = x, L is convex, so
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L(lfW(s)ds) < 1f‘L(vi/(s))ds
t Jo —~—1 Jo

jensen

1 1
L(;[x -yh < ;L(W(S))ds
x=y o
tL(T) +g(y) < fo LOv(s)ds + g(y)

inf [iL(*—2) + g0} < inf | f [ LGi(s)ds + g())
y t y 0

— inf {iL(—=) + g0)) < u(x.1)

lecture 11/4

brief aside: viscocity solutions
we introduce a weak notion of solution for

HD) u; + HDu) =0
u(x, 0) = g(x)

we will ask u# : R" X [0, 0] — R to be merely continuous.

Definition 0.24. (viscosity subsolution)
we say u is a viscosity subsolution of (HJ) if

® u(x,0) < g(x)inR"

e Vo € C'(R" x [0,00)), if u — ¢ has a local max at (xo,t9) = ¢(x0, %) +
H(D¢(xo,10)) <0

Remark. observe thatif u € C! at (x, 1), and

u(xo, to) + H(Du(xo, 1)) = 0

then u# — ¢ has a local max at (xo,%)) = u,(xo,t) = ¢:(x0, 1) and Du(xg, ty) =
De(xo, o)

= ¢u(x0,10) + H(DP(xo,10) = 0
i.e. every classical solution is a viscocity solution

it is sufficient to check ¢ touching u from above at (xg, fo)
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Definition 0.25. (viscosity supersolution)
we say u is a viscosity supersolution if

* u(x,0) > g(x)

o Vo € CHR"X(0, ))), ifu—¢ has a local min at (xo, to), then ¢,+H(Dp(xo, 19)) >
0

it is sufficiant to check ¢ which touch u from below and check

&:(x0, 10) + H(D¢(x0,19)) = 0

Definition 0.26. (viscosity solution)
we say u is a viscosity solution iff u is both a viscosity subsolution and supersolu-

tion.
properties of viscocity solutions

viscosity solutions are unique for (HJ) under very mild assumptions ( g is bounded,
uniformly continous, and H is lipschitz )
viscocity solutions are the solution you get by studying im ¢(x, r) where

=0
u; — eAu® + HDu) =0
(it is the limit of a vanishing viscocity problem)
Theorem 0.27. the hopf lax formula is the unique viscosity solution of (HJ)
to prove this, we need 1 lemma

Lemma 0.28. (dynamic programming)
if
. X =
u(x, 1) = min {iL—2) + g(y)
y t

thenforallx e R", 0 < s <t

. X —
u(x,1) = min (¢ - s)L(t—y) +uly, )}
y -5
to minimize in time t, it is enough to minimize in time s and time t — s

Proof. fixyeR", 5s€(0,1),letz € R" s.t. u(y, s) = sLi ¥)+g(z)
note:
x—-z x—y+§y—z
t t t s

r—sx— Sy—2
_ Y, sy
t t—s t s

S St A A

t t—s t s
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L is convex

L) £ (1= DLE=) + ~L(5)

SO,
u(x 1) < tL(?) +8(2)
<(t- s)L( ) + sL(—) +8(2)
&_s,..—./
u(y,s)
= (1= )LC—2) + u(y, 5)
t—s
. X—=Yy
= u(x,r) < min{(t - L) + u(y, 5))
y t—s
let w be s.t. 3
u(x, 1) = (L) + g(w)

lety=3x+(1-Hw

=—|x--x—-—w
r—=s r—=s

x-y 1 s t—s
[x= v = =]

~ | =

wooXxX—-w y-w
t t N

— (- s)L(%) +u(y, 5)

<(r- S)L( ) + L) + gw)

= (1= L) + LA + g(w)

= 1L(*= W) + g(w) = u(x, 1)

= mjn {(t - s)L(%) + u(y, s)} < u(x,t)

Proof. (of main theorem)
claim: u(x,t) = min, {tL(ﬂ) + g(y)} is the unique viscosity solution of (HJ)
as t — 0, min, {tL( 2y + g(y)} ly—x| <Ct = u(x,0)=g(x)
suppose ¢ € C'(R" x (0, 00)), and u — ¢ has a local max at (xo, fp). for any ¢ € [0, 5],

o, ) = min (1o = DLC—) + (s, )
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thus Vx € R”,

u(x0,10) < (t0 = L) + u(x. )
]
lecture 11/11
intro to conservation laws
u + F(u), = 0 in R x (0, o)
SCL)S[u, +div- F(u) =0 inR" x (0, 00)
u(x,0) = g(x) in R

we saw using method of characteristics that u can fail to be C! in finite time. our
goal is to find a well posed, physical weak solution.
shocks and entropy condition

we saw that viscosity solutions are about using smooth functions to touch at points of
nondifferentiability. we could viscosity solutions of scalar conservation laws, but

w+ Fu)y = u; + F' (Wuy

is tricky with u dependence.
instead, we note our pde is of the form

O:u + 0,(F(u)) = 0 [divergence structure]

suppose u is smooth and solves scl, if v : R X (0, 00) — R is a smooth, compactly
supported test function, then

foo foo (Ou + 0 (F(w))v(x, t)dxdt = 0
0 J-oo

by ibp, since v is compactly supported, we have

f f —uv,dtdx + f wvl; =y dx — f f F(uwyv,dxdt =0
—o0 JO —00 0 —
- f f uv; + F(u)v dxdt — f g(x)v(x, 0)dx
0 -0 -

this now makes sense even when u is not differentiable (even u not continuous).

Definition 0.29. (integral/distributional solution)
we say u : R" x (0, 00) — R is an integral solution of scl provided Vv € CZ(R" x

(0, 00))
f“’ f“’ uv; + F(u)v dxdt + f‘” g(x)v(x,0)dx =0
0 —0 -
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note: integral solutions need not be continuous, a natural class of functions to con-
sider are the piecewise defined solutions.

simplest case: V C R x (0, o), V divided into V, and V,, where u;, u, are smooth in
the respective domains is an integral solution

suppose v is smooth, supp(v) C V,

0= f uv; + F(u)v,dxdt + f g(x)v(x, 0)dx
0 0

[ S——
=0

= ff upv; + F(ue)v dxdt
Ve
=- ff [(ue) + F(u)lvdxdt
Ve

true for all v smooth, support of v in V,

= u,+Fu),=0inV,

similarly, , + F(u), = 0in V,
let the curve dividing V be C = (s(¢),t) = (x, t), the tangent to C is (s(0), D).
unit tangent is

1
— (500, 1
—1+(S(t))2(S() )

unit normal is

1
—(1, -3¢
—1+(S(t))2( (1)

Fug) = F(uy) = $(0)(ue = uy)

Definition 0.30. (rankine hogonoit condition)
a piecewise smooth function satisfies the rankine hugoniot condition (r-h condition)

if
F(ue) — F(u,) = $(t)(ug —u,) on C

we have shown every integral solution must satisfy the r-h condition (should also
be sufficient)

lecture 11/18

last time,

u;+ F(u)y =0 inR x (0, c0)

SCL) { .
u(x,0) =g(x) inR
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lax-oleinik formula: L = F*
u(x, 1) = ﬁ[min (L) + hey)l|
oxL 'y t

= G(—x — );(x, t)) (star)

a.e. where G = (F’)!
and

min {1L(—) + ()} = tL(%(“)) + h(y(x, )

h(x) = f_ xoo g()dy and x — y(x, 1) is nondecreasing
we will now show u(x, f) is an integral solution of (SCL).

Theorem 0.31. u defined by (x) is an integral solution of (S CL)

Proof. recall w(x,t) = min, {tL(?) + h(y)}, it is shown in hw that w is lipschitz and
differentiable a.e., and at points of differentiability,

w, + F(wy) = 0in R x (0, 00)

w(x,0) =hinR
letv e CZ(R x (0, )),
foo foo [w; + Fiwo)] ve(x, DHdxdt = 0 (0)
0 - =0ae.

and moreover, the fact that w is differentiable a.e. means we can integrate by parts

fnftyf w,vxdxdtz—f f wvxrdxdt—f Wy dx|=o
0 —00 0 —00 —0o
= f f wvidxdt + f wvdx|=o
0 —00 —c0

note w(x, 0) = h(x) = L Xw gOndy
wi(x,0) = g(x)
returning back to (O0)

0= f‘x’ foo [w; + Fwo)] vie(x, Ddxdt
0 Jooo —m———

=0 a.e.

=f f wxv,dxdt+f g(x)v(x,O)dx+f f F(wy)v,dxdt
0 —00 —00 0 —00

letting u(x, t) = wy(x, 1) a.e.
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= f f uv; + F(u)v dxdt + f g(x)v(x, 0)dx
0 —c0 —0

so lax olenik is an integral solution. to check if it is an entropy solution, we need a
general entropy condition.

Definition 0.32. (oleinik entropy condition)
u satisfies the oleinik entropy condition if 1C > 0 s.t. for a.e. x,7€ R, t >0,z>0

u(x +z,t) —u(x, 1) < Ez (%)

c c
[u(x+z,1) — ;(x +2) <ulx,t)— ;x]
Remark. this implies x — u(x,) — $x is nonincreasing, which implies left and right
hand limits u;, u, where
ue(x, 1) 2 u(x,1)
(this was the original condition)

Lemma 0.33. the lax oleinik formula satisfies the oleinik entropy condition

Proof. we will assume G = (F’)~! is lipschitz
since G is lipschitz and x — y(x, t) is nondecreasing,
x = y(x,1) x—y(x+z1)

ux, 1) = G(————) 2 G( p )

forz >0

X+z-—- x+z,t . Z
> GETERIIEED,) i)
—u(x+z,0) - zip(G)§

— u(x+z,0) —ulx,1) < lip(G)?

so lax-olenik formula is the unique entropy solution of (S CL)
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holder spaces

letU cR",y e (0,1].
recall that u : U — R is lipschitz continuous if ¢ > 0 s.t. |u(x) — u(y)| < clx —y|

we need
ux)—u
c> sup lu(x) — u()l
xyeUx#y |)C - Y|
needs to be finite
now,

Definition 0.34. (holder continuous)
u : U — R is holder continuous with exponent y € (0, 1] if d¢ > 0 s.1.
lu(x) —u)| < clx -y Vx,ye U

Definition 0.35. (holder seminorm/morm)

e ifu: U — Ris bounded and continuous,

il g, = sup ()]
xeU

o the y-holder seminorm of u is

|u(x) — u(y)|

(U] on gy =
e x,yeU,x#y |X - y|‘y

the y-holder norm is then defined by

”u”CO,y(ﬁ) = ”u”C(ﬁ) + [M]Co,y(ﬁ)
Definition 0.36. (higher order holder spaces)
C*Y(U) consists of all u € C*(U) s.t.

s @, = D MWD ulle, + D [Pl os ) < o

lal<k la|=k
where a = (a1, a2, ...,a,) EN'and |a| =a; +az +--- + a,
Theorem 0.37. C*(U) is a banach space

Proof. hw .
Souj—>ue CHY(U) iff lluj — u”ck,y(v) —0asj— o0

Remark. holder continuous = uniformly continuous
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sobolev spaces
weak derivatives

recall that ¢ € CZ°(U) is what we call a smooth, compactly supported test function.
motivation: integration by parts

fmpx,.dx:—fuxiqﬁdx
U U

Definition 0.38. (weak derivative)
leta = (a1, a,...,0,) € N", D = 97332 ...0%u
suppose u,v € L}oc, thenv = D*u if V¢ € C°(U),

qu"¢dx:(—l)|“‘fv¢dx
U U

Remark. we need D”u = v to be a function, these are unique up to a set of measure 0.

example. n=1,U = (0,2)

1<x<2

1 0<x<l1
v(x)—{0

<
u(x)={)1€ 0<x<l1

1<x<?2

claim: v = «’ in weak sense

let ¢ € C2((0,2))
2 1 2
f u¢'dx =f x¢’(x)dx+f ¢’ (x)dx
0 0 1

1 1
=—j; ¢(x)dx+¢(1)—¢(1)=—f0 P(x)dx

2
=- f d(x)v(x)dx
0
def of sobolev space

Definition 0.39. (sobolev space)
the sobolev space

WEP(U) = {u : U > R s.t. Y|a| < k, D%u € LP(U))}

1
il (U) == | Stk (Jy 1D e)" - p < o0
Dlal<k €58 supy|Dul p=0

we will call H*(U) = Wk2(U), derivatives belong to L*(U)
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Definition 0.40. (convergence)
® Uy DU in Wk’p(U) l.f]im ”Mm - ullwk‘p(U) =0

m—0

oy — uin WPU) if uy, — uin WeP(V)VV cc U

loc

Definition 0.41. (W,”(U))
we denote W(];’p (U) to be the closure of CZ°(U) in the WP norm.
ue€ Wg’p(U) iff IHup) C CZ 5.t uy — uin WhP(U) iff D*u = 0 on dU, |a| < k-1

Remark. HX(U) = Wy*(U).

properties of weak derivatives
if u,w € WeP(U),
e composition D(D%u) = D*(DPu) = D**Fu

e linear combinations Au + uv € WkP(U), D*(Au + uv) = AD% + uD%v for all
ALueR

e if V. U, then u,v € WrkP(V)

e if p € C, then ¢pu € W*P(U) and we have a product rule
D(¢u) = Dopu + ¢Du

lecture 11/23

last time, we saw for U C R" open, bounded,

WhP(U) :={u: U —» Rs.t. Y]a| < k, D% € LP(U)}

1
||u||Wkp(U) = Z‘MS/{(IU |D(Yu|pdx)p p < 00
Y jaj<k €58 SUpyIDul  p=oco

Wg’p(U) := closure of CZ°(U)
in the W*? norm.

Theorem 0.42. (W*P(U) is a banach space)
Yk, p € [1, 0], W*P(U) is a banach space.

Proof. note YA € R, we have

|Mu”Wk~ﬂ(U) = |/1”|u||Wk<p(U)

and
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lulli?(U) =0 = Jullr =0 = u=0(ae.)
assume u, v € W5P(U). then

1
e+ vIRF @) = (Y ID"u + DV, )

|or|<k

< ( > (I ullys + ||D“v||u)”)

|ar|<k

<(Siorulg,)” + (Yo,

|er|<k la|<k

1
7

= [lullwerwy + IVllwer )

00

to show it is complete, suppose {u,},-_,

= {D%uy},,_, is cauchy in L?
L? is complete

is a cauchy sequence.

D%u,, — u, in LP(U)
U, — uin L (U)

claim: u € WoP(U) with D%u = u,
let ¢ € CZ(U). then

qu“qbdx:,}lij{}o fumDaxﬁdx
U U

= lim (— ) f D*updx
U

= (=] f Ugpdx
U

= ue Wk D%, — D% in L”

= u, — uin WP(U)
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lecture 12/2

maximum principles

we move to max principles for nondivergence form equations

Lu=- Z a;j(X)Uyx; + Z bjuy, + cu(x)
ij i

o a;;(x) uniform elliptic, i.e. a;;(x) > 6id
e q;;(x) symmetric

® a;j, b;, c are continuous

we will work with w € C2(U) n C(U)

weak max principle
U c R" is open and bounded

Theorem 0.43. (weak max principle (WMP))
assume u € CX(UYNCWU) andc =0in U,

e if Lu <0in U, then maxgu = maxay u
e if Lu > 0in U, then ming u = mingy u
Proof. first assume Lu < 0in U and dxg € U s.t. u(xp) = maxg u

= Du(xy) =0, D*u(xo) <0

since A := a;;(xp) is symmetric, positive definite, it is orthogonally diagonalizable,
i.e. there is a basis of orthogonal eigenvectors
lety := xo + O(x — x0), O (y — x0) = (x — x0)

Oy
= uy, = Z ”ykg = Z iy, O
k ! k

Uxix; = Z Uyeye Okiof’j

k.l
== Z QijUxx; = Z Z O4iaijO¢; Uy,y,
i.j T

ke i OTAO=D

= Z dilty,y,
k

since dy > 6 > 0 by uniform ellip, and u,,,, <0,

<0
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SO

Lu =~ Z @i (X0)tx; + Z bi(xo)u,
ij i
————
>0 uy; (x0)=0

>0
but this contradicts Lu < 0in U = xp € U, maxg u = maxyy u
if Lu < 0, write
u¢(x) = u(x) + ee™

for A > 0 to be chosen.
by linearity, Lu¢ = Lu + eLe™
tbc [ |

Theorem 0.44. (wmp, ¢ >20)
letue C2(U)NCU), andc>0in U,

e if Lu < 0in U, then maxyu < maxgy u*
e if Lu> 0in U, then mingu < —maxyy u~
Remark. soif Lu = 0in U, then
max |u| = max |u|
U U

Proof. let Lu <0 andsetV :={x e U : u(x) > 0} (open)
let Ku:=Lu—cu<0—-cu<0inV
so Ku is a uniform elliptic operator with no Oth order term, V open

maxu = maxu < maxu’
v AV oU

this is equal to maxg; u if V is nonempty

if V is empty, then u(x) < 0 everywhere

= maxu <0 =maxu"
T U

supersolution is the same argument, u is a supersolution implies —u is a subsolution,

max —u < max(—u)*
T auU

—miny < maxu~
U ou

minu < —maxu~
U ou
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Remark. we get comparison principle for free

Remark. whatif u ¢ C2(U) N cl9
note both arguments only relied on Du(x) = 0 and D?u(xy) < 0.

Definition 0.45. (viscocity solutions for 2nd order equations)
consider Lu as above, ¢ > 0,
u is a viscosity subsolution if V¢ € C*(U), u — ¢ has a local max on xy implies

Le(xo) <0

u is a viscosity supersolution if V¢ € C*(U), u — ¢ has a local min on x implies

Le(x0) 2 0
a viscosity solution is a viscozity subsoltion and a viscosity supersolution.

so now, if Lu < 0 in the viscosity sense, u has a local max at x) = u — ¢ has a
local max for ¢(x) = 0
| ]
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