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1 Category Theory I

Definition 1 (Category). A category is a set of objects C0 together with a set of mor-
phisms MorC(A, B) for each ordered pair of objects A, B ∈ C0 and an associative
composition operation MorC(A, B) ×MorC(B, C) → MorC(A, C) for each ordered
triple of objects A, B, C ∈ C0. We will denote C1 to be the set of all morphisms of C.

Definition 2 (Covariant functor). Let C and D be categories a covariant functor F :
C  D is a map C0 → D0 and a map MorC(A, B) → MorD(F(A), F(B)) for each
ordered pair of objects A, B ∈ C0.

• For any composable morphisms f and g, F( f ◦ g) = F( f ) ◦ F(g).

• For any object, A ∈ C0, F(1A) = 1F(A).

Definition 3 (Contravariant functor). A contravariant functor F : C  D is a map
C0 → D0 and a map MorC(A, B)→ MorD(F(B), F(A)) for each ordered pair of objects
A, B ∈ C0.

• For any composable morphisms f and g, F( f ◦ g) = F(g) ◦ F( f ).

• For any object, A ∈ C0, F(1A) = 1F(A).

Definition 4 (Full, faithfull and essentially surjective). Let F : C  D be a covariant
functor.

• If the restriction FA,B : MorC(A, B) → MorD(F(A), F(B)) is injective for any
A, B ∈ C0, then we say F is faithfull.

• If FA,B is surjective for any A, B ∈ C0, then F is full.

• If for any X ∈ D, there exists Y ∈ C0 such that D ∼= F(Y), then F is essentially
surjective.

Definition 5 (Mor functors). Let C be a category and A ∈ C0 one of its object. We
define the covariant and contravariant Mor functors from C to Set.
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A. The functor MorC(A,−) : C  Set sends an object B ∈ C0 to the hom set
MorC(A, B) and a morphism f : B→ B′ to the function

MorC(A, f ) : MorC(A, B)→ MorC(A, B′) = g 7→ f ◦ g.

B. The functor MorC(−, A) : C  Set sends an object B ∈ C0 to the hom set
MorC(B, A) and a morphism f : B→ B′ to the function

MorC( f , A) : MorC(B′, A)→ MorC(B, A) = g 7→ g ◦ f .

Definition 6 (Natural transformation). Let F, G : C  D be two covariant functors,
a natural transformation φ : F ⇒ G is a map φ : C0 → D1 that satisfies φ(A) ∈
MorD(F(A), G(A)) for all A ∈ C0 and makes the following diagram commute for any
f ∈ MorC(A, B):

F(A) G(A)

F(B) G(B)

F( f )

φ(A)

G( f )

φ(B)

For two contravariant functors, the vertical arrows are reversed. If each φ(A) is an
isomorphism, then we have a natural isomorphism and we denote F ∼= G.

Definition 7 (Adjoint functors). Let F : C D and G : D C be covariant functors.
We say that (F, G) are an adjoint pair if for any A ∈ C0 and B ∈ D0, we have an
isomorphism φA,B : MorD(FA, B)↔ MorC(A, GB). Such that for any f ∈ MorC(A, A′)
and g ∈ MorD(B, B′), the following diagram commutes.

MorD(F(A), B′) MorC(A, G(B′))

MorD(F(A), B) Mor)C(A, G(B))

MorD(F(A′), B) MorC(A′, G(B))

φA,B′

g◦(−) G(g)◦(−)
φA,B

(−)◦F( f ) (−)◦ f
φA′ ,B

Definition 8 (Equivalence). An equivalence of categories is a pair of covariant functors
F : C  D and G : D  C such that F ◦ G ∼= 1D and G ◦ F ∼= 1C. If the functors are
contravariant, we say that the pair is an anti-equivalence of categories.
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2 Modules

Definition 9 (R-biadditive map). Let R be a ring, A be a right R module, B be a left
R-module and H be an abelian group. An R-biadditive map f : A× B→ H is a map
that satisfies the following for any a, a′ ∈ A, b, b′ ∈ B and r ∈ R.

f (a + a′, b) = f (a, b) + f (a′, b)
f (a, b + b′) = f (a, b) + f (a, b′)

f (a · r, b) = f (a, r · b)

Definition 10 (Tensor product). Letting R, A and B be as above, we define the tensor
product of A and B denoted A⊗R B. Define

G =
⊕

(a,b)∈A×B

Z(a, b),

and let N be the normal subgroup generated by all elements of the form

(a + a′, b)− (a, b)− (a′, b) (a, b + b′)− (a, b)− (a, b′) (a · r, b)− (a, r · b),

for all a, a′ ∈ A, b, b′ ∈ B and r ∈ R. The tensor product is the quotient G/N and
general elements of A ⊗R B are of the form ∑i ai ⊗ bi, but this representation is not
unique.

Proposition 11. Let R, A and B be as above, the map π : A× B → A⊗R B = (a, b) 7→
a⊗ b is R-biadditive and it has the universal property that for any abelian group H and R-
biadditive map f : A× B → H, there is a unique group homomorphism g : A⊗R B → H
that makes the following diagram commute:

A× B A⊗R B

H
f

π

g

Proof idea. Define g to be the only possible choice, namely

g = ∑
i

ai ⊗ bi 7→∑
i

f (ai, bi),

by passing to the free group G defined above. Let g̃(a, b) = f (a, b) and extend by
linearity to get a homomorphism from G to H. Find that the kernel contains N and
conclude that there is a unique homomorphism A⊗R B 7→ H with the first isomor-
phism theorem.
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Proposition 12. Let R, A and B be as above and let A′ and B′ be right and left modules
respectively with homomorphisms f : A→ A′ and g : B→ B′. Then, there is a unique group
homomorphism f ⊗ g : A⊗R B→ A′ ⊗R B′ such that

( f ⊗ g)

(
∑

i
ai ⊗ bi

)
= ∑

i
f (ai)⊗ g(bi).

Proof idea. Define f × g = (a, b) 7→ f (a)⊗ g(b) and verify it is R-biadditive to con-
clude the existence and uniqueness of f ⊗ g.

Corollary 13. Let R, A and B be as above but with the requirement that A is a left S-module
and the action of R and S on A commute. Then, A⊗R B is a left S-module.

Proof idea. For any s ∈ S, let [s] denote the homomorphism taking a to s · a. Using the
last proposition, we obtain a group homomorphism [s]⊗ id. Define the action of s as
the action of [s]⊗ id and verify it makes A⊗R B into a left S-module. The symmetric
proof works when B is a bimodule.

Definition 14 (R-algebra). Let R be a ring, an R-algebra is a ring A with a homomor-
phism iA : R→ A such that the image of R is in the center of A. A homomorphism of
R-algebras A and B is a homomorphism of rings with the restriction that the image of
iA is sent to the image of iB.

Corollary 15. Let R be a ring and A and B be R-algebras, then A⊗R B is also an R-algebras.

Proof. For any s ∈ A, let [s] = a 7→ sa and for any t ∈ B, let [t] = b 7→ tb. For
any (s, t) ∈ A× B, we get an endomorphism of A⊗R B denoted [s]⊗ [t]. From the
universal property of A⊗R B, we get a unique homomorphism sending ∑i si ⊗ ti to
∑i[si]⊗ [ti]. Define multiplication by(

∑
i

si ⊗ ti

)(
∑

j
aj ⊗ bj

)
=

(
∑

i
[si]⊗ [ti]

)(
∑

j
aj ⊗ bj

)
= ∑

i,j
siaj ⊗ tibj,

and check that it makes A⊗R into a ring. The homomorphism iA⊗RB sends r to iA(r)⊗
1 = 1⊗ iB(r), check that its image is in the center of the ring.

Corollary 16. Let R be a ring and M be an R-module, then R⊗R M ∼= M.

Proof idea. We have the map M → R ⊗R M that sends m 7→ 1 ⊗ m. Construct its
inverse r⊗m 7→ rm by first defining (r, m) 7→ rm and showing it is R-biadditive.

Corollary 17. Let R be a commutative ring and I, J be ideals, then

R/I ⊗R R/J ∼= R/(I + J).

Proof idea. Define the map R→ R/I ⊗R R/J by r 7→ r⊗ 1. Check it has kernel (I + J)
and use FIT to get the map R/(I + J) → R/I ⊗R R/J. Next, define the map r ⊗
s 7→ rs in the other direction by using the universal property and show that they are
inverses.
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Theorem 18. Let R and S be rings and S AR be a bimodule, the functors

A⊗R (−) : RMod SMod and HomS(A,−) : RMod SMod

form an adjoint pair.

Proof idea. We already checked that A⊗R B sends left R-modules to left S-modules.
Define A⊗R ( f ) for f : B → B′ to be id⊗ f . Then, check that this makes A⊗R (−)
into a covariant functor.

The left R-module structure of HomS(A, B) when B is a left S-module is given by
the action r · f = a 7→ f (a · r). The functor sends a module homomorphism f to the
post composition f ◦ (−). Left to check that this is a covariant functor.

Fix a left R-module B and a left S-module C. Define the morphism

φ : HomS(A⊗R B, C)→ HomR(B, HomS(A, C)).

It sends a morphism f to φ( f ) = b 7→ f (− ⊗ b). Need to check that this φ( f )(b)
is a homomorphism of S-modules for any b ∈ B, that φ( f ) is a homomorphism of
R-modules for any f in the L.H.S. and that φ is a homomorphism of groups.

We now define the inverse

φ−1 : HomR(B, HomS(A, C))→ HomS(A⊗R B, C).

Let g be in the L.H.S., we note that sending (a, b)tog(b)(a) is an R-biadditive map and
it yields a unique homomorphism of groups A ⊗R B → C, this map is φ−1(g). We
need to check φ−1(g) is also a homomorphism of S-modules and that φ−1 is indeed
the inverse of φ.

We got the desired isomorphisms of groups between the adjoint pairs, but it remains
to check that they are natural.

Definition 19. Let k be a fields, G be a group and H < G. If V is a left k[H]-module,
define IndG

H V = k[G]⊗k[H] V. As seen above, this is a functor

IndG
H : k[H]Mod k[G]Mod.

If W is a left k[G] module, define ResG
H W to be W but only viewed as a k[H] module

(forgetting the action of elements not in H). This is a functor in the opposite direction.

Corollary 20. The functors (IndG
H, ResG

H) form an adjoint pair.

Proof idea. This is just an application of the last theorem. Letting R = k[H], S = k[G],
A = k[G] and noting that Homk[G](k[G], W) ∼= W.
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3 Complex Representations of Finite Groups

Definition 21 (Representation). Let G be a finite group, V be a finite dimensional
vector space over C and ρ : G → Aut(V) be a group homomorphism, (ρ, V) is called
a finite representation of G.

Definition 22 (Morphism of representation). Let (ρ, V) and (τ, W) be representations
of a finite group G, a linear map T : V1 → V2 is called a morphism of ρ1 to ρ2 if for
any g ∈ G, ρ2(g) ◦ T = T ◦ ρ1(g). We will denote HomG(V1, V2) to be the subspace of
Hom(V1, V2) with linear maps satisfying this property.

Proposition 23. Denote Rep(G) to be the category of representations we have just defined,
it is equivalent to the category C[G]Mod.

Proof idea. We define two functors that compose to the identity functor.
Given a C[G]-modules V, define G → Aut(V) by sending g to ρ(g) = v 7→ g · v

(where the product comes from the module structure). Verify that this is indeed a
representation of G. Conversely, given the representation (ρ, V), make V into a C[G]-
module by letting G act on it via ρ and extend the action by linearity.

Since the underlying sets of the objects do not change under the functors, mor-
phisms are not modified either. However, we still need to verify that they are homo-
morphism in the target category.

Definition 24 (Character group). For a group G, the character group of G, denoted G∗,
is the set of group homomorphisms from G to C×.

Proposition 25. The following are properties of the character group.

1. (H × G)∗ ∼= H∗ × G∗.

2. (Z/nZ)∗ ∼= Z/nZ.

3. If G is finite and abelian, G∗ ∼= G.

4. For a general group G, G∗ = (G/G′)∗.

Proof idea.

1. Define the map φ : (H × G)∗ → H∗ × G∗ with f 7→ ( f (·, 1), f (1, ·)). Show that
it is an isomorphism.

2. Observe that f ∈ (Z/nZ)∗ is only defined by where it sends the generator, and
it must send it to a generator of the group of nth roots of unity (this group is
isomorphic to Z/nZ).

3. Use the structure theorem and the two previous points.

4. Show that if f ∈ G∗, then f ([x, y]) = 1 and so G′ ⊆ ker( f ), then the result
follows from the first isomorphism theorem.
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Theorem 26. Let (ρ, V) be a representation of G, there exists a inner product that is G-
invariant (i.e. for all v, w ∈ V, 〈ρ(g)v, ρ(g)w〉 = 〈v, w〉).

Proof idea. Take any inner product (·, ·) and let 〈u, v〉 = 1
|G| ∑g∈G(ρ(g)u, ρ(g)v), verify

that 〈·, ·〉 is G-invariant.

Theorem 27. Any representation decomposes as a sum of irreducible representations.

Proof idea. Argue by induction. If U is a subrepresentation, then U⊥ (w.r.t. a G-invariant
inner product) is also a subrepresentation.

Theorem 28. Let G be an abelian group, every representation of G decomposes into a direct
sum of 1-dimensional representations.

Proof idea. First prove that ρ(g) is diagonalizable. Then use the fact that commuting
diagonalizable linear operator are simultaneously diagonalizable.

Lemma 29 (Schur). Let (ρ, V) and (τ, W) be irreducible representations of G, we have the
following:

HomG(V, W) ∼=
{

0 ρ 6∼= τ

C ρ ∼= τ

Proof idea. Note that if T ∈ HomG(V, W), ker(T) and Im(T) are subrepresentations,
this implies T is either trivial or an isomorphism. Now, look at an eigenspace of T and
show that it must be equal to the whole vector space.

Definition 30. Let (ρ, V) and (τ, W) be representations of G, σ : G → Aut(Hom(V, W))
is a new representation with σ(g)T = τ(g) ◦ T ◦ ρ(g−1).

Theorem 31. We get that for any g ∈ G, χσ(g) = χρ(g)χτ(g).

Proof idea. No need to learn it.

Definition 32. Let (ρ, V) be a representation of G, define the projection operator as
πρ : V → V with πρ = 1

|G| ∑g∈G ρ(g).

Theorem 33. If ρ = ρa1
1 ⊕ · · · ⊕ ρat

t where ρ1 is the trivial representation, then

πρ = IdV
a1
1
⊕ 0⊕ · · · ⊕ 0

From this, we get the following:

a1 = Tr(πρ) =
1
|G| ∑

g∈G
χρ(g) =

〈
χρ, χ1

〉
Proof idea. Note that VG = (Va1

1 )G ⊕ · · · ⊕ (Vat
1 )G and that except for i = 1, (Vai

i )G =
{0} because it is a subrepresentation. The result follows.
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Theorem 34. The characters of irreducible representations are orthogonal with respect to the
G-invariant inner product.

Proof idea. Use dim(Hom(V, W)G) = 1
|G| ∑g∈G χσ(g) =

〈
χρ, χτ

〉
. Then use Schur’s

lemma.

Proposition 35. Here are some consequences of the last theorem.

1. A representation ρ decomposes into an irreducible representation: ρ = ρa1
1 ⊕ · · · ⊕ ρat

t .

2. ai =
〈
χρ, χρi

〉
.

3. χρ determines ρ up to isomorphism.

4. ρreg = ρ
dim(ρ1)
1 ⊕ · · · ⊕ ρ

dim(ρt)
t .

5. ρ is irreducible if and only if
∥∥χρ

∥∥ = 1.

6. There exists finitely many irreducible characters (hence representations).

Proof idea.

1. Done above.

2. Follows from orthogonality of the irreducible characters.

3. Follows from the last part.

4. Follows from the fact that χreg is 0 everywhere but on the identity. Also implies
|G| = ∑i dim(ρi)

2, where the ρi’s are the irreducible representations.

5. Follows from orthonormality of the irreducible characters.

6. Since they are orthonormal, there cannot be more than the dimension of Class(G).

Definition 36. We define a more general operator. Let α ∈ Class(G), we define the
operator Aρ = ∑g∈G α(g)ρ(g).

Lemma 37. For two representations ρ and τ of G, Aρ⊕τ = Aρ ⊕ Aτ.

Proof idea. Use the definitions.

Theorem 38. Let χρ1 , . . . , χρt be the characters of all the irreducible representations of G, they
form an orthonormal basis of Class(G), in particular, t = h(G).

Proof idea. Let β ∈ Class(G) be a function orthogonal to all irreducible characters. Let
α = β and for an irreducible representation ρi, show that Aρi ≡ 0. Using the last
lemma, we get Aρreg ≡ 0, which is equivalent to α = β ≡ 0.
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Theorem 39. Let H < G be groups and (ρ, V) be a representation of H. The induced repre-
sentation is constructed by taking IndG

H V as a C[G]-module and looking at the corresponding
representation. Its character can be calculated like so:

IndG
H χ(g) =

1
|H| ∑

{b∈G|b−1gb∈H}
χ(b−1gb).

Proof idea. Writing G = qd
i=1giH yields the decomposition IndG

H V ∼= ⊕d
i=1gi ⊗ V.

Observe how G acts on this set and conclude that ρ(g) is a matrix with d square blocks
of size dim(V). Only the diagonal blocks contribute to the matrix and they occur when
ggi = gih for some h. We can conclude the formula by not only considering gi’s and
averaging over the size of H.

Corollary 40. If HC G, then the formula can be written as

IndG
H χ(g) =

{
0 g /∈ H

1
|H| ∑b∈G χ(b−1gb) g ∈ H

.

Theorem 41 (Frobenius reciprocity). Let H < G be groups and 〈·, ·〉X denote the inner
product of the class functions on X ∈ {H, G}. Let ρ be a representation of H and τ a repre-
sentation of G, we have 〈

IndG
H ρ, τ

〉
G
=
〈

ρ, ResG
H τ
〉

H
.

Proof idea. This is just a straightforward calculation with rearrangements in the sum.

Corollary 42. Let σ be an irreducible representation of H < G. The representation IndG
H σ is

irreducible if and only if for all g ∈ G \ H, σg 6∼= σ where σg = h 7→ σ(g−1hg).

Proof idea. Calculate the norm of IndG
H χσ using Frobenius reciprocity to get 1

|H| ∑g∈G 〈χσ, χσg〉.
Next, show that σg is always irreducible for g ∈ G \ H, to remove terms of the sum.
The equivalence is now clear to see.

Definition 43. A group G is supersolvable if it has a composition series where each
group is normal in G and each quotient is cyclic.

Theorem 44 (Blichfeldt). Let G be a supersolvable group and ρ an irreducible representation
of G, then there exists a subgroup J < G and one-dimensional representation ψ of J such that
ρ ∼= IndG

J ψ.

Definition 45 (Graded ring). A ring R is called graded if it decomposes as a direct
sum of abelian groups {Rn | n ∈N} such that for any m, n, RmRn ⊆ Rn+m.

Definition 46 (Tensor algebra). Let R be a commutative ring and V an R-module.
Denote T0(V) = R, T1(V) = V and generally Tn(V) =

⊗
R

n
i=1V and finally define

T•(V) =
⊕

n∈N Tn(V) to be the tensor algebra of V. This is a graded R-algebra.
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Definition 47 (Symmetric algebra). In the same setting as above, let I0 = I1 = 0, let
I2 be the R-span of the elements {x⊗ y− y⊗ x | x, y ∈ V} and generally let In be the
R-span of

{x1 ⊗ · · · ⊗ xn − xσ(1) ⊗ · · · ⊗ xσ(n) | ∀i, xi ∈ V, σ ∈ Sn}.

Define the symmetric algebra to be Sym•(V) =
⊕

n∈N Tn(V)/In and Symn(V) =
Tn(V)/In.

Definition 48 (Exterior algebra). In the setting of above, let J0 = J1 = 0 and let Jn be
the R-span of the elements of the elements

{x1 ⊗ · · · ⊗ xn | ∀i, xi ∈ V, ∃i < j, xi = xj}.

Define the exterior algebra to be
∧n V =

⊕
n∈N Tn(V)/Jn and

∧n V = Tn(V)/Jn.

Proposition 49. In the setting of above, suppose V is a free module of rank V, then

dim(Symn(V)) =

(
n + d− 1

n

)
and dim(

n∧
V) =

(
d
n

)
.

Proposition 50. Let V be a representation of G with character χ, the representation T2(V)
and Sym2(V) have characters χ2 and 1

2(χ
2 + χ(−2)).

Proposition 51. Let ρSt,0 be the non-trivial irreducible representation of Sn contained in ρSt,
then for any 1 ≤ a ≤ n− 1,

∧a ρSt,0 is irreducible.

Proposition 52. Let R be a commutative ring, V and W be R-modules, then there exists
R-module isomorphisms between the R-d-multilinear maps V → W and homomorphisms
Td(V) → W, between R-d-multilinear symmetric maps V → W and homomorphisms
Symd(V) → W and between R-d-multilinear antisymmetric maps V → W and homomor-
phisms

∧d V →W.

4 Representations of Sn

Definition 53 (Young). Let λ be a partition (λ1 ≥ · · · ≥ λr) of n. A Young diagram
associated to λ consists of r aligned rows of boxes where the i-th row has λi boxes. A
Young tableaux is a Young diagram filled with integers in {1, . . . , n}. The conjugate
partition of λ is the partition corresponding to the number of boxes in each column.
The diagram corresponding to the conjugate partition is the original diagram flipped
along the y = −x line. The standard tableau is when the boxes are filled in order going
from left to right and top to bottom.

Definition 54 (Young symmetrizer). Let λ be a partition of n, we define Pλ and Qλ

considering the standard tableau associated to λ:

Pλ = {σ ∈ Sn | σpreserves every row of the tableau}
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Qλ = {σ ∈ Sn | σpreserves every column of the tableau}.

The Young symmetrizer of λ is denoted cλ = aλbλ where aλ and bλ are elements of
the group ring C[Sn] defined by

aλ = ∑
σ∈Pλ

σ bλ = ∑
σ∈Qλ

.

Lemma 55. Let λ be a partition of n, then the following holds:

1. For any p ∈ Pλ, aλ p = paλ = aλ and pcλ = cλ.

2. For any q ∈ Qλ, qbλ = bλq = sgn(q)b and cλq = sgn(q)cλ.

3. For any x ∈ C[Sn] such that for any p ∈ Pλ and q ∈ Qλ, pxq = sgn(q)x, we have
x = kcλ with k ∈ C.

Lemma 56. Let T be a Young tableau and g ∈ Sn. Denote gT to be the tableau obtained after
multiplying every element in T by g on the left. Suppose no pair of distinct integers appear in
the same row of T and the same column of gT, then g ∈ PQ.

Corollary 57. For any z ∈ C[Sn], we have cλzcλ ∈ Ccλ. In particular, c2
λ = nλcλ for some

nλ ∈ C.

Lemma 58. Let G be a finite group and W be isomorphic to a subrepresentation of C[G].
There exists φ ∈ C[G] such that W ∼= C[G]φ and φ2 = φ.

Theorem 59. For any partition λ of n, Vλ = C[Sn]cλ is an irreducible representation.

Proposition 60. Let λ be a partition of n, then nλ = n!
dim(Vλ)

.

Lemma 61. If λ < µ in the lexicographic order of partition on n, then cλC[G]cµ = 0 and
cλcµ = 0.

Theorem 62. Let λ 6= µ be partitions of n, then Vλ 6∼= Vµ.

Corollary 63. All irreducible representations of Sn are isomorphic to Vλ for some partition λ
of n.

Definition 64 (Hook length). In a Young diagram, a hook associated to a box is the set
of boxes either below or to the right of this box (including the initial box). The hook
length is the size of this set.

Proposition 65. Let λ be a partition of n, then

dim(Vλ) =
n!

∏h is a hook (hook length of h)
.
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5 Category Theory II

Definition 66 (Hom functors). Let C be a category and A one of its objects. We as-
sociate to A a covariant functor hA = MorC(A,−) : C  Sets and a contravariant
functor hA = MorC(−, A) : C Sets.

Lemma 67 (Yoneda). Let F : C Sets be a covariant functor and Nat(hA, F) be the set of
natural transformations from hA to F. There is a natural bijection Nat(hA, F)↔ F(A) given
by

φ 7→ φA(idA) ∀φ ∈ Nat(hA, F)
u 7→ {φB = f 7→ F( f )(u) | ∀B ∈ C0} ∀u ∈ F(A).

Corollary 68. For any objects A, B of a category C, hA
∼= hB if and only if A ∼= B.

Definition 69 (Representable functor). A functor C  Sets is called representable
if there exists an object X ∈ C such that this functor is naturally isomorphic to
MorC(X,−) and covariant or it is naturally isomorphic to MorC(−, X) and contravari-
ant.

Theorem 70. Let F : C  D be a covariant functor, there exists a functor G : D  C
such that (F, G) is an equivalence of categories if and only if F is fully faithful and essentially
surjective.

Theorem 71 (Morita). Let R be a ring and n ∈ N be non-zero. The functor F : RMod  
Mn(R)Mod defined by sending a module M to Mn and a morphism f to f n = ( f , . . . , f )t is
an equivalence of categories.

Definition 72 (Division algebra). A ring R is called a division ring if every non-zero
element is a unit. The center of R is a field, so we also say that R is a division algebra
over this field.

Proposition 73. Any division algebra over R is either R, C or H, the Hamilton quaternions.

Theorem 74. Any finite division ring is a field.

Definition 75 (Universal property). 1 Let C be a category, X an object and J a com-
mutative diagram in C. We say that X satisfies an initial property if for any object Y
that can fit in the diagram J in the place of X, there is a unique morphism f : X → Y
such that we can fit both X and Y in the diagram J, add the morphism f and obtain a
commutative diagram. We say that X satisfies a terminal property if the direction of
the unique morphism is reversed.

An object satisfies a universal property if it satisfies a initial property or a terminal
property.

1This is a rough and not too formal definition, but encapsulates what is needed to know in this course.
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Definition 76 (Directed/injective system). Let C be a category, I be a poset, {Xi |} be
a set of objects of C and { fij | ∀i ≤ j} be such that fij ∈ MorC(Xi, Xj), fii = idXi and
f jk ◦ fij = fik for any i ≤ j ≤ k ∈ I. It can also be defined as a covariant functor from
the category representing the poset I to C.

Definition 77 (Cocone). Let I be a poset and F : I  C be a directed system. A cocone
of F(I) is a an object X along with morphisms ei : F(i)→ X such that for any i ≤ j ∈ I,
ej ◦ fij = ei.

Let X, {ei} and Y, {di} be cocones of the directed system. A morphism of cocones is
a morphism m : X → Y such that for any i ∈ I, m ◦ ei = di. This yields the category of
cocones of the directed system.

Definition 78 (Direct limit). Given a directed system as above, the direct limit of this
system, if it exists, is an object X ∈ C and morphisms ei : Xi → X that form an initial
object in the category of cocones of this system. We denote the limit lim−→Xi = X.

Proposition 79. In the category of Sets, the direct limit of any directed system {Xi}, { fij}
exists.

Proof idea. Let S be the disjoint union of the Xi’s, formally S = qi∈I{i} × Xi and ∼ be
the equivalence relation given by the symmetric extension of (i, x) ∼ (j, fij(x)) for all
i ≤ j ∈ I. We claim that lim−→Xi = S/ ∼ with morphisms ei : Xi → S/ ∼ defined by
sending x to [(i, x)]. Left to check this is an initial cocone.

Definition 80 (Direct sum/Coproduct). Let I be a discrete poset (no distinct elements
are comparable) and {Xi} form a directed system. The directed limit of this system is
called the direct sum or coproduct of the Xi’s. It is often denoted

⊕
i∈I Xi or qi∈IXi.

Proposition 81. In the category of RMod for a ring R, direct sums exist for any set of objects
{Xi} ex.

Proof idea. Define X =
⊕

i∈I Xi as the set of functions from I into the disjoint union of
the Xi’s such that f (i) ∈ Xi and for all but finitely many i ∈ I, f (i) = 0Xi . Check that
this is a module and that with the morphisms ei : Xi → X given by x 7→ a with ai = x
and aj = 0 for j 6= i, it forms an initial cocone.

Proposition 82. In the category of RMod, the direct limit of any directed system {Xi}, { fij}
exists.

Proof idea. Let the ei’s be defined as above, W ⊆ ⊕i∈I Xi be the R-module generated
by all elements of the form ei(x) − ej( fij(x)) and let L = (

⊕
i∈I Xi) /W. The maps

di : Xi → L are defined by di = π ◦ ei where π is the quotient map from
⊕

i∈I Xi to L.
Left to show this yields an initial cocone.

Proposition 83. The directed system F : N → FiniteSets with F(i) = {1, . . . , i} and
F(i ≤ j) being the inclusion map has no direct limit in FiniteSets.

13



Definition 84 (Pushout). Let C be a category with morphism f : A→ B and g : A→
C. We call the direct limit of the following diagram (where identity morphisms are
omitted) the pushout of the diagram.

A B

C

f

g

Corollary 85. Pushouts exist in Sets and RMod for a ring R.

Proposition 86 (Amalgamated product). In Grp, the pushout of the diagram as above
exists and it is called the amalgamated product and is denoted B ∗A C.

Proof idea. The underlying set is the set of all finite length words in the disjoint union
of B and C where we mod the equivalence relation generated by the following require-
ments:

1. If for some i, xi and xi+1 are in the same group and y = xi · xi+1, then x1 · · · xn ∼
x1 · · · xi−1yxi+1 · · · xn.

2. If for some i, xi = 1, then x1 · · · xn ∼ x1 · · · xi−1xi+1 · · · xn.

3. For every i and a ∈ A, if xi ∈ B, y = xi f (a) and z = g−1(a)xi+1, then x1 · · · xn ∼
x1 · · · xi−1yzxi+2 · · · xn.

4. For every i and a ∈ A, if xi ∈ C, y = xig(a) and z = f−1(a)xi+1, then x1 · · · xn ∼
x1 · · · xi−1yzxi+2 · · · xn.

The multiplication is word concatenation. The maps eX : X → B ∗A C are defined for
X ∈ {A, B, C} by a 7→ f (a) ∼ g(a), b 7→ b and c 7→ c respectively. Left to check this is
the pushout.

Observe that when A = {1} this corresponds to the free product.

Definition 87 (Projective/inverse system). Let I be a poset and C a category, a projec-
tive system is a contravariant functor F : I  C.

Definition 88 (Cone). Let I be a poset and F : I  C be an inverse system. A cone of
F(I) is a an object X along with morphisms ei : X → F(i) such that for any i ≤ j ∈ I,
fij ◦ ej = ei.

Let X, {ei} and Y, {di} be cones of the inverse system. A morphism of cones is a
morphism m : X → Y such that for any i ∈ I, ei ◦m = di. This yields the category of
cones of the inverse system.

Definition 89 (Inverse limit). Given an inverse system as above, the inverse limit of
this system, if it exists, is an object X ∈ C and morphisms ei : X → Xi that form a
terminal object in the category of cones of this system. We denote the limit lim←−Xi = X.
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Definition 90. The inverse limits for discrete systems are called direct products, they
are denoted ∏i∈I Xi.

Proposition 91. Direct products of any sets {Xi} exist in Sets.

Proof idea. The elements of ∏i∈I Xi are functions f : I → qi∈iXi such that f (i) ∈ Xi.
With the projection functions pi : ∏i∈I Xi → X = f 7→ f (i), we obtain a terminal cone
of the system.

Proposition 92. The inverse limit of any inverse system {Xi}, { fij} exists in Sets.

Proof idea. Let X be the set of elements f ∈ ∏i∈I Xi that satisfy f (i) = fij( f (j)) for
every i ≤ j. With the restrictions of the projection maps to X, we get a terminal cone
of the system.

Proposition 93. The inverse limit of any inverse system {Ri}, { fij} exists in Rings.

Proof idea. The underlying set and the projection maps are the same as for the inverse
limits in Sets, we just need to check that ∏i∈I Ri is a ring under coordinate-wise addi-
tion and multiplication.

Proposition 94. The inverse limit of any inverse system {Mi}, { fij} exists in RMod for any
ring R.

Proof idea. The underlying set and the projection maps are the same as for the inverse
limits in Sets, we just need to check that ∏i∈I Mi is a module under coordinate-wise
addition and the action r · f = f (r · −).

Definition 95 (Pullback). Let C be a category with morphism f : A→ C and g : B→
C. We call the inverse limit of the following diagram (where identity morphisms are
omitted) the pullback of the diagram.

A

B C

f

g

Definition 96 (Completion of a ring). Let R be a ring and I C R and denote In to be
the ideal generated by all products of n elements of I. We have an inverse system
indexed by N with F(n) = R/In and F(n ≤ m) being the canonical quotient map
R/Im → R/In. The completion of the ring R relative to I is the inverse limit of this
system, it is denoted R∧I and has the following underlying set:

{(. . . , rn+1, rn, . . . , r1) | ∀n ∈N, rn ∈ R/In, rn+1 ≡ rn (mod In).

We also have a natural map R→ R∧I given by r 7→ (. . . , r, r, r).
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Theorem 97 (Krull). Let R be a Noetherian domain and I 6= R be an ideal of R. The natural
map R→ R∧I is injective.

Definition 98 (Power series). Let A be a commutative ring and R = A[x1, . . . , xn] be
the ring of polynomials in n variables over A and let I = 〈x1, . . . , xn〉, then R∧I =
AJx1, . . . , xnK, the ring of power series of n variables over A.

Definition 99 (p-adic). Let p be prime, the ring of p-adic numbers denoted Zp is the
completion of Z relative to pZ.

6 Commutative Algebra

In the following R denotes a commutative ring.

Definition 100 (Multiplicative set). We say that a subset S ⊆ R is multiplicative if
1 ∈ S and S is closed under multiplication.

Definition 101 (Localization of rings). Let S be a multiplicative set in R. The local-
ization of R at S−1 is R[S−1] is a ring where all the elements of S are invertible. Let
RS = { r

s | r ∈ R, s ∈ S} and ∼ be the equivalence relation with r
s ∼

r′
s′ for all r, r′ ∈ R,

s, s′ ∈ S such that there exists s′′ ∈ S with s′′(s′r− sr′) = 0. We let R[S−1] = RS/ ∼
and addition and multiplication be defined as usual for fractions, this yields a com-
mutative ring.

Proposition 102. Let ` : R→ R[S−1] = r 7→ r
1 . This is a homomorphism with the universal

property that for any homomorphism f : R → B into a commutative ring with f (S) ⊆ B×,
there is a unique map F : R[S−1]→ B such that f = F ◦ `.

Definition 103 (Localization of modules). Let M be an R-module and S a multiplica-
tive set of R. The localization of M at S is a R[S−1]-module given by M[S−1] =
R[S−1]⊗R M.

Proposition 104. Let MS = {m
s | m ∈ M, s ∈ S} and ∼ be the equivalence relation with

m
s ∼

m′
s′ for all m, m′ ∈ M, s, s′ ∈ S such that there exists s′′ ∈ S with s′′(s′m− sm′) = 0.

Putting the obvious module structure on MS/ ∼ we get a R[S−1] module isomorphic to
M[S−1].

Definition 105 (Localization at an ideal). Let p a prime ideal of R, then R − p is a
multiplicative set and we denote Rp = R[(R− p)−1] and Mp = M[(R− p)−1].

Definition 106 (SES). A short exact sequence is a sequence of modules and morphisms

0 A B C 0
f g

such that the image of every map is the kernel of the following one.
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Definition 107 (Exact functor). Let F : C → D be a covariant additive functor between
additive full subcategories of RMod closed under taking kernels and quotients. We
say that F is exact if the image under F of a SES in C is an SES in D.

Proposition 108. Localization is an exact functor.

Proposition 109. Let S be a multiplicative set of R, there is a bijection between the prime
ideals of R[S−1] and the prime ideals of R that do not intersect S.

Proof idea. Recall the map ` : R → R[S−1]. For any I C R[S−1], denote Ic = `−1(I),
this is an ideal of R and if I is prime, then Ic is a prime ideal not intersecting S. For
any I C R, denote Ie = I[S−1], this is an ideal of R[S−1] and if I is prime and does not
intersect S, then Ie is prime or Ie = R[S−1]. Finally, we can show Iec = I and Ice = I
which yields the desired bijection and also implies Ie is a proper ideal.

Definition 110 (Local ring). We say that R is local if it has a unique maximal ideal.

Corollary 111. Let p be a prime ideal of R, then Rp is a local ring.

Definition 112 (Spectrum). The spectrum of R is Spec(R) = {[p] | p a prime ideal of R}.

Lemma 113. A homomorphism of rings f : R → S induces a function f ∗ : Spec(S) →
Spec(R) = [p] 7→ [ f−1(p)].

Definition 114 (Radical). Let I be an ideal of R, its radical is denoted
√

I and it is the
ideal {r ∈ R | ∃n ∈ N, rn ∈ I}. We say that I is radical if I =

√
I. It is clear that a

prime ideal is radical and the radical of any ideal is radical.

Definition 115 (Topology on Spec(R)). For any ideal I of R, define V(I) = {[p] ∈
Spec(R) | I ⊆ p}. We assign a topology on Spec(R) by letting {V(I) | I C R} be the
set of all closed sets.

Proposition 116. The object defined above is indeed a topology. Namely,

1. There exists ideals I and J such that ∅ = V(I) and Spec(R) = V(J).

2. For any ideals I and J, V(I) ∪V(J) = V(I J) is closed.

3. For any ideals {Iα}, ∩αV(Iα) = V(∑α Iα) is closed.

Lemma 117. Let I be an ideal of R, then
√

I = ∩{p | I ⊆ p is prime}.

Corollary 118. For any ideals I, JC R, V(I) = V(J) if and only if
√

I =
√

J.

Proposition 119. If p is a prime ideal, then V(p) is the closure of {[p]}.

Proposition 120. Let f : R→ S be a ring homomorphism, the induced map f ∗ is continuous
in the topology we defined.

Proof idea. Let I be an ideal of R, we claim that ( f ∗)−1(V(I)) = V(〈 f (I)〉). p is a prime
ideal containing f (I)⇔ f−1(p) contains I ⇔ f ∗[p] ∈ V(I)⇔ p ∈ ( f ∗)−1(V(I)).
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Proposition 121. Let f ∈ R, we denote D( f ) = {[p] | f /∈ p} = Spec(R)−V( f ).

Proposition 122. The function `∗ : Spec(R[〈 f 〉−1])→ Spec(R) is a homeomorphism onto
D( f ).

Definition 123. Let X be a topological space, we define the category TX where the
objects are open sets and for any open sets U, V MorTX(U, V) = {iU,V} if U ⊆ V and
MorTX(U, U) = ∅ otherwise.

Definition 124 (Sheaf). Let X be a topological space, a sheaf O of commutative rings
on X is a contravariant functor O : TX  Rings (we denote O(iU,V) = resVU or |U)
such that the following holds:

1. O(∅) = 0.

2. If U = ∪iUi and s ∈ O(U) is such that s|Ui = 0 for all i, then s = 0.

3. If U = ∪Ui and for all i, si ∈ O(Ui) are elements such that for all i, j, si|Ui∩Uj =

sj|Ui∩Uj , then there exists an element s ∈ O(U) such that s|Ui = si for all i.

Definition 125 (Ringed space). A ringed space is a topological space X along with a
sheaf of rings OX.

Definition 126 (Stalk). Given x ∈ X a point in a ringed space, the stalk or germs of
functions at x is the ring OX,x = lim−→{OX(U) | x ∈ U}. Elements of this ring are pairs
(U, f ) where U is an open set containing x and f ∈ OX(U) under the equivalence
relation (U, f ) ∼ (V, g) whenever f |U∩V = g|U∩V . Addition and multiplication is
defined by

(U1, f1)�(U2, f2) = (U1 ∩U2, f1|U1∩U2� f2|U1∩U2 .

Definition 127 (Locally ringed space). A locally ringed space is a ringed space such
that the stalk at any point is a local ring.

Proposition 128. We can make Spec(R) into a ringed space.

Proof idea. For any open set U, define O(U) to be the functions f on U with the prop-
erty that for any [p] ∈ U, f ([p]) ∈ Rp and there exists an open set V ⊆ U containing
[p] and elements r, s ∈ R where s /∈ q for any [q] ∈ V and f ([q]) = r

s ∈ Rq for all
[q] ∈ V. Need to check that this is indeed a sheaf of rings.

Lemma 129. The sheafO defined as above makes Spec(R) into a locally ringed space, namely,
the stalk at [p] is a local ring for any prime ideal p.

Proof. We claim that O[p]
∼= Rp which is a local ring.

Proposition 130. Let f ∈ R, then O(D( f )) = R[ f−1].

Corollary 131. O(Spec(R)) = R.
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Definition 132 (Morphism of sheaves). A morphism of sheaves φ : O → P is a natural
transformation between the two functors.

Definition 133 (Morphism of ringed spaces). Let (X,OX) and (Y,OY) be ringed
spaces and f : X → Y is a continuous map. We can define a new sheaf on Y
f∗OX = U 7→ OX( f−1(U)). A morphism of ringed spaces is f along with a morphism
of sheafs f ] : OY  f∗OX. If X and Y are locally ringed spaces, ( f , f ]) is a morphism
of locally ringed spaces if the induced ring homomorphisms f ] : OY, f (x) → OX,x is a
local homomorphism. Namely, the preimage of the maximal ideal is maximal.

Definition 134 (Affine schemes). An affine scheme is a locally ringed space isomor-
phic to (Spec(R),O) for some ring R. The category of affine schemes is a full subcate-
gory of the category of locally ringed spaces.

Theorem 135. The category of commutative rings is anti-equivalent to the category of affine
schemes.
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