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1 Introduction

This course is about differential geometry of curves, surfaces, and manifolds in R3 + integration with
differential forms.
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1.1 Dual Spaces

I am including this since I did not learn about dual spaces in my linear algebra class.

Definition 1 (Linear Functional). Let V be a vector space over K. A map φ : V → K is a
linear functional if ∀ v, u ∈ V , a, b ∈ K:

φ(au+ bv) = aφ(u) + bφ(v) (1)

Examples of linear functionals:

1. Let V be the vector space of polynomials in t over R. Define the definite integral operator
J(p(t)) :=

∫ 1
0 p(t)dt. By the linearity of integration, this is a linear functional on V .

2. Let V be the vector space of n× n matrices with real coefficients. Then, define the trace map:
T : V → R as the trace of a matrix A. This is a linear functional on V .

Definition 2 (Dual Space). Let V be a vector space over a field K. Then, the set of all linear
functionals on V over K is a vector space over K with addition and scalar multiplication defined by:

(φ+ σ)(v) := φ(v) + σ(v)

(kφ)(v) = kφ(v)

This vector space is called the dual space of V , denoted by V ∗.

Example 1. Consider V = Kn. This is the vector space of all n-tuples, written as column vectors.
Then, V ∗ can be thought of as the space of all row vectors. We can represent any linear functional
φ = (a1, ..., an) ∈ V ∗ as a linear form:

φ(x1, ..., xn) =
[
a1 a2 · · · an

] [
x1 x2 · · · xn

]t
= a1x1 + ...+ anxn

When you choose a basis for a vector space V , you obtain an induced basis on the dual V ∗:

Theorem 1. Suppose {v1, ..., vn} is a basis of V over K. Let φ1, .., φn ∈ V ∗ be linear functionals
defined by:

φi(vj) := δij (2)

Then, {φ1, ..., φn} is a basis of V ∗. This basis is called the dual basis.

Theorems giving the relationships between bases and their dual bases:

Theorem 2. Let {v1, ..., vn} be a basis of V ; let {φ1, ..., φn} be the dual basis in V ∗. Then:

1. ∀u ∈ V , u = φ1(u)v1 + ...+ φn(u)vn
2. For any linear functional σ ∈ V ∗, σ = σ(v1)φ1 + ...+ σ(vn)φn.

The change of basis on a vector space induces a change of basis on its dual. This is the point of the
following theorem:

Theorem 3. Let {v1, ..., vn} and {w1, ..., wn} be bases of V and let {φ1, ..., φn} and {σ1, ..., σn} be
bases of V ∗, dual to {vi} and {wi}, respectively. If P is the change of basis matrix from {vi} to {wi},
then (P−1)t is the change of basis matrix from {φi} to { σi}.

Theorem 4. If V is a finite-dimensional vector space, then V ∼= V ∗∗.

The following definition-theorem would have been very useful for the first homework :-)
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Definition 3 (Transpose of a Linear Mapping). Let U , V be vector spaces over K. Let T : V → U
be an arbitrary linear mapping. Let φ ∈ U∗ be a linear functional. Since linearity is stable under
compositions, the composition map φ ◦ T is a linear map V → K, and this (φ ◦ T ) ∈ V ∗. Define the
following map from U∗ → V ∗:

φ 7→ φ ◦ T

This map as defined is called the transpose of T. Formally: for each v ∈ V , the transpose map gives
us:

(T t(φ))(v) = φ(T (v)) (3)

Theorem 5. The transpose mapping T t is linear.

Theorem 6. Let T : V → U be linear. Let A be the matrix representation of T with respect to
the bases {vi} of V and {ui} of U . Then, the transpose matrix At is the matrix representation of
T t : U∗ → V ∗ relative to the bases dual to {ui} and {vi}.

1.2 Notions from Multivariable Cal

Definition 4 (Differential). The differential of a map f : Rm → Rn at the point φ ∈ Rm is the best
linear approximation of the map at the point φ:

f(q) = f(p) +Df(p) · (q − p) +O(||q − p||) (4)

Here, Df(p) is the differential, which is an n×m matrix.

Theorem 7 (Inverse Function Theorem). Let f : Rn → Rn be continuously differentiable in an open
set containing a and detf ′(a) 6= 0. Then, there is an open set V containing a and an open set W
containing f(a) such that f : V → W has a continuous inverse f−1 : W → V which is differentiable
and ∀y ∈W satisfies:

(f−1)′(y) = [f ′(f−1(y))]−1 (5)

Theorem 8 (Implicit Function Theorem). Let f : Rn × Rm → Rm be a continuously differentiable
function in an open set containing (a, b) and f(a, b) = 0. Let M be the m×m matrix:

(Dn+jf
i(a, b))

with 1 ≤ i, i ≤ m. If det(M) 6= 0, then there exists an open set A ⊆ Rn containing a and an open
set B ⊆ Rm containing b with the following property: ∀ x ∈ A, ∃1 g(x) ∈ B such that f(g, g(x)) = 0.
Moreover, the function g is differentiable.

Definition 5 (Line Integral). Let Ω ⊆ Rn be open. Let F be a smooth vector field. Let γ : [a, b]→ Ω
be an oriented curve. Then, the line integral of F over γ is defined as:∫

γ
F · dγ :=

∫ b

a
F (γ(t)) · γ′(t)dt

?

Definition 6 (Two-Dimensional Curl). Let F be a smooth vector field. Then, the two-dimensional
curl is defined as:

curl(F ) := ∂xFy − ∂yFx

Definition 7 (Unit Normal Vector of a Parameterised Surface). Let X : K ⊆ R2 → R3 be a parame-
terisation. Then, the unit normal vectors are:

n := ± ∂uX× ∂vX
||∂uX× ∂vX||

We will state some basic (and important) results from vector calculus: the divergence theorem,
green’s theorem, and stokes’ theorem.
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1.2.1 Divergence

Theorem 9 (Divergence Theorem). Let F be a smooth vector field and let Ω be a bounded domain
with outer normal n. Then: ∫∫∫

Ω
divFdΩ =

∫∫
∂Ω
F · ndS (6)

Where the divergence of a smooth vector field F is given by:

divF :=
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

We can write the divergence of a vector field as a dot product with the del operator:

divF = ∇ · F

1.2.2 Green’s Theorem

From the divergence theorem, we can deduce Green’s theorem. It is given by:

Theorem 10 (Green’s Theorem). Let P (x, y) and Q(x, y) be smooth functions R2 → R. Let Ω ⊆ R2

be bounded. Then: ∫∫
Ω

[
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

]
dxdy =

∫
C
P (x, y)dx+Q(x, y)dy (7)

where C = ∂Ω.

There is also a formulation for Green’s theorem in terms of the curl of a vector field.

Theorem 11 (Green’s Theorem II). Let K be a region bounded by a closed, oriented curve γ. Then,
for a smooth vector field F in K, we have:∫

γ
F · dγ =

∫
K

curl(F ) (8)

Finally, we have Stokes’ Theorem.

Theorem 12. Let Ω be a smooth, oriented surface bounded by a closed, smooth boundary curve ∂Ω
which is positively oriented. Let F be a smooth vector field. Then:∫

∂Ω
F · dr =

∫∫
Ω

curlF · dS (9)

2 Manifolds in R3

The aim of this part of the course is to build up to integration on manifolds and the invariant Stokes’
theorem. The main purpose of this sections is to develop coordinate-free calculus, which clarifies the
essence of what is happening (sometimes coordinates can be noisy).

2.1 Definitions

Definition 8 (K-Dimensional Manifold). A subset M ⊆ Rn is called a k-dimensional manifold in
Rn if ∀x ∈M , the following condition is satisfied: ∃ an open set U containing x and open set V ⊆ Rn,
and a diffeomorphism h : U → V such that

h(U ∩M) = V ∩ (Rk × {0})
= {y ∈ V | yk+1 = ... = yn = 0}

In other words, we require that U ∩M is, up to diffeomorphism, Rk × {0}.
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Definition 9 (C∞-function). There are two definitions.

1. f : M → R is C∞ if it is C∞ in each parameterisation.
2. f : M → R is C∞ if it is locally the restriction of a smooth function of the ambient space:
∀p ∈M , ∃V ⊆ Rn, V open, p ∈ V , and F : V → R with F |M∩V = f .

Before we can do calculus, we need to define vector fields in a coordinate-free way on a manifold M .

Definition 10 (Vector Field V on M). The vector field V on M is defined as a function C∞(M)→
C∞(M) satisfying three properties:

1. v(f + g) = v(f) + v(g) (Linearity I)
2. v(αf) = αv(f) (Linearity II)
3. v(fg) = fv(g) + gv(f) (Leibniz Law; captures the essence of differentiation)

Using this, we can define a derivation at x ∈ Rn. First take a derivation v ∈ Rn, and set:

v(f) :=
d

dt
[f(x+ tv)]t=v (10)

This is a directional derivative in the direction v.

Definition 11 (Tangent Bundle). Given a manifold Mn, you can package together all the tan-
gent spaces together into a 2n-dimensional manifold. You’d then obtain a vector bundle called the
tangent bundle:

T (M) :=
⊔
p∈M

Tp(M)

2.2 Smooth Maps from Mm → Nn

Let Mm and Nn be two manifolds. Consider a smooth map g between them. Fix a point p ∈ Mm.
The map g induces a map on the tangent spaces. This map, denoted:

Dgp(v) : Tp(M)→ Tg(p)(N)

is called the differential or push-forward. Here, v is a derivation at p ∈ M and f is a function on
N .

Definition 12 (Cotangent Space). The cotangent space is denoted by T ∗p (M). It is the dual space
of Tp(M). Functions on M give elements of T ∗p (M) in the following way:

df(v) := v(f)

where v ∈ Tp(M). v(f) is a derivation of f in the direction v.

2.3 Change of Coordinates

2.4 Multi-Linear Algebra

Definition 13 (k-linear map). Let V k := V × · · · × V (k times). A function f : V k → R is called
k-linear if it is linear in each of its k arguments.

A k-linear function on V is also called a k-tensor on V .

Definition 14 (Symmetric/Alternating). A k-linear function f : V k → R is symmetric if:

f(vσ(1), ..., vσ(k)) = f(v1, ..., vk)

for all permutations σ ∈ Sk (symmetric group on k letters); it is said to be alternating if

f(vσ(1), ..., vσ(k)) = (sgn(σ))f(v1, ..., vn)
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Examples of symmetric functions:

• the dot product, f(v, w) := v · w on Rn.

Examples of alternating functions:

• f(v1, ..., vn) := det[v1, ..., vn]
• Cross product v × w on R3.
• Generalisation of a cross product: let f, g : V → R on a vector space V . Define f∧g : V ×V → R

by:

(f ∧ g)(u, v) := f(u)g(v)− f(v)g(u)

(special case of the wedge product).

The space of all alternating k-linear functions on a vector space V is denoted by Ak(V ). When k = 0,
a 0-covector is a constant ⇒ A0(V ) is the vector space R. A 1-covector is a covector.

Definition 15 (Tensor Product). Let f be a k-linear function and g an l-linear function on a vector
space V . The tensor product is a (k + l)−linear function f ⊗ g defined as:

(f ⊗ g)(v1, ..., vk+l) := f(v1, ..., vk)g(vk+1, ..., vk+1) (11)

In order to motivate the next definition, assume that we have two multilinear functions f , g on a
vector space V . We would like to have a product that is alternating. This is why we define the wedge
product:

Definition 16 (Wedge Product). Let f ∈ Ak(V ) and g ∈ Al(V ). Then, the wedge product or
exterior product is defined as:

f ∧ g :=
1

k!l!
A(f ⊗ g)

This can be written out explicitly as:

(f ∧ g)(v1, ..., v(k+l)) =
1

k!l!

∑
σ∈Sk+l

f(vσ(1), ..., vσ(k))g(vσ(k+1), ..., vσ(k+l))

Remarks:

• When k = 0, this corresponds to scalar multiplication.
• The coefficient 1/l!k! compensates for repetitions in the sum.

Proposition 1. The wedge product is anti-commutative: if f ∈ Ak(V ) and g ∈ Al(V ), then:

f ∧ g = (−1)klg ∧ f

2.5 Differential Forms in Mn

Differential k-forms assign k-covectors on the tangent space to each point of an open set Ω. There is
a notion of differentiation for differential forms – the exterior derivative. This is something that turns
out to be intrinsic to the manifold.

Definition 17 (Differential One Form). A covector field or differential 1-form on an open subset
Ω ⊆ Rn is a function ω that assigns to each point p ∈ Ω a covector ωp ∈ T ∗p (Rn).

Given a C∞ function f : Ω → R, we can construct the one-form called the differential of f ,
denoted df as follows: let p ∈ Ω and let Xp ∈ Tp(Ω). Then, define:

(df)p(Xp) := Xp
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Proposition 2. Let x1, ..., xn be the standard coordinates on Rn. Then, at each point p ∈ Rn,
{(dx1)p, ..., (dx

n)p} is the basis of the cotangent space T ∗p (Rn) dual to the basis {[∂/∂x1]p, ..., [∂/∂x
n]p}

for the tangent space Tp(Rn).

Proposition 3 (Differential in terms of coordinates). If f : Ω→ Rn is C∞ on Ω ⊆ Rn open, then:

df =
∑ ∂f

∂xi
dxi

Definition 18 (Differential form of degree k). A differential k-form on Ω ⊆ Rn is a function
that assigns to each point p ∈ Ω an alternating k-linear function on the tangent space Tp(Rn); i.e.,
ωp ∈ Ak(Tp(Rn)).

• Basis for Ak(Tp(Rn)):

dxIp = dxi1p ∧ · · · ∧ dxikp , 1 ≤ i1 < · · · < ik ≤ n

• For each point p ∈ Ω, ωp can be expressed as a linear combination:

ωp =
∑

aI(p)dx
I
p, 1 ≤ i1 < · · · < ik ≤ n

• General k-form on Ω:

ω =
∑

aIdx
I

• Ωk(U) is the vector space of C∞ k-forms on U .

– 0-form on U is a smooth function on U .

The wedge product of two k-forms:

ω ∧ τ :=
∑

I,J disjoint

(aIbJ)dxI ∧ dxJ

To make this concrete: let x, y, z be the coordinates on R3. Then:

• C∞ 1-forms are:

fdx+ gdy + hdxz

where h, y, h range over all smooth functions on R3.
• C∞ 2-forms are:

fdy ∧ dz + gdx ∧ dz + hdx ∧ dy

• C∞ 3-forms are:

fdx ∧ dy ∧ dz

Here are some worked examples of taking the wedge products between differential forms.

Example 2. Consider the 2-form dx ∧ dy. Express this in polar coordinates.
Solution: We have: r = r cos θ and y = r sin θ. By the total derivative rule we have:

dx =
∂x

∂r
dr +

∂x

∂θ
dθ

dy =
∂y

∂r
dr +

∂y

∂θ
dθ
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and so:

dx = cos θdr − r sin θdθ

dy = sin θdr + r cos θdθ

and so from the properties of wedge products:

dx ∧ dy = cos θr cos θdr ∧ dθ − r sin θ sin θdθ ∧ dr
= r cos2 θdr ∧ dθ − r sin2 θdθ ∧ dr
= r cos2 θdr ∧ dθ + r sin2 θdr ∧ dθ
= r(cos2 θ + sin2 θ)dr ∧ dθ
= rdr ∧ dθ

Which is what we would expect from standard cal 2.

In general, if we have a system of equations:

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

and we collect the coefficients aij into a matrix:

A :=

[
a11 a12

a21 a22

]

then we have:

dy1 ∧ dy2 = det(A)dx1 ∧ dx2

Which is also not very surprising.

Example 3. Let f : R2 → R2, (x, y) 7→ (u, v) according to:

u = x2 − y2

v = 2xy

Express du ∧ dv in terms of dx ∧ dy.
Solution: By the total derivative rule:

du = 2xdx− 2ydy

dv = 2xdy + 2ydx

and so, by the properties:

du ∧ dv = (2xdx− 2ydy) ∧ (2xdy + 2ydx)

= 2xdx ∧ (2xdy + 2ydx)− 2ydy ∧ (2xdy + 2ydx)

= 4x2dx ∧ dy − 4y2dy ∧ dx
= 4x2dx ∧ dy + 4y2dy ∧ dy
= 4(x2 + y2)dx ∧ dy

Note that the quantity 4(x2 + y2)dx ∧ dy depends on how f is defined, so the proper way to refer to
this quantity is to say that 4(x2 + y2)dx ∧ dy is the pull back of du ∧ dv via f . Mathematically, we
would write:

f∗(du ∧ dv) = 4(x2 + y2)dx ∧ dy
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This example motivates the following rules for pull backs and wedge products.

Proposition 4. Let g be a function and let α, ω, and β be differential forms. Then:

1. g∗(α ∧ β) = g∗α ∧ g∗β
2. g∗(fω) = (g∗f)(g∗ω)

Definition 19 (Exterior Derivative). We will define the exterior derivative in two steps: first for
0-forms; then, we will generalise to k-forms. The exterior derivative of a smooth function f is the
differential df ∈ Ω1(U). With coordinates:

df :=
∑ ∂f

∂xi
dxi

Now let k ≥ 1. Set ω =
∑

I aIdx
I ∈ Ωk(U). Then the exterior derivative is defined as:

dω :=
∑
I

daI ∧ dxI

=
∑
I

(∑
J

∂aI
∂xj

dxj

)
∧ dxI ∈ Ωk+1(U)

To make this clearer, let’s do an example. Let ω be the 1-form fdx+ gdy on R2. Then:

dω = df ∧ dx+ df ∧ dy
= (fxdx+ fydy) ∧ dx+ (gxdx+ gydy) ∧ dy (by definition)

= (gx − fx)dx ∧ dy (by properties of wedge product)

Here are two useful properties of the exterior derivative:

Proposition 5 (Properties of the Exterior Derivative). Let α ∈ Λk(M), β ∈ Λl(M). Let a, b ∈ R.
Then:

1. d(aα+ βb) = adα+ bdβ (Linearity)
2. d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ (Product rule)
3. d(dα) = 0

Here are some concrete examples of computing exterior derivatives.

Example 4. Let ω = ydx− zdy. Compute the exterior derivative dω. Solution:

dω = dy ∧ dx− dz ∧ dy

Example 5. Let ω = (x2 + y2 + z2)(dx ∧ dy + dy ∧ dz). Compute the exterior derivative dω:

dω = (2xdx+ 2ydy + dzdz) ∧ (dx ∧ dy + dy ∧ dz)
= 2xdx ∧ dy ∧ dz + 2zdz ∧ dx ∧ dy
= (2x+ 2y)(dx ∧ dy ∧ dz)

Example 6. Let ω = xdy−ydx
x2+y2

be the angular form. Find the exterior derivative dω.
Solution: Re-write the form as:

(x2 + y2)ω = xdy − ydx

Now take the exterior derivative of both sides:

d((x2 + y2)ω) = d(xdy − ydx)
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Let’s first simplify d((x2 + y2)ω):

d((x2 + y2)ω) = d(x2 + y2) ∧ ω + (x2 + y2)dω (by the product rule)

= (2xdx+ 2ydy) ∧ w + (x2 + y2)dω

= (2xdx+ 2ydy) ∧ xdy − ydx
x2 + y2

− (x2 + y2)dω

Now expand out (dxdx+ 2ydy) ∧ xdy−ydx
x2+y2

:

(2xdx+ 2ydy) ∧ xdy − ydx
x2 + y2

= 2xdx ∧
(
xdy − ydx
x2 + y2

)
+ 2ydy ∧

(
xdy − ydx
x2 + y2

)
=

1

(x2 + y2)

[
2x2dx ∧ dy − 2xydx ∧ dx+ 2yxdy ∧ dy − 2y2dy ∧ dx

]
=

1

(x2 + y2)

[
(2x2 + 2y2)dx ∧ dy

]
= 2(dx ∧ dy)

And so we get:

d((x2 + y2)ω) = 2dx ∧ dy + (x2 + y2)dω

Now we compute the exterior derivative d(xdy − ydx):

d(xdy − ydx) = dx ∧ dy − dy ∧ dx = 2dx ∧ dy

And so:

(x2 + y2)dω = 0 ⇐⇒ dω = 0

Since we are in the punctured disc and so x2 + y2 > 0.

There is a connection between the exterior derivative and the curl operation from advanced calculus.
Precisely: let α be a general one-form of three variables be written as:

α = Pdx+Qdy +Rdz

Then, when taking the exterior derivative dα we recover the curl:

dα = dP ∧ dx+ dQ ∧ dy + dR ∧ dz
= (Ry −Qz)dy ∧ dz + (Pz −Rx)dz ∧ dx+ (Qx − Py)dx ∧ dy
= ∇× F

Definition 20 (Closed and Exact Forms). Let ω be a k-form on U . We say that ω is closed if dω = 0.
We say that ω is exact if ∃ a (k − 1)-form τ such that ω = dτ . Every exact form is closed.

2.6 Change of Variables for Integrals in Rn

2.7 Integrating a n-Form on Mn (
∫
M
ω)

In this section, we will build up to the invariant Stokes’ theorem. We will first start with line integrals,
and how they can be written in terms of forms.
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2.7.1 Line Integrals

The objective is to compute the following object:∫
γ
ω (12)

where ω is a one-form and γ is a path or curve. The general setup is as follows:

1. Suppose that the variables in the differential one-form are x1, ..., xn. We will collect these into
a vector x := (x1, ..., xn) and write the one-form ω as:

ω =
n∑
i=1

Fkdxk

where Fk is:

Fk = Fk(x) = Fk(x1, ..., xn)

2. There are two ways to describe γ:

a) A system of parametric equations: xk := xk(t)
b) In vector form: x = x(t) where t ∈ [a, b].

When γ is just a standard path in [a, b] (i.e., one that corresponds to standard Cal 2 integration),
then we just have the standard definite integral when taking the pull back of ω:∫

γ
ω =

∫ b

a
F (t)dt

You can think of the pull back as “substituting” t into F . For the more general case, we pull back a
differential form ω in n variables xj ’s via γ to get a differential form on one variable t. This is denoted
by γ∗ω. You obtain it by the substitution:

xj = xj(t)

into ω. So:

ω =
n∑
k=1

Fkdxk –PULL BACK: → γ∗(ω) =
n∑
k=1

Fk(x(t))dxk(t) =
n∑
k=1

Fk(x(t))x′k(t)dt

So, we can formally define a line integral in the general case.

Definition 21 (Line Integral – Differential Forms). Let ω be a one-form given by ω =
∑n

k=1 Fk(x)dxk
and let γ be a curve. Then, the line integral is defined as:∫

γ
ω :=

∫ b

a
γ∗ω (13)

where γ∗ω =
∑n

k=1 Fk(x(t))dxkdt dt.

I find that all of this stuff is super confusing without clear examples, so here are some worked
examples of line integrals of one-forms:

Example 7. Compute the line integral: ∫
γ
xdy + ydz + zdx

For the following three paths connecting the point (0, 0, 0) to (1, 1, 1):
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1. γ = α: (x, y, z) = (t, t, t) where t ∈ [0, 1].
2. γ = β: (x, y, z) = (t, t2, t3) where t ∈ [0, 1].
3. γ = ζ: (x, y, z) = (t2, t4, t6) where t ∈ [0, 1].

Computing the pullbacks gives us:

1. α∗ω = tdt+ dtd+ tdt = 3tdt
2. β∗ω = td(t2) + t2d(t3) + t3dt = (2t2 + 3t4 + t3)dt
3. ζ∗ω = (4t5 + 6t9 + 2t7)dt.

Carrying out the integration: ∫
α
ω =

∫ 1

0
3tdt = 3/2∫

β
ω =

∫ 1

0
(2t2 + 3t4 + t3)dt = 91/60∫

ζ
ω =

∫ 1

0
(4t5 + 6t9 + 2t7) = 91/60

Example 8. Compute the line integral:∫
γ
ω :=

∫
γ

xdy − ydx
x2 + y2

where γ is the path around the unit circle once in the anti-clockwise direction parameterised by
x = cos t and y = sin t, t ∈ [0, 2π].

Solution: Set:

ω :=
xdy − ydx
x2 + y2

Compute the pullback:

γ∗ω =
x(t)dy(t)− y(t)dx(t)

(x(t))2 + (y(t))2

=
cos(t)d(sin(t))− sin(t)d(cos(t))

(cos(t))2 + (sin(t))2

=
cos2(t) + sin2(t)

cos2(t) + sin2(t)

= 1

and so the integral becomes: ∫
γ
ω =

∫ 2π

0
dt = 2π

2.7.2 Surface Integrals

Now the objective is to compute the following surface integral:∫∫
σ
ω

of a two-form ω over a parameterised surface σ ⊆ R3.
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Definition 22 (Surface Integral – Differential Forms). Let ω be a two form. Let σ be parameterised
as:

x = x(u, v) = (x1(u, v), x2(u, v), x3(u, v))

where (u, v) runs through the rectangle [a, b]× [c, d]. Then, the surface integral is defined as:∫∫
σ
ω =

∫∫
R
σ∗ω =

∫∫
R
f(u, v)dudv =

∫ b

a
du

∫ d

c
f(u, v)dv (14)

This is best explained through an example.

Example 9. Let ω := xdy ∧ dz+ ydz ∧ dz+ zdx∧ dy be the two-form. Suppose we want to integrate
this over the parameterised surface σ : R→ R3, R := [0, 2π]× [−π/2, π/2] given by:

σ(θ, ϕ) = (cos θ cosφ, sin θ cosφ, sinφ)

Compute the surface integral
∫
σ ω.

Solution: By definition, we have
∫∫
σ ω =

∫∫
R σ
∗ω, so we first need to compute the pull back of ω

under σ. Analogously to the line integral case, we have:

σ∗ω = x1(θ, ϕ)σ∗(dy ∧ dz) + x2(θ, ϕ)σ∗(dz ∧ dx) + x3(θ, ϕ)σ∗(dx ∧ dy)

By the properties of the push-back and wedge products, we can re-write this as:

σ∗ω = x1(θ, ϕ)σ∗dy ∧ σ∗dz + x2(θ, ϕ)σ∗dz ∧ σ∗dx+ x3(θ, ϕ)σ∗dx ∧ σ∗dy

Applying the properties once more:

σ∗dx = dσ∗x = d(cos θ cosϕ) = − sin θ cosϕdθ − cos θ sinϕdϕ

σ∗dy = dσ∗y = d(sin θ cosϕ) = cos θ cosϕdθ − sin θ sinϕdϕ

σ∗dz = dσ∗z = d(sinϕ) = cosϕdϕ

and so the wedge products are:

σ∗dy ∧ σ∗dz = (cos θ cosϕdθ − sin θ sinϕdϕ) ∧ cosϕdϕ

= cos θ cosϕ cosϕdθ ∧ dϕ
= cos θ cos2 ϕdθ ∧ dϕ

σ∗dz ∧ σ∗dx = cosϕdϕ ∧ (− sin θ cosϕdθ − cos θ sinϕdϕ)

= − cos2 ϕ sin θdϕ ∧ dθ
= cos2 ϕ sin θdθ ∧ dϕ

σ∗dx ∧ σ∗dy = (− sin θ cosϕdθ − cos θ sinϕdϕ) ∧ (cos θ cosϕdθ − sin θ sinϕdϕ)

= (− sin θ cosϕdθ) ∧ (cos θ cosϕdθ − sin θ sinϕdϕ)− (cos θ sinϕdϕ) ∧ (cos θ cosϕdθ − sin θ sinϕdϕ)

= cosϕ sinϕdθ ∧ dϕ

Substitute these values into

σ∗ω = x1(θ, ϕ)σ∗dy ∧ σ∗dz + x2(θ, ϕ)σ∗dz ∧ σ∗dx+ x3(θ, ϕ)σ∗dx ∧ σ∗dy (15)

and we obtain:

σ∗ω = cos θ cosϕdy ∧ dz + sin θ cosϕdz ∧ dx+ sinϕdx ∧ dy
= cos θ cosϕ cos θ cos2 ϕdθ ∧ dϕ+ sin θ cosϕ cos2 ϕ sin θdθ ∧ dϕ+ sinϕ cosϕ sinϕdθ ∧ dϕ

After re-grouping and simplifying, we obtain:

σ∗ω = cosϕdθ ∧ dϕ



Math 458: Differential Geometry Winter 2020 – Summary Page 14

And so the surface integral becomes:∫∫
σ
ω =

∫∫
R

cosϕdθ ∧ dϕ

=

∫ 2π

0
dθ

∫ π/2

−π/2
cosϕdϕ

=

∫ 2π

0
[sinϕ]

ϕ=π/2
ϕ=−π/2dθ

=

∫ 2π

0
2dθ

= 4π

In order to properly get to the Generalised Stokes’ theorem, we need some notation / review from
Ad Cal: Let î = (1, 0, 0), ĵ = (0, 1, 0) and k̂ = (0, 0, 1) denote the standard basis vectors in R3, and
let the following be the radial vector:

r := (x, y, z) = xî+ yĵ + zk̂

Then, the differential dr is given by:

dr = (dx, dy, dz) = dxî+ dyĵ + dzk̂ (16)

Now let F := (P,Q,R) be a vector field. This justifies the following expression that we had for line
integrals: ∫

γ
F · dr =

∫
γ
Pdx+Qdy +Rdz =

∫
γ
ω

We have the following identity for the “surface area” element of a surface integral, dS:

dS =
1

2
(dr × dr) (17)

We will use this identity to compute the pull-back of a parameterisation. Let σ be a bounded para-
metric surface. Then, we have the following identity:

σ∗dS = (ru × rv)du ∧ dv (18)

Which gives us the following definition of the surface integral in terms of differential forms:

I =

∫∫
σ
F · dS

∫∫
D
σ∗αF (19)

where αF = F · dS. This is best explained with an example:

Example 10. Let ω := xdydz + ydzdx + zdxdy. In terms of vector fields, this can be written as
F · dS, where F = (P,Q,R) = (x, y, z). Parameterise the sphere as:

x = cos θ cosϕ

y = sin θ cosϕ

z = sinϕ

Then, σ∗(F · dS) = F · (ru × rv)dudv, which is equal to:

det

P Q R

xu yu zu

xv yv zv

 (20)
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So, carrying out this calculation gives:

σ∗(F · dS) = det

 cos θ cosϕ sin θ cosϕ sinϕ

− sin θ cosϕ cos θ cosϕ 0

− cos θ sinϕ − sin θ sinϕ cosϕ


= cos θdθ ∧ dϕ

We can write the surface element, in general, as:

dS :=
√

(dy ∧ dz)2 + (dz ∧ dx)2 + (dx ∧ dy)2 (21)

and the area of a parameterised region σ is given by:∫∫
σ
dS :=

∫∫
D
σ∗dS (22)

where D is the region of parameterisation.

2.7.3 Generalised Stokes’ Theorem

Green’s Theorem and the classical Stokes’ theorem are really the same theorem for 1-forms, just in
different dimensions (R2 vs R3). The theorem is given by:

Theorem 13. Let M be an oriented n-dimensional manifold with boundary ∂M , where ∂M is (n−1)-
dimensional. Let ω be an (n− 1)-form defined on M . Then we have:∫

M
dω =

∫
∂M

ω (23)

The cases of n = 2 and n = 3 correspond to Greens’ theorem and the classical stokes’ theorem,
respectively:

When n = 2, a general one-form can be written as ω = Pdx+Qdy. Then, (23) becomes:∫∫
S

[
∂Q

∂x
− ∂P

∂y

]
dx ∧ dy =

∫
∂S
Pdx+Qdy (24)

Observe tha this is Green’s theorem. When n = 3, then a general one-form can be written as
ω = Pdx+Qdy +Rdz. Then, (23) becomes:∫∫

S
curl(F ) · dS =

∫
∂S
F · dr (25)

Observe that this is the classical Stokes’ theorem. Applications of Stokes’ theorem are best explained
by examples.

Example 11. Verify that the area of a planar region surrounded by a loop is given by 1
2

∫
γ xdy−ydx.

Use this to find the area Ae of the region surrounded by the ellipse (x2/a2) + (y2/b2) = 1, where
a, b ∈]0,∞[.

Solution: Recall that the area of a region D ⊆ R2 is given by:

A(D) =

∫∫
D
dx ∧ dy (26)

We have:

1

2

∫
γ
xdy − ydz =

∫
∂S
ω
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So, set ω := xdy − ydx. Then, the exterior derivative becomes:

d(xdy − ydx) = d(xdy)− d(ydx)

= dx ∧ dy − dy ∧ dx
= 2dx ∧ dy

And so, by (23) (Stokes’), we have:

1

2

∫
γ
xdy − ydx =

1

2

∫∫
D
dω =

1

2

∫∫
D

2dx ∧ dy =

∫∫
D
dx ∧ dy (27)

which verifies the first statement. We can now use this to compute the area of the ellipsoid. The
parametrisation is x = a cos(t) y = b sin(t), t ∈ [0, 2π]. Plugging this into the formula verified above,
we obtain:

Ae =
1

2

∫
γ
xdy − ydx

=
1

2

∫ 2π

0
a cos(t)d(b sin(t))− b sin(t)d(a cos(t))

=
1

2

∫ 2π

0
a cos(t)b cos(t) + b sin(t)a sin(t)

=
1

2

∫ 2π

0
ab(cos2(t) + sin2(t))

=
1

2

∫ 2π

0
ab

= abπ

Example 12. Find the line integral
∫
γ ω, where ω = xydy + ydz, and γ is a path running along the

boundary of the parallelogram, starting from its vertex A = (1, 1, 0), passing vertices B = (2, 3, 1),
C = (2, 5, 2), D = (1, 3, 1), and back to A.

Solution: We will apply Stokes’ theorem. We can parameterise this by:

σ(u, v) = OA+ uAB + vAD

= (1, 1, 0) + u(1, 2, 1) + v(0, 2, 1)

= (1 + u, 1 + 2u+ 2v, u+ v)

where u, v ∈ [0, 1]. This defines a parameterisation. By construction, γ = ∂P . By Stokes’ theorem:∫
γ
ω =

∫
∂P
ω =

∫
P
dω

Set ω = xydy + ydz. Then:

dω = d(xydy) + d(ydz)

= d(xy) ∧ dy + dy ∧ dz
= (ydx+ xdy) ∧ dy + dy ∧ dz
= ydx ∧ dy + xdy ∧ dy + dy ∧ dz
= ydx ∧ dy + dy ∧ dz

Now, by the definition of a surface integral:∫∫
P
dω =

∫∫
[0,1]×[0,1]

σ∗dω
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σ∗dω = (1 + 2u+ 2v)d(1 + u) ∧ d(1 + du+ 2v) + d(1 + 2u+ 2v) ∧ d(u+ v)

The constants in the d(·) drop out:

σ∗dω = (1 + 2u+ 2v)du ∧ d(2u+ 2v) + d(2u+ 2v) ∧ d(u+ v)

= (1 + 2u+ 2v)du ∧ (d(2u) + d(2v)) + (d(2u) + d(2v)) ∧ d(u+ v)

= 2(1 + 2u+ 2v)du ∧ dv + (2du+ 2dv) ∧ du+ (2du+ 2dv) ∧ dv
= 2(1 + 2u+ 2v)du ∧ dv + 2dv ∧ du+ 2du ∧ dv
= (2 + 4u+ 4v)du ∧ dv

Plugging this into the integral gives:∫∫
P
dω =

∫ 1

0

∫ 1

0
[2 + 4u+ 4v]dudv = 6

3 Curves

There are two subsets of differential geometry: classical differential geometry and global differential
geometry. The objective of classical differential geometry is to study the local properties of curves
and surfaces. The objective of global differential geometry is to study the influence of local
properties on global behaviour.

3.1 Definitions

Definition 23 (Parameterised Differentiable Curve). A parameterised differentiable curve is a
differentiable map α : I → R3 of an open interval I =]a, b[ of the real line R into R3. The image of α
is called the trace of α.

Some examples of parameterised curves include:

• The helix: α(t) = (a cos(t), a sin(t), bt) for t ∈ R.
• The map α : R→ R2, t ∈ R, is a parameterised differentiable curve.

Definition 24 (Norm on R3). Let u = (u1, u2, u3) ∈ R3. The norm of u is:

||u|| :=
√
u2

1 + u2
2 + u3

3

Definition 25 (Inner Product on R3). Let u = (u1, u2, u3) and v = (v1, v2, v3) belong to R3 and let
θ ∈ [0, π] be the angle formed between u, v. The inner product is defined by:

u · v := ||u||||v|| cos(θ) (28)

It satisfies the following properties:

1. If u, v are non-zero, then u · v = 0 ⇐⇒ u ⊥ v.
2. u · v = v · u.
3. λ(u · v) = λu · v = u · λv.
4. u(v + w) = u · v + u · w.

If we have made a choice of basis, then we can formulate the dot product in terms of the components
of the vectors as:

u · v = u1v1 + u2v2 + u3v3 (29)
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3.1.1 Regular Curves and Arclength

In differential geometry, it is essential that our curves have a tangent line at every point. This motivates
the following definition.

Definition 26 (Regular Curve). A parameterised differentiable curve α : I → R3 is regular if
α′(t) 6= 0 ∀t ∈ I.

Definition 27 (Arc length). Given t0 ∈ I, the arc length of a regular parameterised curve α : I → R3

from t0 to t is defined to be:

s(t) :=

∫ t

t0

|a′(t)|dt

where

|α′(t)| :=
√

(x′(t))2 + (y′(t))2 + (z′(t))2

Since we only restrict our attention to regular surfaces, a′(t) 6= 0 for all t, and so the arlength function
is a differentiable function of t and ds/dt = |a′(t)| (by the Fundamental Theorem of Calculus). Arc
length parameterisations make life simpler.

3.1.2 The Vector Product in R3

Definition 28 (Vector Product). Let u, v ∈ R3. Then, the vector product of u, v is the unique
vector u ∧ v in R3 characterised by:

(u ∧ v) · w = det(u, v, w) ∀w ∈ R3

this is more commonly known as:

u ∧ v = det

 î ĵ k̂

u1 u2 u3

v1 v2 v3


where î, ĵ, k̂ are the standard basis vectors in R3.

Properties of the Vector Product

1. (Anti-Commutativity): u ∧ v = −v ∧ u.
2. (Linear Dependence): ∀ α, β ∈ R:

(αu+ βv) ∧ v = αu ∧ v + βw ∧ v

3. u ∧ v = 0 ⇐⇒ u and v are linearly dependent.
4. (u ∧ v) · u = 0, (u ∧ v) · v = 0 (this implies that the vector product is normal to the plane

generated by u and v).

3.2 Frenet-Serret Frame

Definition 29 (Curvature). Let α : I → R3 be a curve parameterised by arclength s ∈ I. The number
||α′′(s)|| = κ(s) is called the curvature of α at s.

It’s straightforward to check that κ(s) = 0 ⇐⇒ α(s) = us+ v (i.e., the curve is actually a straight
line). When κ(s) 6= 0, the unit normal n(s) in the direction α′′(s) is well-defined and is given by:

α′′(s) := κ(s) · n(s)

The orthogonality of n(s) to α′(s) can be verified by differentiating both sides of α′(s) ·α′(s) = 1 since
||α′(s)|| = 1.
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Definition 30 (Osculating Plane at s). The osculating plane at s is the plane determined by the
unit tangent and normal vectors, α′(s), and n(s).

Definition 31 (Binormal Vector at s, b(s)). The binormal vector as s is defined as t(s) ∧ n(s),
where t(s) is the unit tangent at s. The magnitude of this vector, ||b(s)||, measures how rapidly the
curve pulls away from the osculating plane at s in a neighbourhood of s.

Definition 32 (Torsion). Let α : I → R3 be a curve parameterised by arclength s such that α′′(s) 6= 0,
s ∈ I. The number τ(s) defined by b′(s) := τ(s)n(s) is called the torsion of α at s. We have the
following useful characterisation:

α is a plane curve ⇐⇒ τ ≡ 0

Thus, torsion measures how much a curve fails to be a plane curve.

Collecting the orthogonal unit vectors t(s), n(s), b(s) gives us the Frenet Trihedron at s. Using
the above definitions gives us the Frenet Formulae, which is a set of differential equations:

t′ = κn (30)

n′ = −κt− τb (31)

b′ = τn (32)

• The tb plane is called the rectifying plane
• The nb plane is called the normal plane
• κ and τ completely describe a curve’s behaviour.
• Bending ∼ curvature; twising ∼ torsion.

The Frenet-Serret frame can be concisely expressed as a skew-symmetric matrix:T
′

N ′

B′

 =

 0 κ 0

−κ 0 τ

0 −τ 0

 ·
TN
B

 (33)

Theorem 14 (Fundamental Theorem of the Local Theory of Curves). Given differentiable functions
κ(s) > 0 and τ(s), s ∈ I, there exists a regular parameterised curve α : I → R3 such that s is the
arclength, κ(s) is the curvature, and τ(s) is the torsion of α. Moreover, any other curve α̃ satisfying
the same conditions differ from α by a rigid motion.

Definition 33 (Rigid Motion). A rigid motion means that ∃ an orthogonal map ρ of R3 with
positive determinant and a vector c such that α̃ = ρ ◦ α+ c.

Without loss of generality, we can assume curves to be parameterised by arclength, since we can
always re parameterise a parameterised curve by arclength:

Let α : I → R3 be a regular parameterised curve. Then, it is possible to obtain a curve β : J → R3

that is parameterised by arc length with the same trace as α:

s = s(t) =

∫ t

t0

|α′(t)|dt

where t, t0 ∈ I.

3.3 Global Properties of Curves

3.3.1 The Isoparametric Inequality

This is related to the following isoparametric question:

Q: Of all the simple closed curves in the plane with a given length, which bounds the largest area?
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We will use the following formula for the area A bounded by a positively oriented simple closed curve
α(t) = (x(t), y(t)):

A = −
∫ b

a
y(t)x′(t)dt =

∫ b

a
x(t)y′(t)dt =

1

2
(xy′ − yx′)dt

Theorem 15 (The Isoparametric Inequality). Let C be a simple closed plane curve with length ` and
let A be the area of the region bounded by C. Then:

`2 − 4πA ≥ 0 (34)

where equality holds ⇐⇒ C is a circle.

3.3.2 Cauchy Crofton Formula

Theorem 16 (Cauchy Crofton Formula). Let C be a regular plane curve with length `. The measure
of the set of straight lines, counted with multiplicities (multiplicity is the number of intersection
points of a line with C), which meet C is equal to 2`.

Definition 34 (Rigid Motion in R2). A rigid motion in R2 is a map F : R2 → R2 given by
(x, y)→ (x, y), where:

x = a+ x cos(ϕ)− y sin(ϕ)

y = b+ x sin(ϕ) + y cos(ϕ)

Proposition 6. Let f(x, y) be a continuous function defined in R2. For any set S ⊆ R2, define the
area A of S by:

A(S) :=

∫∫
S
f(x, y)dxdy (35)

Assume that A is invariant under rigid motions; that is, if S is a set and S = F−1(S), where F is a
rigid motion, then if:

A(S) =

∫∫
S
f(x, y)dxdy =

∫∫
S
f(x, y)dxdy = A(S)

Then, f(x, y) is a constant.

4 Surfaces

4.1 Definitions

Motivation: we want to define a regular surface to be something that is nice enough for us to extend
the usual notions of calculus to.

Definition 35 (Regular Surface). A subset S ⊆ R3 is called a regular surface if, ∀ p ∈ S, there
exists a neighbourhood V ⊆ R3 and a map X : U → V ∩ S of an open set V ⊆ R2 onto V ∩ S ⊆ R3

for which the following conditions hold:

1. X is differentiable; that is, if we write

X(u, v) = (x(u, v), y(u, v), z(u, v))

for (u, v) ∈ U , then the functions x(u, v), y(u, v) and z(u, v) have continuous partial derivatives
of all orders in U .

2. X is a homeomorphism: there exists an inverse X−1 : V ∩ S → U , which is continuous.
3. (Regularity Condition): ∀q ∈ U , the differential dxq : R2 → R3 is bijective.

Then, the mapping X is called a parameterisation or a system of local coordinates in a neigh-
bourhood of p. The neighbourhood V ∩ S of p is called a coordinate neighbourhood.
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4.2 Regular Surfaces

Example 13 (The Unit Sphere is a Regular Surface). The Unit Sphere is a regular surface. It’s
parametrised by:

S2 := {(x, y, z) ∈ R2 | x2 + y2 + z2 = 1}

In the textbook, they check all three conditions from the above definition. Since this can be quite
exhausting, we want some propositions that simplify the task of determining if a surface is regular or
not. This is the aim of this section.

Proposition 7. If f : U ⊆ R2 → R, U open, is a differentiable, then the graph of f , that is, the
subset of R3 given by (x, y, f(x, y)) for (x, y) ∈ U , is a regular surface.

Before introducing the second proposition, we will first need to define critical points, critical values,
and regular values for differentiable maps.

Definition 36 (Critical Point). Given a differentiable map F : U ⊆ Rn → Rm defined in an open
set U ⊆ Rn, we say that p ∈ U is a critical point of F id the differential dFp : Rn → Rm is not a
surjective mapping. The image F (p) ∈ Rm of a critical point is called a critical value of F . A point
Rm which is not a critical value is called a regular value.

The justification for the next proposition comes from the inverse function theorem.

Proposition 8. If f : U ⊆ R3 → R is a differentiable function and a ∈ f(U) is a regular value of f ,
then f−1(a) is a regular surface in R3.

Example 14 (Ellipsoid). The ellipsoid is given by:

x2

a2
+
y2

b2
+
z2

c2
= 1

Since it is the set f−1(0) where

f(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1

and f is a differentiable function and 0 is a regular value of f .

Definition 37 (Connected). A surface S ⊆ R3 is connected if any two of its points can be joined
by a continuous curve in S.

The next proposition is a very useful property that follows from the intermediate value theorem:

Definition 38. If f : S ⊆ R3 → R is a non-zero continuous function defined on a connected surface
S, then f does not change sign on S.

4.3 Differentiable Functions on Surfaces

4.4 Tangent Plane

The third condition of a regular surface guarantees that for any fixed point p ∈ S, the set of tangent
vectors to the parameterised curves of S passing through p constitutes a plane.

Proposition 9. Let X : U ⊆ R2 → S be a parameterisation of a regular surface S and let q ∈ U . The
vector subspace of dimension 2:

dxq(R2) ⊆ R3 (36)

coincides with the set of tangent vectors to S at X(q).
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This plane does not depend on the parameterisation X and it is called the tangent plane to S at
p and is denoted by Tp(S). A choice of parameterisation X induces a basis on Tp(S):

{(∂X/∂u)(q), (∂X/∂v)(q)}

The next proposition states that a map between two regular surfaces induces a map between the
tangent planes, which we can think of as the differential of the map.

Proposition 10. Let S1, S2 be regular surfaces and let ϕ : V ⊆ S1 → S2 be a differentiable mapping
of an open set V of S1 into S2. Then, tangent vectors w ∈ Tp(S1) are the velocity vectors α′(0) of a
differentiable parameterised curve α :] − ε, ε[→ V with α(0) = p. If we define β := ϕ ◦ α, then β′(0)
is a vector of Tϕ(p)(S2). Given a w, the vector β′(0) does not depend on the choice of α and the map
dϕp : Tp(S1)→ Tϕ(p)(S2) defined by dϕp(w) = β′(0) is linear.

Before moving onto the next proposition, we first need to define what a local diffeomorphism is.
The aim is to build up to a generalisation of the standard inverse function theorem from calculus.

Definition 39 (Local Diffeomorphism). A mapping ϕ : U ⊆ S1 → S2 is called a local diffeomorphism
at p ∈ U if there is a neighbourhood V ⊆ U of p such that ϕ|U is a diffeomorphism onto an open set
ϕ(V ) ⊆ S2.

Proposition 11. If S1 and S2 are regular surfaces and ϕ : U ⊆ S1 → S2 is a differentiable mapping
of an open set U ⊆ S1 such that the differential dϕp of ϕ at p ∈ U is an isomorphism, then ϕ is a local
diffeomorphism at p.

For any point on a regular surface, we can find two unit normal vectors. By fixing a parameterisation
X : U ⊆ R2 → S for p ∈ S, we can make a definite choice of a unit normal at each point q ∈ X(U) by
the following rule:

N(q) :=
Xu ∧ xv
||xu ∧ xv||

(q) (37)

This gives us a differentiable map N : X(U)→ R3.

4.5 First Fundamental Form: Area

Motivation: the natural inner product on R3 induces on each regular surface S ⊆ R3’s tangent plane
Tp(S) an inner product, 〈·, ·〉p. The aim of the First Fundamental Form is to express how a surface
inherits the natural inner product of R3. This allows us to make metric measurements of the surface,
such as lengths of curves, angles of tangent vectors, and areas of regions without referring to the
ambient space in which they reside.

Definition 40 (First Fundamental Form). Let w1, w2 ∈ Tp(S) ⊆ R3. Then, the quadratic form given
by Ip : Tp(S)→ R:

Ip(w) := 〈w,w〉p = ||w||2 > 0 (38)

is called the First Fundamental Form of the regular surface S ⊆ R3 at p ∈ S.

4.5.1 Deriving the First Fundamental Form Given a Basis and a Parameterisation

Let X(u, v) be a parametrisation. We will now express the first fundamental form in the basis {Xu,Xv}
associated to a parameterisation X(u, v) at p. Recall that a tangent vector w ∈ Tp(S) is equivalent to
a tangent vector to a parameterised curve α(t) = X(u(t), v(t)) for t ∈] − ε,+ε[ for which p = α(0) =
X(u0, v0).

From the definition of the first fundamental form, we have:

Ip(α
′(0)) = 〈α′(0), α′(0)〉p

= 〈Xuu′ + Xvv′,Xuu′ + Xvv′〉p
= 〈Xu,Xu〉p(u′)2 + 2〈Xu,Xv〉u′v′ + 〈Xv,Xv〉p(v′)2
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If we define

E(u0, v0) := 〈Xu,Xu〉p
F (u0, v0) := 〈Xu,Xv〉p
G(u0, v0) := 〈Xv,Xv〉p

then the first fundamental form can be expressed as:

Ip = E(u′)2 + 2Fu′v′ +G(v′)2

4.5.2 Examples of First Fundamental Forms

1. Recall that the plane going through p0 = (x0, y0, z0) containing the orthonormal vectors w1 =
(a1, a2, a3) and w2 = (b1, b2, b3) is given by:

X(u, v) = p0 + uw1 + vw2

for (u, v) ∈ R2. Then, E = 1, F = 0, and G = 1.
2. The cylinder over the circle x2 + y2 = 1 parameterised by X(u, v) = (cos(u), sin(v), v) where

u ∈]0, 2π[ and v ∈ R. Then: E = sin2(u) + cos2(u) = 1, F = 0, and G = 1.
3. The Helicoid is given by: X(u, v) := (v cos(u), v sin(u)au). u ∈]0, 2π[, v ∈ R. The first

fundamental form is given by: E = v2 + a2, F (u, v) = 0, and G(u, v) = 1.

We can express arclength in terms of the terms of the functions of the first fundamental form. Let s
be an arclength-parameterised curve α : I → s. Then, the arc-length is:

s(t) =

∫ t

0
|α′(t)|dt =

∫ t

0

√
I(α′(t))dt

Substituting in the derivation gives us:

s(t) =

∫ t

0

√
E(u′)2 + 2Fu′v′ +G(v′)2dt

We can also represent angles of intersections of parameterised curves using the coefficients of the first
fundamental form. Let α : I → S and β : I → S be two parameterised curves. The angle θ at which
they intersect at t = t0 is given by:

cos(θ) =
〈a′(t0), β′(t0)〉
||α′(t0)||||β′(t0)||

(39)

In terms of the coefficients of the first fundamental form, we have:

cos(θ) =
〈xu, xv〉
||xu||||xv||

=
F√
EG

A special type of parameterisation is called an orthogonal parameterisation, which is a param-
eterisation where the coordinate curves of a parameterisation are orthogonal. By the above, this
happens if and only if F (u, v) = 0 for all u, v ∈ S. Moreover, from the arc length formula, an
element of arclength is given by:

ds2 = Edu2 + 2Fdudv +Gdv2

One final classic example of computing first fundamental forms is that of a sphere. If we parameterise
a sphere as:

X(θ, ϕ) = (sin θ cosϕ, sin θ, sinϕ,− sin θ)
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Then, the coefficients of the first fundamental form become:

E(θ, ϕ) = 1

F (θ, ϕ) = 0

G(θ, ϕ) = sin2(θ)

Then, for a vector w ∈ Tp(S) at the point p with the coordinates based on the basis associated to the
parametrisation X(θ, ϕ), we write:

w = aXθ + bXϕ

and so

||w||2 = I(w) = Ea2 + 2Fab+Gb2 = a2 + b2 sin2 θ

We can use the first fundamental form to compute areas.

Definition 41 (Area). Let R ⊆ S be a bounded region of a regular surface contained in the coordinate
neighbourhood of the parameterisation X : U ⊆ R2 → S. Then, the positive number:

A(R) :=

∫∫
Q
||Xu ∧ Xv||dudv

where Q = X−1(R) is called the area of R. This is equivalent to, in terms of the first fundamental
form:

=

∫∫
Q

√
EG− F 2dudv

5 The Gauss Map

Motivation: try to measure how rapidly a surface S pulls away from the tangent plane Tp(S) in a
neighbourhood of a point p ∈ S ↔ measuring the rate of change at p of a unit normal vector field
N on a neighbourhood of p. This gives rise to a linear map on Tp(S) that is self-adjoint. This map
happens to give us a lot of information about local properties of the surface S at p.

5.1 The Definition of the Gauss Map and its Fundamental Properties

• N is said to be a differentiable field of unit normal vectors on an open set V ⊆ S if
N : V → R3 is a differentiable map which associates to each q ∈ V a unit normal vector at q.
• A regular surface V is called orientable if it admits a differentiable field of unit normal vectors

defined on the whole surface.

– The Möbius strip is an example of a non-orientable surface.
– The choice of such a field N is called an orientation of S.
– Every surface is locally orientable.
– Orientation is a global property in the sense that it involves the whole surface.

The Gauss map is the map which assigns unit normals to points on surfaces. We derived this map
in homework 1.

Definition 42 (Gauss Map). Let S ⊆ R3 be a surface with orientation N . The map N : S → R3

takes its values in the unit sphere:

S2 := {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} (40)

This map N : S → S2 as defined is called the Gauss Map of S.
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The differential induced by the Gauss Map, dNp : Tp(S) → TN(p)(S) , is a linear map. Restricting
the map to a parameterised curve α(t) in S provides for us a measure of how N pulls away from
N(p) in a neighbourhood of p. For curves, this information is encoded in the curvature, a scalar. For
surfaces, the “notion” of curvature is encoded as a linear map.

Here are several examples of what dN would be for some surfaces.

1. The plane has zero “curvature.” Parameterise this plane by ax + by + cz + d = 0. Then, the
unit normal vector is given by:

N =
(a, b, c)√
a2 + b2 + c2

and is thus a constant. This means that dN = 0.
2. The unit sphere is parameterised by:

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}

Fix an orientation on S2 by choosing N = (−x,−y,−z). Then, dNp(v) = −v for p ∈ S2,
v ∈ Tp(S2).

3. The cylinder over the unit circle is parameterised by:

C = {(x, y, z) ∈ R3 | x2 + y2 = 1}

Fix an orientation by choosing N = (−x,−y, 0). For a v ∈ Tp(C), there are two cases:

a) If v is tangent to the cylinder and parallel to the z-axis, then dN(v) = 0 = 0v.
b) If v is tangent to the cylinder and parallel to the xy-plane, then dN(w) = −w.

v and w are eigenvectors of dN with eigenvalues 0 and -1, respectively.
4. Hyperbolic Paraboloid: analyse the point p = (0, 0, 0) of the hyperbolic paraboloid. Param-

eterise it by:

X(u, v) = (u, v, v2 − u2)

The normal vector is given by:

N =

(
u√

u2 + v2 + 1/4
,

−v√
u2 + v2 + 1/4

,
1

2
√
u2 + v2 + 1/4

)

and so at p, dNp(u
′(0), v′(0), 0) = (2u′(0),−2v′(0), 0) meaning that (1, 0, 0) and (0, 1, 0) are

eigenvectors of dNp with eigenvalues 2 and -2 respectively.

Before introducing the second fundamental form, we need to first define an self-adjoint map.

Definition 43 (Self-Adjoint). We say that a linear map A : V → V is self-adjoint if 〈Av,w〉 =
〈v,Aw〉 ∀ v, w ∈ V .

The following proposition is useful since it allows us to associate dNp to a quadratic form Q in
Tp(S), which will be important for the second fundamental form. The quadratic form will be given
by:

W (v) = 〈dNp(v), v〉

for v ∈ Tp(S).

Proposition 12. The differential of the Gauss Map, dNp : Tp(S) → Tp(S), is a self-adjoint linear
map.

Definition 44 (The Second Fundamental Form). The quadratic form IIp defined in Tp(S) given by
IIp(v) = −〈dNp(V ), v〉 is called the second fundamental form of S at p.
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Definition 45 (Normal Curvature). Let C be a regular surface in S passing through p ∈ S, κ the
curvature of C at p, and cos θ = 〈n,N〉 where n is the normal vector to C and N is the normal vector
to S at p. Then, the number kn := k cos θ is called the normal curvature of C ⊆ S at p.

Thus, kn represents the length of the projection of the vector kn over the normal to the surface at
the point p ∈ C.

Proposition 13 (Meusnier). All of the curves lying on a surface S with the same tangent line at a
given point p ∈ S have the same normal curvatures.

• Gives meaning to the notion of “normal curvature along a given direction at p”.
• Normal section of S at p: given a unit vector v ∈ Tp(S), the intersection of S with the plane

containing v and N(p) is called the normal section of S at p along v.
• The curvature of a curve is equal to the absolute value of the normal curvature along v at p,

where v is the tangent vector of the curve at p.
• So, Prop. 13 is saying that the absolute value of the normal curvature at p of a curve α(s) is

equal to the curvature of the normal section of S at p along α′(0).

Examples of second fundamental forms for surfaces:

1. Plane: all normal sections are straight lines. So, all normal curvatures are zero. Thus, the
second fundamental form is identically equal to zero at all points ↔ dN ≡ 0.

2. Sphere S2: Choose an orientation N . The normal sections through a point p ∈ S2 are circles
with radius 1. Thus, all normal curvatures are equal to 1, and so the second fundamental form
is IIp(v) = 1 ∀p ∈ S2, v ∈ Tp(S), |v| = 1.

3. Cylinder: normal sections vary from a circle perpendicular to the cylinder’s axis to straight
lines parallel to the axis, which means that normal curvature varies from 1 to 0.

Definition 46 (Maximum Normal Curvature and Minimum Normal Curvature). The maximum
normal curvature k1 and the minimum normal curvature k2 are called the principle curvatures
at p; the corresponding directions, that is, the directions given by the eigenvectors {ê1, ê2}, are called
the principal directions at p.

Definition 47 (Lines of Curvature). If a regular connected curve C in S is such that ∀p ∈ C, the
tangent line of C is a principal direction at p, then C is said to be a line of curvature of S.

The following proposition gives us a necessary and sufficient condition for a connected regular curve
to be a line of curvature.

Proposition 14. A necessary and sufficient condition for a connected regular curve C on S to be a
line of curvature is that:

N ′(t) = λ(t)α′(t)

for any parameterisation α(t) of C, where N(t) = N ◦ α(t) and λ(t) is a differentiable function of t.
In this case, −λ(t) is called the principle curvature along α′(t).

This proposition can be used to easily compute the normal curvatures along a given direction in
Tp(S).

Definition 48 (Gaussian Curvature, Mean Curvature). Let p ∈ S and let dNpTp(S) → Tp(S) be
the differential of the Gauss map. The determinant det(dNp) is the Gaussian Curvature κ of S
at p. The value 1/2trace(dNp) is called the mean curvature H of S at p. In terms of principal
curvatures, these quantities are:

κ = k1 · k2

H =
1

2
(k1 + k2)

since k1 and k2 are the eigenvalues.
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Definition 49 (Elliptic, Hyperbolic, Parabolic, Planar). A point p ∈ S is called:

• Elliptic if det(dNp) > 0
• Hyperbolic if det(dNp) < 0
• Parabolic if det(dNp) = 0 and dNp 6= 0
• Planar if dNp ≡ 0.

Examples of using this classification:

• Elliptic points: all points on a sphere, the point (0, 0, 0) of the paraboloid z = x2 + ky2, k > 0.
• Hyperbolic points: the point (0, 0, 0) of a hyperbolic paraboloid z = y2 − x2.
• Parabolic points: the points of a cylinder.

Definition 50 (Umbilical Points). If at p ∈ S, k1 = k2, then p is called an umbilical point of S.
The planar points k1 = k2 = 0 are called umbilical points. The points of a sphere are also umbilical
points.

Proposition 15. If all the points of a connected surface S are umbilical points, then S is either (a)
contained in a sphere or (b) contained in a plane.

Definition 51 (Asymptotic Direction or Curve). Let p ∈ S.

1. An asymptotic direction of S at p is a direction of Tp(S) for which the normal curvature is
zero.

2. An asymptotic curve of S is a regular connected curve C ⊆ S such that ∀ p ∈ S, the tangent
line of C at p is an asymptotic direction.

1. At an elliptic point, there are no asymptotic directions.
2. The Dupin indicatrix provides a useful geometric interpretation of the asymptotic directions.

Definition 52 (Dupin Indicatrix). Let p ∈ S. Then, the Dupin Indicatrix at p is the set of vectors
w of Tp(S) such that IIp(w) = ±1.

Definition 53 (Conjugate Point). Let p ∈ S be a point. Two non-zero vectors w1, w2 ∈ Tp(S) are
conjugate if 〈dNp(w1), w2〉 = 〈w2, dNp(w2)〉 = 0. Two directions r1, r2 at p are conjugate if a pair
of non-zero vectors w1, w2, are parallel to r1, r2, respectively, are conjugate.

5.2 Ruled Surfaces and Minimal Surfaces

5.2.1 Ruled Surfaces

Definition 54 (One-Parameter Family of (Straight) Lines). A differentiable one-parameter family
of (straight) lines {α(t), w(t)} is a correspondence that assigns to each t ∈ I a point α(t) ∈ R3 and

a vector w(t) ∈ R3 so that both α(t) and w(t) depend differentiably on t.

Definition 55 (Ruled Surface). Given a one-parameter family of lines {α(t), w(t)}, the parametrised
surface:

x(t, v) = α(t) + vw(t), t ∈ I, v ∈ R (41)

is called the ruled surface generated by the family {α(t), w(t)}.

1. The lines Lt are called the rulings: for each t ∈ I, the line Lt which passes through α(t) and is
parallel to w(t).

2. The curve α(t) is called a directrix

5.2.2 Minimal Surface

Definition 56 (Minimal Surface). A regular parameterised surface is called minimal if its mean
curvature vanishes everywhere. A regular surface S ⊆ R3 is called minimal if each of its parameteri-
sations is minimal.
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