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1 Basic Concepts

Definition 1.1 (Some important groups). Sn denotes the group of permutations of a
set of size n, it is called the symmetric group. An denotes the even permutations in
Sn, it is called the alternating group. The dihedral group is the set of symmetrices of a
regular n-gon on the plane: Dn = 〈xn = y2 = 1, yxy = x−1〉.

Theorem 1.2 (Lagrange). Let H be a subgroup of G, then [G : H] = |G|
|H| , this is the index of

H in G.

Proof idea. Observe that cosets form equivalence classes so G is a disjoin union of them,
also each coset has the size of H, the result follows.

Corollary 1.3. The order of any subgroup H ≤ G divides the order of the group G, the order
of any element also divides |G|.

Proposition 1.4. If F is a finite field, then F× is a cyclic group.

Proof idea. Denote q = |F|, show that for every h dividing q− 1, there is at most one
group of order h (it uses the roots of xh− 1). For each divisor h of q− 1 with an element
of order h, we have φ(h) elements of order h. We get that there must be an element of
each order that divides q− 1 to get enough elements, in particular, we get an element
of order q− 1.

Proposition 1.5. If L is a finite field containing F, a field with q elements, then Ł has order a
power of q.

Proof idea. Think of L as a vector space over F, as L is finite, it must have dimension
n < ∞, implying that L is isomorphic to Fn as a vector space.
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Definition 1.6 (Centralizer and normalizer). Let H ≤ G, the centralizer is CentG(H) =
{g ∈ G | ∀h ∈ H, gh = hg}. The normalizer is NG(H) = {g ∈ G | gHg−1 = H}.

Definition 1.7 (Commutator). The commutator subgroup of G is G′ = [G, G] =
{[x, y] = xyx−1y−1 | x, y ∈ G}.

Proposition 1.8. The commutator subgroup is a normal subgroup and Gab = G/G′ is
abelian. Moreover, G/N being abelian implies that N ⊇ G′.

Proof idea. For the first part, we use the fact that for any g, a, b ∈ G, we have gabg−1 =
gag−1gbg−1, g[x, y]g−1 = [gxg−1, gyg−1], then see that gG′g−1 ⊆ G′. For the second
part, use yx = xy(y−1x−1yx) and y−1x−1yx ∈ G′ to prove Gab is abelian and xyN =
yxN to show [x, y] ∈ N for any x, y.

Proposition 1.9. Let B < G and N C G, then B ∩ N C B, BN = NB < G and |BN| =
|B|·|N|
|B∩N| . If B is also normal, then BN C G and B ∩ N C G.

Proof idea. Just use the definitions. For the cardinality part, let f : B× N → BN with
f (b, n) = bn, then show that f−1(x) has size |B ∩ N|.

2 Isomorphism Theorems

Proposition 2.1. Let f : G → H be a group homomorphism, then A < G =⇒ f (A) < H,
B < H =⇒ f−1(B) < G and B C H =⇒ f−1(B)C G.

Proof idea. Just need to check the definitions.

Lemma 2.2. Let f be a group homomorphism, then f is injective if and only if ker( f ). More-
over, the fiber of any element in the image is a coset of ker( f ).

Theorem 2.3 (First isomorphism theorem). Let f : G → H be a homomorphism, K C G,
and K ⊆ ker( f ) = N, then there is a unique homomorphism F : G/K → H such that the
following diagram commutes:

G H

G/K

πK

f

F

Proof idea. The map is F : G/K → H with F(gK) = f (g), it is unique because πK is
surjective.

Corollary 2.4. G/N ∼= Im( f ).

Proof idea. Take K = N.
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Corollary 2.5. If (|G|, |H|) = 1, then f is trivial (i.e. ker( f ) = G).

Proof idea. We know that |G/N| divides |G|, but also divides |H| since G/N ∼= Im( f ),
this implies |G/N| = 1.

Corollary 2.6 (Chinese remainder theorem). Let m, n ∈ N with (m, n) = 1, we have
Z/mnZ ∼= Z/mZ×Z/nZ.

Proof idea. Take f : Z → Z/mZ×Z/nZ with f (x) = (x (mod m), x (mod n)) and
look at the kernel.

Theorem 2.7 (Second isomorphism theorem). Let B < G and N C G be subgroups, then
BN/N ∼= B/(B ∩ N).

Proof idea. Let f : BN → B/(B ∩ N) with f (bn) = b · B ∩ N and use FIT.

Theorem 2.8 (Correspondence theorem). Let f : G → H be a surjective homomorphism,
then f induces a bijection between the subgroups of G containing ker( f ) and the subgroups
of H. Moreover, let ker( f ) < G1 < G2, then G1 C G2 if and only if f (G1)C f (G2) giving
G2/G1

∼= f (G2)/ f (G1).

Proof idea. The first and second part uses definitions, the last part uses the composition
G2 → f (G2)→ f (G2)/ f (G1) that has kernel f−1( f (G1)) = G1, then apply FIT.

Theorem 2.9 (Third isomorphism theorem). Let H and K be normal subgroups of G such
that H ≤ K, then (G/H)/(H/K) ∼= G/K.

Proof idea. Apply the correspondence theorem with H = G/N, f = πN, G1 = K and
G2 = G.

3 Group Actions

Lemma 3.1 (Orbit-Stabilizer formula). Let G act on S and s ∈ S, then |Orb(s)| = |G|
| Stab(s)| .

Proof idea. Let φ : G/ Stab(s)→ Orb(s), be defined by φ(g Stab(s)) = g ∗ s, show that
this is well-defined and that this is an isomorphism.

Proposition 3.2. Let G act on S and s, t ∈ S with t ∈ Orb(s), then StabG(t) is conjugate to
StabG(s).

Proof idea. Let g ∈ G with g ∗ s = t and h ∈ Stab(s), then ghg−1 ∗ t = t and we get
g Stab(s)g−1 ⊆ Stab(t), we get the other direction similarly.

Proposition 3.3. Let H and K be two subgroups of G with finite index, then H ∩ K also has
finite index in G.

Proof idea. Let G act diagonally on G/H× G/K, the stabilizer of (H, K) is H ∩ K, then
use the orbit-stabilizer formula.
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Lemma 3.4. A group G acting on S is equivalent to a homomorphism φ : G → ΣS, we say
that this actions affords the permutation representation φ. Moreover, ker(φ) = ∩g∈G Stab(s).

Proof idea. For any g ∈ G and s ∈ S, φ(g)(s) = g ∗ s, this is a homomorphism.

Theorem 3.5 (Cayley). Every finite group is isomorphic to a subgroup of S|G|.

Proof idea. Let G act on itself by multiplication, the stabilizers are all trivial, so the
permutation representation is injective, the result follows.

Definition 3.6 (Coset representation). Let H C G, G acts on G/H affording the ho-
momorphism φ : G → Sm where m = [G : H]. φ is called the coset representation,
ker(φ) = ∩g∈GgHg−1 is the maximal subgroup of H which is normal in G.

Proposition 3.7. Let G be a finite group and H < G of index p, where p is the minimal prime
dividing the order of G, then H is normal in G.

Proof idea. Consider the coset representation φ : G → Sp, we get p = [G : H] | [G :
ker(φ)] and [G : ker(φ)] | p!, leading to [G : ker(φ)] = p, or H = K =⇒ H C G.

Theorem 3.8 (Cauchy-Frobenius Formula). Let G act on a set S, then the number of ordbits
is equal to 1

|G| ∑g∈G #Fix(g), where #Fix(g) denotes the number of fixed points of G.

Proof idea. Write T(g, s) =

{
1 g ∗ s = s
0 g ∗ s 6= s

and observe that #Fix(g) = ∑s∈S T(g, s) and

| Stab(s)| = ∑g∈G T(g, s). Now expand, rearrange and simplify ∑g∈G #Fix(g).

Corollary 3.9. If G acts transitively on S, then there exists a g ∈ G with no fixed points.

Proof idea. Suppose #Fix(g) ≥ 1 for any g, use #Fix(e) = |S| and CFF to arrive at a
contradiction.

Proposition 3.10. Let G act transitively on S, s ∈ S and K C G, the number of orbits of K
on its action on S is [G : K StabG(s)].

Proof idea. Observe that g ∗ K ∗ s = K ∗ s if and only if k−1g ∈ StabG(s) if and only if
g ∈ K StabG(s). Since the action of G on the K orbits is transitive, G/(K StabG(s)) is in
bijection with the K orbits.

4 Symmetric Group

Lemma 4.1. Two elements σ, τ ∈ Sn are conjugates if and only if they have the same cycle
type.

Proof idea. Use the fact that τ(i1 i2 . . . it)τ−1 = (τ(i1) τ(i2) . . . τ(it)) and find the τ that
works in reverse.
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Corollary 4.2. There are p(n) conjugacy classes in SN, where p(n) denotes the number of
partitions of n.

Lemma 4.3. The Sn-conjugacy class of an element σ ∈ An is a disjoint union of [Sn :
An CentSn(σ)] An-conjugacy classes. In particular, there are two such conjugacy classes if
there is an odd permutation commuting with σ, otherwise there is only one.

Proof idea. Apply proposition 3.10 with G = Sn, K = An and S being the conjugacy
class of Sn.

Lemma 4.4. Let σ ∈ AN , then CentSn(σ) contains odd permutation unless the disjoint cycle
form of σ contains only odd cycles of different lengths.

Lemma 4.5. A normal subgroup N C G is a union of disjoint conjugacy classes.

Proof idea. The conjugacy classes are orbits of a group action so they are disjoint, N
being normal implies the conjugacy classes of all its elements are contained in N.

Lemma 4.6. The alternating group A5 is simple.

Proof idea. Look at the cycle types and the size of each conjugacy class in A5 by ob-
serving the conjugacy classes in S5 as well. Conclude that a normal group can only
have size 1 or 60.

Theorem 4.7. The alternating groups An are simple for n ≥ 5.

Proof idea. Proof by induction, base case done above. Let N C An, with N 6= {1}, show
that for any i, there is a non-trivial ρ ∈ N such that ρ(i) = i. Now, consider each copy
of An−1 that fixes an element i, call it Gi. Since Gi is simple and N ∩ Gi is normal in Gi,
N ∩ Gi = Gi, this shows that N ⊇ 〈G1, . . . , Gn〉 = An.

Proposition 4.8. Suppose that An acts transitively on a set of size m > 1, then m ≥ n.

Proof idea.

Proposition 4.9. Let σ 6= 1 be a permutation of Sn, n ≥ 3, then the conjugacy class of σ has
more than one element.

5 p-groups, Cauchy’s and Sylow’s theorems

Lemma 5.1 (Class equation). Let G be a group, then we have the class equation:

|G| = |Z(G)|+ ∑
reps x/∈Z(G)

|G|
|CentG(x)|

Proposition 5.2. If G has an even number of conjugacy classes, then G has even order.
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Proof idea. Observe that the inverse function f acts on the conjugacy classes and in-
duces a bijection Conj(x) ↔ Conj(x−1). Since f fixes Conj(1), it fixes another one,
yielding a bijection on some Conj(x0) with x0 6= 1. If |G| were odd, |Conj(x0)| must
be odd but since f 2 = 1, this implies f fixes a point in Conj(x0) which leads to a
contradiction.

Lemma 5.3. For any M ∈N, up to isomorphisms, there are finitely many groups of order at
most M.

Proof idea. Consider the number of possible binary functions.

Lemma 5.4. Let q ∈ Q>0, and k ∈ N, there are finitely many tuples of positive integers
(n1, . . . , nk) such that q = 1

n1
+ · · ·+ 1

nk
.

Proof idea. Order the fractions in increasing order, deduce a bound for the last denom-
inator and then use induction on q− 1

nk
and a tuple of k− 1 integers.

Theorem 5.5. Let N ∈ N, up to isomorphism, there are finitely many finite groups with N
conjugacy classes.

Proof idea. Use the last lemma with the class equation.

Lemma 5.6. Let G be a p-group (i.e. |G| = pr, r ∈N), then Z(G) 6= {1}.

Proof idea. Write the class equation, then look at the equation in Z/pZ.

Lemma 5.7. Let G be a p-group and H 6= {1} a normal subgroup, H ∩ Z(G) 6= {1}.

Proof idea. Write the class equation for the action of G on H by conjugation, then look
at the equation in Z/pZ.

Theorem 5.8. Let G be a p-group, then the following holds:

1. For any H C G, H 6= G, there exists H+ C G such that H < H+ and [H+ : H] = p.

2. For any H C G, H 6= {1}, there exists H−C G such that H− < H and [H− : H] = p.

Proof idea.

1. Since G/H is a p-group, there is a non-trivial x ∈ Z(G/H), the order of x is a
power of p, so you can get y of order p. Let K = 〈y〉C G/H, we then use the
quotient map and the correspondence theorem to lift K to H+.

2. Use induction, case |G| = p is clear. Choose an element x ∈ H ∩ Z(G) of order p.
Let K = 〈x〉C G, note that K ⊆ H. If H = K, take H− = {1}. Otherwise, apply
induction on G/K to find (H/K)− and use the correspondence theorem to lift it
to H−.

Lemma 5.9. Let G be any group and H ⊂ Z(G) such that G/H is cyclic, then G is abelian.
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Proof idea. Let g ∈ G be such that gH generates G/H. This implies that every element
is of the form gih, show that these elements commute.

Definition 5.10 (Frattini subgroup). The Frattini subgroup of a p-group G , denoted
Φ(G), is the intersection of all the maximal subgroups of G.

Proposition 5.11. Let G be a p-group, Φ(G)C G is a non-trivial abelian group where every
non-zero element is of order p. It is the largest quotient with this property. Also, Φ(G) =
GpG′.

Proof idea. Conjugation takes maximal subgroups to maximal subgroups so Φ(G) is
normal. The index of a maximal subgroup H forces G/H to be abelian, so H ⊇ G′,
implying Φ(G) ⊇ G′ so G/Φ(G) is also abelian. Also, gH has order p so gp ∈ H
and H ⊇ Gp implying Φ(G) ⊇ Gp. We get that Φ(G) ⊇ GpG′ and every non-trivial
element has order p, this is true for any N C G with G/N abelian and elements killed
by p. Then show Φ(G) ⊆ GpG′ by passing to a vector space over Fp.

Lemma 5.12. Let A be a finite abelian group with a prime p | |A|, A has an element of order
p.

Proof idea. We use induction, case |A| = p is clear. Let N be a maximal subgroup of
A, it is normal because A is abelian. If p divides |N| use induction. Otherwise, take
x ∈ A \ N and let B = 〈x〉, show that p | |B|, so we can find an element of order p.

Proposition 5.13. Let G be a non-commutative p-group and H be a normal subgroup such
that G/H is abelian and |H| = p, then H = G′. If every element of G/H has order p, then
H = Φ(G).

Proof idea. By the definition of G′, we have G′ ⊆ H, but G′ 6= {1}, so we must have
G′ = H. The second statement follows from proposition 5.11.

Proposition 5.14. Let G be a group of order prm where p is prime and (p, m) = 1, there
exists a subgroup of order pr.

Proof idea. We use induction, the case |G| = p is clear. If p | |Z(G)|, then take N =
〈x〉C G, where x is of order p. Consider G/N, its order is pr−1m, we can use induction
and the correspondence theorem to lift a group of order pr.

In the case where p - |Z(G)|. Consider the class equation modulo p, and find that
CentG(x) is a proper subgroup of order divisible by pr so we can use induction.

Corollary 5.15. Let pa1
1 · · · p

ak
k be the prime factorization of |G| and Pi be a subgroup of size

pai
i , then G = 〈P1, . . . , Pk〉.

Proof idea. The order of 〈P1, . . . , Pk〉 is divisible by the order of the group.

Corollary 5.16 (Cauchy’s theorem). Let G be finite with p | |G|, then G has an element of
order p.
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Proof idea. We find a subgroup of order pr, find an element of order pb and then trans-
form it to an element of order p.

Lemma 5.17. Let P be a maximal p-subgroup of G and Q be any q-subgroup of G, where q is
a different prime. Q ∩ P = Q ∩ NG(P).

Proof idea. Since P ⊆ NG(P), we have Q ∩ P ⊆ Q ∩ NG(P) =: H. For the other direc-
tion, see that HP is a p-subgroup of NG(P) but it must be P since P is maximal. This
yields H ⊆ P and the result follows.

Theorem 5.18 (Sylow). Let G be a group of order prm where p is prime and (p, m) = 1, the
following holds:

1. Every maximal p-subgroup has order pr (they are called p-Sylow subgroups).

2. All p-Sylow subgroups are conjugate to each other.

3. Let np = | Sylp(G)|, then np ≡ 1 (mod p) and np | m.

Proof idea. Let S = {P1, . . . , Pa} be the set of conjugates of some p-Sylow P. Let Q, any
p-subgroup, act by conjugation on S, the size of Orb(Pi) is |Q|

| StabQ(Pi)|
= |Q|
|Q∩Pi|

. We see
that the sizes are a power of p unless Q ⊆ Pi, in that case, the size is one.

If we take Q = P1, we know that only the orbit of P1 has size 1 because P1 is
maximal. Hence, S being the disjoin union of orbits has size congruent to 1 modulo
p. Suppose towards a contradiction that Q is a maximal subgroup not in S and let
it act on S. We get that all the orbits are congruent to 0 modulo p, contradicting our
previous statement. Lastly, if we use the orbit stabilizer formula on the action of G by
conjugation on the set of maximal subgroups, we get a = |G|

|NG(P)| , so a divides |G|.

Lemma 5.19. Let G be finite, p 6= q be two primes dividing |G| and P ∈ Sylp(G), Q ∈
Sylq(G), then P ∩Q = {1}.

Proof idea. The size of P ∩Q divides |P| and |Q|, since (p, q) = 1, we must have |P ∩
Q| = 1.

Lemma 5.20. Let G be any group and A, B C G, then for any a ∈ A and b ∈ B, ab = ba.

Proof idea. Note that aba−1b−1 is in both A and B so it must be 1, the result follows.

Proposition 5.21. Letpa1
1 · · · p

ak
k be the prime factorization of |G| and Pi be a pi-Sylow sub-

group. G = P1 × · · · × Pk if and only if for any i, Pi C G.

Proof idea. Suppose all the Pi are normal, then take f : P1× · · · × Pk → G be defined by
f (x1, . . . , xk) = x1x2 · · · xk. Since Pi and Pj commute for i 6= j, f is a homomorphism,
then show it is bijective.

Proposition 5.22. Let G be finite, H C G and P be a p-Sylow subgroup of G. P ∩ H is a
maximal p-subgroup and HP/H is a p-Sylow subgroup of G/H.
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Proof idea. Show that |Q ∩ H| = |P ∩ H| for any p-Sylow Q of G. Since a p-Sylow of
H is contained in a p-Sylow of G, we see by cardinality that H ∩ P must be a p-Sylow
of H. For the second part, calculate the size of HP/H and G/H.

Definition 5.23 (Nilpotent groups). A nilpotent group only has normal Sylow sub-
groups. Equivalently, for any prime p dividing the order of the group, there is a unique
p-Sylow subgroup.

6 Composition Series and Solvable Groups

Definition 6.1. A normal series for G is a series of subgroups G = G0 B · · ·BGn = {1}
(it is usually strictly descending, namely Gi 6= Gj for i 6= j).

Definition 6.2. A composition series for G is a normal series such that Gi−1/Gi is
non-trivial and simple for all i ∈ {1, . . . , n}. The quotients are called the composition
factors, they are considered up to isomorphism but with multiplicity.

Definition 6.3. A group G is called solvable if it has a normal series in which all the
composition factors are abelian.

Lemma 6.4. Any strictly descending normal series can be refined to a composition series.
Moreover, if the composition factors are abelian, the refinement has composition factors isomor-
phic to Z/pZ for some prime p.

Proof idea. Note that the quotients are non trivial and that |G| is the product of the
orders of the quotients. Hence, a strictly descending normal series has bounded length.
Assume that the series is not a composition series, take Gi−1/Gi that is not simple and
take a non-trivial normal subgroup H′, lift it to Gi−1 and extend the series to · · ·Gi−1 B
H B Gi · · · , the first part follows. For the second part, note that our construction still
has abelian quotients. Also, finite abelian simple groups are isomorphic to Z/pZ.

Corollary 6.5. A group G is solvable if and only if it has a composition series with composition
factors being cyclic groups of prime order.

Theorem 6.6 (Jordan-Hölder). Let G be finite, any two composition series for G have the
same composition factors (considered with multiplicity).

Examples 6.7. Any abelian group is solvable, p-groups are solvable, groups of order
pq are solvable, groups of order p2q are solvable, groups of order pqr are solvable and
the product of solvable groups are solvable.

Proposition 6.8. Let G be solvable and K < G, K is solvable.

Proof idea. Intersect K with the groups in the normal series with abelian quotients for
G, we get a normal series with abelian quotients but for K.
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Definition 6.9. A short exact sequence is a sequence of group and homomorphism

1→ G1
f→ G2

g→ G3 → 1 with f injective, g surjective and Im( f ) = ker(g).

Proposition 6.10. Let 1→ K → G → H → 1 be a short exact sequence, G is solvable if and
only if K and H are solvable.

Proof idea. Assume that G is solvable, then f (K) is solvable (hence K as well). If Gi are
the groups in the normal series for G, let Hi = g(Gi) be the ones for H, then show that
this is a normal series with abelian factors.

Assume K and H are solvable. Let Ji = g−1(Hi) and Ji = f (Ki−n) for the rest, Ji is a
normal series with abelian quotients.

Theorem 6.11. Every group of order less than 60 is solvable.

Theorem 6.12 (Burnside). Every group of order paqb is solvable.

Theorem 6.13 (Feit-Thompson). Every finite group of odd order is solvable.

7 Finitely Generated Abelian Groups and Semidirect
Products

Definition 7.1. A group G is called finitely many generated if there are elements
g1, . . . , gn in G such that G = 〈g1, · · · , gn〉.

Lemma 7.2. An abelian group G is finitely generated if for some positive integer n, there is a
surjective homomorphism from Zn to G.

Theorem 7.3 (Structure theorem). Let G be a finitely generated abelian group, then there
exists unique r ∈N and n1, . . . , nt ∈N>1 such that G ∼= Zr ×Z/n1Z× · · · ×Z/ntZ.

Definition 7.4. Let G be a group and B and N be subgroups of G such that G = NB,
N ∩ B = {1} and N C G. We say that G is a semidirect product of N and B. Also, if N
and B are groups and φ : B→ Aut(N) is a group homomorphism, we define N oφ B
to be the semidirect product of N and B relative to φ. It is the group N × B with the
following operation:

(n1, b1) · (n2, b2) = (n1φ(b1)(n2), b1b2)

Proposition 7.5. N oφ B ∼= N × B if and only if φ is trivial.

Proof idea. Use the definitions.

Proposition 7.6. N oφ B is abelian if and only if both N and B are abelian and φ is trivial.

Proof idea. Use the definitions.
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Proposition 7.7. Let N and B be groups and φ and ψ be homomorphisms B→ Aut(N), then
N oφ B ∼= N oψ B if and only if there exists automorphisms f ∈ Aut(N) and g ∈ Aut(B)
such that ∀b ∈ B, ψ(b) = f ◦ φ(g(b)) ◦ f−1. The isomorphism between the two semidirect
products is (n, b) 7→ ( f (n), g−1(b)).

Proof idea. Just verify that the map seen is an isomorphism.

Lemma 7.8. Let n ∈N, Aut(Z/nZ) ∼= (Z/nZ)×.

Proof idea. For any a ∈ Z/nZ such that (a, n) = 1, show that fa(x) = ax is in
Aut(Z/nZ), then show that a 7→ fa is an isomorphism.

Proposition 7.9. If p | (q− 1), there is a unique non-abelian group of order pq.

Proof idea. We know that any q-Sylow Q is normal. Let P be any p-Sylow, G is a semidi-
rect product of Q and P. There is a non-abelian semidirect product when φ maps 1
to a 7→ ha, where h is an element of order p of (Z/qZ)×. It is clear that any other
homomorphism that works will just have a different h, but then we can transform it
as in proposition 7.7 to get the isomorphism.

8 Complex Representation of Finite Groups

Definition 8.1 (Representation). Let G be a finite group, V be a finite dimensional
vector space over C and ρ : G → Aut(V) be a group homomorphism, (ρ, V) is called
a finite representation of G.

Definition 8.2 (Morphism of representation). Let (ρ, V) and (τ, W) be representations
of a finite group G, a linear map T : V1 → V2 is called a morphism of ρ1 to ρ2 if for
any g ∈ G, ρ2(g) ◦ T = T ◦ ρ1(g). We will denote HomG(V1, V2) to be the subspace of
Hom(V1, V2) with linear maps satisfying this property.

Definition 8.3 (Character group). For a group G, the character group of G, denoted
G∗, is the set of group homomorphisms from G to C×.

Proposition 8.4. The following are properties of the character group.

1. (H × G)∗ ∼= H∗ × G∗.

2. (Z/nZ)∗ ∼= Z/nZ.

3. If G is finite and abelian, G∗ ∼= G.

4. For a general group G, G∗ = (G/G′)∗.

Proof idea. 1. Define the map φ : (H × G)∗ → H∗ × G∗ with f 7→ ( f (·, 1), f (1, ·)).
Show that it is an isomorphism.
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2. Observe that f ∈ (Z/nZ)∗ is only defined by where it sends the generator, and
it must send it to a generator of the group of nth roots of unity (this group is
isomorphic to Z/nZ).

3. Use the structure theorem and the two previous points.

4. Show that if f ∈ G∗, then f ([x, y]) = 1 and so G′ ⊆ ker( f ), then the result
follows from the first isomorphism theorem.

Theorem 8.5. Let (ρ, V) be a representation of G, there exists a inner product that is G-
invariant (i.e. for all v, w ∈ V, 〈ρ(g)v, ρ(g)w〉 = 〈v, w〉).

Proof idea. Take any inner product (·, ·) and let 〈u, v〉 = 1
|G| ∑g∈G(ρ(g)u, ρ(g)v), verify

that 〈·, ·〉 is G-invariant.

Theorem 8.6. Any representation decomposes as a sum of irreducible representations.

Proof idea. Argue by induction. If U is a subrepresentation, then U⊥ (w.r.t. a G-invariant
inner product) is also a subrepresentation.

Theorem 8.7. Let G be an abelian group, every representation of G decomposes into a direct
sum of 1-dimensional representations.

Proof idea. First prove that ρ(g) is diagonalizable. Then use the fact that commuting
diagonalizable linear operator are simultaneously diagonalizable.

Lemma 8.8 (Schur). Let (ρ, V) and (τ, W) be irreducible representations of G, we have the
following:

HomG(V, W) ∼=
{

0 ρ 6∼= τ

C ρ ∼= τ

Proof idea. Note that if T ∈ HomG(V, W), ker(T) and Im(T) are subrepresentations,
this implies T is either trivial or an isomorphism. Now, look at an eigenspace of T and
show that it must be equal to the whole vector space.

Definition 8.9. Let (ρ, V) and (τ, W) be representations of G, σ : G → Aut(Hom(V, W))
is a new representation with σ(g)T = τ(g) ◦ T ◦ ρ(g−1).

Theorem 8.10. We get that for any g ∈ G, χσ(g) = χρ(g)χτ(g).

Proof idea. No need to learn it.

Definition 8.11. Let (ρ, V) be a representation of G, define the projection operator as
πρ : V → V with πρ = 1

|G| ∑g∈G ρ(g).
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Theorem 8.12. If ρ = ρa1
1 ⊕ · · · ⊕ ρat

t where ρ1 is the trivial representation, then

πρ = IdV
a1
1
⊕ 0⊕ · · · ⊕ 0

From this, we get the following:

a1 = Tr(πρ) =
1
|G| ∑

g∈G
χρ(g) =

〈
χρ, χ1

〉
Proof idea. Note that VG = (Va1

1 )G ⊕ · · · ⊕ (Vat
1 )G and that except for i = 1, (Vai

i )G =
{0} because it is a subrepresentation. The result follows.

Theorem 8.13. The characters of irreducible representations are orthogonal with respect to
the G-invariant inner product.

Proof idea. Use dim(Hom(V, W)G) = 1
|G| ∑g∈G χσ(g) =

〈
χρ, χτ

〉
. Then use Schur’s

lemma.

Proposition 8.14. Here are some consequences of the last theorem.

1. A representation ρ decomposes into an irreducible representation: ρ = ρa1
1 ⊕ · · · ⊕ ρat

t .

2. ai =
〈
χρ, χρi

〉
.

3. χρ determines ρ up to isomorphism.

4. ρreg = ρ
dim(ρ1)
1 ⊕ · · · ⊕ ρ

dim(ρt)
t .

5. ρ is irreducible if and only if
∥∥χρ

∥∥ = 1.

6. There exists finitely many irreducible characters (hence representations).

Proof idea.

1. Done above.

2. Follows from orthogonality of the irreducible characters.

3. Follows from the last part.

4. Follows from the fact that χreg is 0 everywhere but on the identity.

5. Follows from orthonormality of the irreducible characters.

6. Since they are orthonormal, they can be bigger than the dimension of Class(G).

Definition 8.15. We define a more general operator. Let α ∈ Class(G), we define the
operator Aρ = ∑g∈G α(g)ρ(g).
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Lemma 8.16. For two representations ρ and τ of G, Aρ⊕τ = Aρ ⊕ Aτ.

Proof idea. Use the definitions.

Theorem 8.17. Let χρ1 , . . . , χρt be the characters of all the irreducible representations of G,
they form an orthonormal basis of Class(G), in particular, t = h(G).

Proof idea. Let β ∈ Class(G) be a function orthogonal to all irreducible characters. Let
α = β and for an irreducible representation ρi, show that Aρi ≡ 0. Using the last
lemma, we get Aρreg ≡ 0, which is equivalent to α = β ≡ 0.

Proposition 8.18. Let g, h ∈ G and {χi | i ∈ {1, . . . , h(G)}} be the irreducible representa-
tions of G, then:

h(G)

∑
i=1

χi(g)χi(h) =

{
|CentG(g)| if g and h are conjugate
0 otherwise

Proof idea. Let gi be the representative for the conjugacy classes and ci = |Conj(gi)|,
also let T be the character table (i.e. (T)ij = χi(gj)) and D = diag

(
|c1|
n , . . . ,

|ch(G)|
n

)
. The

row orthogonality condition says that TDT∗ = Ih(G), implying that T−1 = DT∗. We ob-

tain T∗T = D−1diag
(

n
|c1|

, . . . , n
|ch(G)|

)
, showing the result since |G|

|Conj(g)| = |CentG(g)|.

Proposition 8.19. For n ≥ 4, the representation ρst,0 of An is irreducible.

Proof idea. Recall that χ = χ1 + χ0 where χ is the standard representation, χ1 is the
trivial one and χ0 = χρst,0 . We will use ‖χ‖2 = ‖χ1‖2 + 〈χ1, χ0〉 + 〈χ0, χ1〉 + ‖χ0‖2.

Show that ‖χ‖2 = 2, let An act diagonally on {1, . . . , n}2, show that there are two
orbits, then use CFF with the fact that #Fix(σ) = χ(σ). Now, show that 〈χ1, χ0〉 =
〈χ0, χ1〉 = 0 and since χ1 is irreducible, the result follows.

Proposition 8.20. Let z ∈ Z(G) and V be an irreducible representation of G, then z acts on
V as a multiple of the identity.

Proof idea. Let Vλ be an eigenspace of ρ(z), show that Vλ is a non-trivial subrepresen-
tation, hence equal to V.
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