Important Results - MATH 456

Ralph Sarkis 260729917

January 12, 2018

1 Basic Concepts

Definition 1.1 (Some important groups). S_{n} denotes the group of permutations of a set of size n, it is called the symmetric group. A_{n} denotes the even permutations in S_{n}, it is called the alternating group. The dihedral group is the set of symmetrices of a regular n-gon on the plane: $D_{n}=\left\langle x^{n}=y^{2}=1, y x y=x^{-1}\right\rangle$.

Theorem 1.2 (Lagrange). Let H be a subgroup of G, then $[G: H]=\frac{|G|}{|H|}$, this is the index of H in G.

Proof idea. Observe that cosets form equivalence classes so G is a disjoin union of them, also each coset has the size of H, the result follows.

Corollary 1.3. The order of any subgroup $H \leq G$ divides the order of the group G, the order of any element also divides $|G|$.

Proposition 1.4. If \mathbb{F} is a finite field, then \mathbb{F}^{\times}is a cyclic group.
Proof idea. Denote $q=|\mathbb{F}|$, show that for every h dividing $q-1$, there is at most one group of order h (it uses the roots of $x^{h}-1$). For each divisor h of $q-1$ with an element of order h, we have $\phi(h)$ elements of order h. We get that there must be an element of each order that divides $q-1$ to get enough elements, in particular, we get an element of order $q-1$.
Proposition 1.5. If \mathbb{L} is a finite field containing \mathbb{F}, a field with q elements, then $\mathfrak{\mathrm { h }}$ has order a power of q.

Proof idea. Think of \mathbb{L} as a vector space over \mathbb{F}, as \mathbb{L} is finite, it must have dimension $n<\infty$, implying that \mathbb{L} is isomorphic to \mathbb{F}^{n} as a vector space.

Definition 1.6 (Centralizer and normalizer). Let $H \leq G$, the centralizer is $\operatorname{Cent}_{G}(H)=$ $\{g \in G \mid \forall h \in H, g h=h g\}$. The normalizer is $N_{G}(H)=\left\{g \in G \mid g H g^{-1}=H\right\}$.

Definition 1.7 (Commutator). The commutator subgroup of G is $G^{\prime}=[G, G]=$ $\left\{[x, y]=x y x^{-1} y^{-1} \mid x, y \in G\right\}$.

Proposition 1.8. The commutator subgroup is a normal subgroup and $G^{a b}=G / G^{\prime}$ is abelian. Moreover, G / N being abelian implies that $N \supseteq G^{\prime}$.

Proof idea. For the first part, we use the fact that for any $g, a, b \in G$, we have $g a b g^{-1}=$ $g a g^{-1} g b g^{-1}, g[x, y] g^{-1}=\left[g x g^{-1}, g y g^{-1}\right]$, then see that $g G^{\prime} g^{-1} \subseteq G^{\prime}$. For the second part, use $y x=x y\left(y^{-1} x^{-1} y x\right)$ and $y^{-1} x^{-1} y x \in G^{\prime}$ to prove G^{ab} is abelian and $x y N=$ $y x N$ to show $[x, y] \in N$ for any x, y.
Proposition 1.9. Let $B<G$ and $N \triangleleft G$, then $B \cap N \triangleleft B, B N=N B<G$ and $|B N|=$ $\frac{|B| \cdot|N|}{|B \cap N|}$. If B is also normal, then $B N \triangleleft G$ and $B \cap N \triangleleft G$.
Proof idea. Just use the definitions. For the cardinality part, let $f: B \times N \rightarrow B N$ with $f(b, n)=b n$, then show that $f^{-1}(x)$ has size $|B \cap N|$.

2 Isomorphism Theorems

Proposition 2.1. Let $f: G \rightarrow H$ be a group homomorphism, then $A<G \Longrightarrow f(A)<H$, $B<H \Longrightarrow f^{-1}(B)<G$ and $B \triangleleft H \Longrightarrow f^{-1}(B) \triangleleft G$.

Proof idea. Just need to check the definitions.
Lemma 2.2. Let f be a group homomorphism, then f is injective if and only if $\operatorname{ker}(f)$. Moreover, the fiber of any element in the image is a coset of $\operatorname{ker}(f)$.

Theorem 2.3 (First isomorphism theorem). Let $f: G \rightarrow H$ be a homomorphism, $K \triangleleft G$, and $K \subseteq \operatorname{ker}(f)=N$, then there is a unique homomorphism $F: G / K \rightarrow H$ such that the following diagram commutes:

Proof idea. The map is $F: G / K \rightarrow H$ with $F(g K)=f(g)$, it is unique because π_{K} is surjective.

Corollary 2.4. $G / N \cong \operatorname{Im}(f)$.
Proof idea. Take $K=N$.

Corollary 2.5. If $(|G|,|H|)=1$, then f is trivial (i.e. $\operatorname{ker}(f)=G$).
Proof idea. We know that $|G / N|$ divides $|G|$, but also divides $|H|$ since $G / N \cong \operatorname{Im}(f)$, this implies $|G / N|=1$.

Corollary 2.6 (Chinese remainder theorem). Let $m, n \in \mathbb{N}$ with $(m, n)=1$, we have $\mathbb{Z} / m n \mathbb{Z} \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$.

Proof idea. Take $f: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ with $f(x)=(x(\bmod m), x(\bmod n))$ and look at the kernel.

Theorem 2.7 (Second isomorphism theorem). Let $B<G$ and $N \triangleleft G$ be subgroups, then $B N / N \cong B /(B \cap N)$.

Proof idea. Let $f: B N \rightarrow B /(B \cap N)$ with $f(b n)=b \cdot B \cap N$ and use FIT.
Theorem 2.8 (Correspondence theorem). Let $f: G \rightarrow H$ be a surjective homomorphism, then f induces a bijection between the subgroups of G containing $\operatorname{ker}(f)$ and the subgroups of H. Moreover, let $\operatorname{ker}(f)<G_{1}<G_{2}$, then $G_{1} \triangleleft G_{2}$ if and only if $f\left(G_{1}\right) \triangleleft f\left(G_{2}\right)$ giving $G_{2} / G_{1} \cong f\left(G_{2}\right) / f\left(G_{1}\right)$.

Proof idea. The first and second part uses definitions, the last part uses the composition $G_{2} \rightarrow f\left(G_{2}\right) \rightarrow f\left(G_{2}\right) / f\left(G_{1}\right)$ that has kernel $f^{-1}\left(f\left(G_{1}\right)\right)=G_{1}$, then apply FIT.

Theorem 2.9 (Third isomorphism theorem). Let H and K be normal subgroups of G such that $H \leq K$, then $(G / H) /(H / K) \cong G / K$.

Proof idea. Apply the correspondence theorem with $H=G / N, f=\pi_{N}, G_{1}=K$ and $G_{2}=G$.

3 Group Actions

Lemma 3.1 (Orbit-Stabilizer formula). Let G act on S and $s \in S$, then $|\operatorname{Orb}(s)|=\frac{|G|}{|\operatorname{Stab}(s)|}$.
Proof idea. Let $\phi: G / \operatorname{Stab}(s) \rightarrow \operatorname{Orb}(s)$, be defined by $\phi(g \operatorname{Stab}(s))=g * s$, show that this is well-defined and that this is an isomorphism.

Proposition 3.2. Let G act on S and $s, t \in S$ with $t \in \operatorname{Orb}(s)$, then $\operatorname{Stab}_{G}(t)$ is conjugate to $S^{5} \operatorname{sbb}_{G}(s)$.

Proof idea. Let $g \in G$ with $g * s=t$ and $h \in \operatorname{Stab}(s)$, then $g h g^{-1} * t=t$ and we get $g \operatorname{Stab}(s) g^{-1} \subseteq \operatorname{Stab}(t)$, we get the other direction similarly.

Proposition 3.3. Let H and K be two subgroups of G with finite index, then $H \cap K$ also has finite index in G.

Proof idea. Let G act diagonally on $G / H \times G / K$, the stabilizer of (H, K) is $H \cap K$, then use the orbit-stabilizer formula.

Lemma 3.4. A group G acting on S is equivalent to a homomorphism $\phi: G \rightarrow \Sigma_{S}$, we say that this actions affords the permutation representation ϕ. Moreover, $\operatorname{ker}(\phi)=\cap_{g \in G} \operatorname{Stab}(s)$.

Proof idea. For any $g \in G$ and $s \in S, \phi(g)(s)=g * s$, this is a homomorphism.
Theorem 3.5 (Cayley). Every finite group is isomorphic to a subgroup of $S_{|G|}$.
Proof idea. Let G act on itself by multiplication, the stabilizers are all trivial, so the permutation representation is injective, the result follows.

Definition 3.6 (Coset representation). Let $H \triangleleft G, G$ acts on G / H affording the homomorphism $\phi: G \rightarrow S_{m}$ where $m=[G: H] . \phi$ is called the coset representation, $\operatorname{ker}(\phi)=\cap_{g \in G} g H g^{-1}$ is the maximal subgroup of H which is normal in G.

Proposition 3.7. Let G be a finite group and $H<G$ of index p, where p is the minimal prime dividing the order of G, then H is normal in G.

Proof idea. Consider the coset representation $\phi: G \rightarrow S_{p}$, we get $p=[G: H] \mid[G:$ $\operatorname{ker}(\phi)]$ and $[G: \operatorname{ker}(\phi)] \mid p!$, leading to $[G: \operatorname{ker}(\phi)]=p$, or $H=K \Longrightarrow H \triangleleft G$.

Theorem 3.8 (Cauchy-Frobenius Formula). Let G act on a set S, then the number of ordbits is equal to $\frac{1}{|G|} \sum_{g \in G}$ \#Fix (g), where \#Fix (g) denotes the number of fixed points of G.

Proof idea. Write $T(g, s)=\left\{\begin{array}{ll}1 & g * s=s \\ 0 & g * s \neq s\end{array}\right.$ and observe that \#Fix $(g)=\sum_{s \in S} T(g, s)$ and $|\operatorname{Stab}(s)|=\sum_{g \in G} T(g, s)$. Now expand, rearrange and simplify $\sum_{g \in G} \# \operatorname{Fix}(g)$.

Corollary 3.9. If G acts transitively on S, then there exists a $g \in G$ with no fixed points.
Proof idea. Suppose \#Fix $(g) \geq 1$ for any g, use \#Fix $(e)=|S|$ and CFF to arrive at a contradiction.

Proposition 3.10. Let G act transitively on $S, s \in S$ and $K \triangleleft G$, the number of orbits of K on its action on S is $\left[G: K \operatorname{Stab}_{G}(s)\right]$.

Proof idea. Observe that $g * K * s=K * s$ if and only if $k^{-1} g \in \operatorname{Stab}_{G}(s)$ if and only if $g \in K \operatorname{Stab}_{G}(s)$. Since the action of G on the K orbits is transitive, $G /\left(K \operatorname{Stab}_{G}(s)\right)$ is in bijection with the K orbits.

4 Symmetric Group

Lemma 4.1. Two elements $\sigma, \tau \in S_{n}$ are conjugates if and only if they have the same cycle type.

Proof idea. Use the fact that $\tau\left(i_{1} i_{2} \ldots i_{t}\right) \tau^{-1}=\left(\tau\left(i_{1}\right) \tau\left(i_{2}\right) \ldots \tau\left(i_{t}\right)\right)$ and find the τ that works in reverse.

Corollary 4.2. There are $p(n)$ conjugacy classes in S_{N}, where $p(n)$ denotes the number of partitions of n.

Lemma 4.3. The S_{n}-conjugacy class of an element $\sigma \in A_{n}$ is a disjoint union of $\left[S_{n}\right.$: $\left.A_{n} \operatorname{Cent}_{S_{n}}(\sigma)\right] A_{n}$-conjugacy classes. In particular, there are two such conjugacy classes if there is an odd permutation commuting with σ, otherwise there is only one.

Proof idea. Apply proposition 3.10 with $G=S_{n}, K=A_{n}$ and S being the conjugacy class of S_{n}.

Lemma 4.4. Let $\sigma \in A_{N}$, then $\operatorname{Cent}_{S_{n}}(\sigma)$ contains odd permutation unless the disjoint cycle form of σ contains only odd cycles of different lengths.

Lemma 4.5. A normal subgroup $N \triangleleft G$ is a union of disjoint conjugacy classes.
Proof idea. The conjugacy classes are orbits of a group action so they are disjoint, N being normal implies the conjugacy classes of all its elements are contained in N.

Lemma 4.6. The alternating group A_{5} is simple.
Proof idea. Look at the cycle types and the size of each conjugacy class in A_{5} by observing the conjugacy classes in S_{5} as well. Conclude that a normal group can only have size 1 or 60 .

Theorem 4.7. The alternating groups A_{n} are simple for $n \geq 5$.
Proof idea. Proof by induction, base case done above. Let $N \triangleleft A_{n}$, with $N \neq\{1\}$, show that for any i, there is a non-trivial $\rho \in N$ such that $\rho(i)=i$. Now, consider each copy of A_{n-1} that fixes an element i, call it G_{i}. Since G_{i} is simple and $N \cap G_{i}$ is normal in G_{i}, $N \cap G_{i}=G_{i}$, this shows that $N \supseteq\left\langle G_{1}, \ldots, G_{n}\right\rangle=A_{n}$.

Proposition 4.8. Suppose that A_{n} acts transitively on a set of size $m>1$, then $m \geq n$.
Proof idea.
Proposition 4.9. Let $\sigma \neq 1$ be a permutation of $S_{n}, n \geq 3$, then the conjugacy class of σ has more than one element.

5 p-groups, Cauchy's and Sylow's theorems

Lemma 5.1 (Class equation). Let G be a group, then we have the class equation:

$$
|G|=|Z(G)|+\sum_{r e p s} \sum_{x \notin Z(G)} \frac{|G|}{\left|\operatorname{Cent}_{G}(x)\right|}
$$

Proposition 5.2. If G has an even number of conjugacy classes, then G has even order.

Proof idea. Observe that the inverse function f acts on the conjugacy classes and induces a bijection $\operatorname{Conj}(x) \leftrightarrow \operatorname{Conj}\left(x^{-1}\right)$. Since f fixes $\operatorname{Conj}(1)$, it fixes another one, yielding a bijection on some $\operatorname{Conj}\left(x_{0}\right)$ with $x_{0} \neq 1$. If $|G|$ were odd, $\left|\operatorname{Conj}\left(x_{0}\right)\right|$ must be odd but since $f^{2}=1$, this implies f fixes a point in $\operatorname{Conj}\left(x_{0}\right)$ which leads to a contradiction.

Lemma 5.3. For any $M \in \mathbb{N}$, up to isomorphisms, there are finitely many groups of order at most M.

Proof idea. Consider the number of possible binary functions.
Lemma 5.4. Let $q \in \mathbb{Q}_{>0}$, and $k \in \mathbb{N}$, there are finitely many tuples of positive integers $\left(n_{1}, \ldots, n_{k}\right)$ such that $q=\frac{1}{n_{1}}+\cdots+\frac{1}{n_{k}}$.

Proof idea. Order the fractions in increasing order, deduce a bound for the last denominator and then use induction on $q-\frac{1}{n_{k}}$ and a tuple of $k-1$ integers.

Theorem 5.5. Let $N \in \mathbb{N}$, up to isomorphism, there are finitely many finite groups with N conjugacy classes.

Proof idea. Use the last lemma with the class equation.
Lemma 5.6. Let G be a p-group (i.e. $|G|=p^{r}, r \in \mathbb{N}$), then $Z(G) \neq\{1\}$.
Proof idea. Write the class equation, then look at the equation in $\mathbb{Z} / p \mathbb{Z}$.
Lemma 5.7. Let G be a p-group and $H \neq\{1\}$ a normal subgroup, $H \cap Z(G) \neq\{1\}$.
Proof idea. Write the class equation for the action of G on H by conjugation, then look at the equation in $\mathbb{Z} / p \mathbb{Z}$.

Theorem 5.8. Let G be a p-group, then the following holds:

1. For any $H \triangleleft G, H \neq G$, there exists $H^{+} \triangleleft G$ such that $H<H^{+}$and $\left[H^{+}: H\right]=p$.
2. For any $H \triangleleft G, H \neq\{1\}$, there exists $H^{-} \triangleleft G$ such that $H^{-}<H$ and $\left[H^{-}: H\right]=p$. Proof idea.
3. Since G / H is a p-group, there is a non-trivial $x \in Z(G / H)$, the order of x is a power of p, so you can get y of order p. Let $K=\langle y\rangle \triangleleft G / H$, we then use the quotient map and the correspondence theorem to lift K to H^{+}.
4. Use induction, case $|G|=p$ is clear. Choose an element $x \in H \cap Z(G)$ of order p. Let $K=\langle x\rangle \triangleleft G$, note that $K \subseteq H$. If $H=K$, take $H^{-}=\{1\}$. Otherwise, apply induction on G / K to find $(H / K)^{-}$and use the correspondence theorem to lift it to H^{-}.

Lemma 5.9. Let G be any group and $H \subset Z(G)$ such that G / H is cyclic, then G is abelian.

Proof idea. Let $g \in G$ be such that $g H$ generates G / H. This implies that every element is of the form $g^{i} h$, show that these elements commute.

Definition 5.10 (Frattini subgroup). The Frattini subgroup of a p-group G, denoted $\Phi(G)$, is the intersection of all the maximal subgroups of G.

Proposition 5.11. Let G be a p-group, $\Phi(G) \triangleleft G$ is a non-trivial abelian group where every non-zero element is of order p. It is the largest quotient with this property. Also, $\Phi(G)=$ $G^{p} G^{\prime}$.

Proof idea. Conjugation takes maximal subgroups to maximal subgroups so $\Phi(G)$ is normal. The index of a maximal subgroup H forces G / H to be abelian, so $H \supseteq G^{\prime}$, implying $\Phi(G) \supseteq G^{\prime}$ so $G / \Phi(G)$ is also abelian. Also, $g H$ has order p so $g^{p} \in H$ and $H \supseteq G^{p}$ implying $\Phi(G) \supseteq G^{p}$. We get that $\Phi(G) \supseteq G^{p} G^{\prime}$ and every non-trivial element has order p, this is true for any $N \triangleleft G$ with G / N abelian and elements killed by p. Then show $\Phi(G) \subseteq G^{p} G^{\prime}$ by passing to a vector space over \mathbb{F}_{p}.
Lemma 5.12. Let A be a finite abelian group with a prime $p||A|, A$ has an element of order p.

Proof idea. We use induction, case $|A|=p$ is clear. Let N be a maximal subgroup of A, it is normal because A is abelian. If p divides $|N|$ use induction. Otherwise, take $x \in A \backslash N$ and let $B=\langle x\rangle$, show that $p||B|$, so we can find an element of order p.

Proposition 5.13. Let G be a non-commutative p-group and H be a normal subgroup such that G / H is abelian and $|H|=p$, then $H=G^{\prime}$. If every element of G / H has order p, then $H=\Phi(G)$.

Proof idea. By the definition of G^{\prime}, we have $G^{\prime} \subseteq H$, but $G^{\prime} \neq\{1\}$, so we must have $G^{\prime}=H$. The second statement follows from proposition 5.11.

Proposition 5.14. Let G be a group of order $p^{r} m$ where p is prime and $(p, m)=1$, there exists a subgroup of order p^{r}.

Proof idea. We use induction, the case $|G|=p$ is clear. If $p||Z(G)|$, then take $N=$ $\langle x\rangle \triangleleft G$, where x is of order p. Consider G / N, its order is $p^{r-1} m$, we can use induction and the correspondence theorem to lift a group of order p^{r}.

In the case where $p \nmid|Z(G)|$. Consider the class equation modulo p, and find that Cent $_{G}(x)$ is a proper subgroup of order divisible by p^{r} so we can use induction.
Corollary 5.15. Let $p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ be the prime factorization of $|G|$ and P_{i} be a subgroup of size $p_{i}^{a_{i}}$, then $G=\left\langle P_{1}, \ldots, P_{k}\right\rangle$.

Proof idea. The order of $\left\langle P_{1}, \ldots, P_{k}\right\rangle$ is divisible by the order of the group.
Corollary 5.16 (Cauchy's theorem). Let G be finite with $p||G|$, then G has an element of order p.

Proof idea. We find a subgroup of order p^{r}, find an element of order p^{b} and then transform it to an element of order p.

Lemma 5.17. Let P be a maximal p-subgroup of G and Q be any q-subgroup of G, where q is a different prime. $Q \cap P=Q \cap N_{G}(P)$.

Proof idea. Since $P \subseteq N_{G}(P)$, we have $Q \cap P \subseteq Q \cap N_{G}(P)=$: H. For the other direction, see that $H P$ is a p-subgroup of $N_{G}(P)$ but it must be P since P is maximal. This yields $H \subseteq P$ and the result follows.
Theorem 5.18 (Sylow). Let G be a group of order $p^{r} m$ where p is prime and $(p, m)=1$, the following holds:

1. Every maximal p-subgroup has order p^{r} (they are called p-Sylow subgroups).
2. All p-Sylow subgroups are conjugate to each other.
3. Let $n_{p}=\left|\operatorname{Syl}_{p}(G)\right|$, then $n_{p} \equiv 1(\bmod p)$ and $n_{p} \mid m$.

Proof idea. Let $S=\left\{P_{1}, \ldots, P_{a}\right\}$ be the set of conjugates of some p-Sylow P. Let Q, any p-subgroup, act by conjugation on S, the size of $\operatorname{Orb}\left(P_{i}\right)$ is $\frac{|Q|}{\left|\operatorname{Stab}_{Q}\left(P_{i}\right)\right|}=\frac{|Q|}{\left|Q \cap P_{i}\right|}$. We see that the sizes are a power of p unless $Q \subseteq P_{i}$, in that case, the size is one.

If we take $Q=P_{1}$, we know that only the orbit of P_{1} has size 1 because P_{1} is maximal. Hence, S being the disjoin union of orbits has size congruent to 1 modulo p. Suppose towards a contradiction that Q is a maximal subgroup not in S and let it act on S. We get that all the orbits are congruent to 0 modulo p, contradicting our previous statement. Lastly, if we use the orbit stabilizer formula on the action of G by conjugation on the set of maximal subgroups, we get $a=\frac{|G|}{\left|N_{G}(P)\right|}$, so a divides $|G|$.
Lemma 5.19. Let G be finite, $p \neq q$ be two primes dividing $|G|$ and $P \in \operatorname{Syl}_{p}(G), Q \in$ $\operatorname{Syl}_{q}(G)$, then $P \cap Q=\{1\}$.
Proof idea. The size of $P \cap Q$ divides $|P|$ and $|Q|$, since $(p, q)=1$, we must have $\mid P \cap$ $Q \mid=1$.

Lemma 5.20. Let G be any group and $A, B \triangleleft G$, then for any $a \in A$ and $b \in B, a b=b a$.
Proof idea. Note that $a b a^{-1} b^{-1}$ is in both A and B so it must be 1 , the result follows.
Proposition 5.21. Letp $p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ be the prime factorization of $|G|$ and P_{i} be a p_{i}-Sylow subgroup. $G=P_{1} \times \cdots \times P_{k}$ if and only if for any $i, P_{i} \triangleleft G$.

Proof idea. Suppose all the P_{i} are normal, then take $f: P_{1} \times \cdots \times P_{k} \rightarrow G$ be defined by $f\left(x_{1}, \ldots, x_{k}\right)=x_{1} x_{2} \cdots x_{k}$. Since P_{i} and P_{j} commute for $i \neq j, f$ is a homomorphism, then show it is bijective.

Proposition 5.22. Let G be finite, $H \triangleleft G$ and P be a p-Sylow subgroup of G. $P \cap H$ is a maximal p-subgroup and $H P / H$ is a p-Sylow subgroup of G / H.

Proof idea. Show that $|Q \cap H|=|P \cap H|$ for any p-Sylow Q of G. Since a p-Sylow of H is contained in a p-Sylow of G, we see by cardinality that $H \cap P$ must be a p-Sylow of H. For the second part, calculate the size of $H P / H$ and G / H.

Definition 5.23 (Nilpotent groups). A nilpotent group only has normal Sylow subgroups. Equivalently, for any prime p dividing the order of the group, there is a unique p-Sylow subgroup.

6 Composition Series and Solvable Groups

Definition 6.1. A normal series for G is a series of subgroups $G=G_{0} \triangleright \cdots \triangleright G_{n}=\{1\}$ (it is usually strictly descending, namely $G_{i} \neq G_{j}$ for $i \neq j$).

Definition 6.2. A composition series for G is a normal series such that G_{i-1} / G_{i} is non-trivial and simple for all $i \in\{1, \ldots, n\}$. The quotients are called the composition factors, they are considered up to isomorphism but with multiplicity.

Definition 6.3. A group G is called solvable if it has a normal series in which all the composition factors are abelian.

Lemma 6.4. Any strictly descending normal series can be refined to a composition series. Moreover, if the composition factors are abelian, the refinement has composition factors isomorphic to $\mathbb{Z} / p \mathbb{Z}$ for some prime p.

Proofidea. Note that the quotients are non trivial and that $|G|$ is the product of the orders of the quotients. Hence, a strictly descending normal series has bounded length. Assume that the series is not a composition series, take G_{i-1} / G_{i} that is not simple and take a non-trivial normal subgroup H^{\prime}, lift it to G_{i-1} and extend the series to $\cdots G_{i-1} \triangleright$ $H \triangleright G_{i} \cdots$, the first part follows. For the second part, note that our construction still has abelian quotients. Also, finite abelian simple groups are isomorphic to $\mathbb{Z} / p \mathbb{Z}$.

Corollary 6.5. A group G is solvable if and only if it has a composition series with composition factors being cyclic groups of prime order.

Theorem 6.6 (Jordan-Hölder). Let G be finite, any two composition series for G have the same composition factors (considered with multiplicity).

Examples 6.7. Any abelian group is solvable, p-groups are solvable, groups of order $p q$ are solvable, groups of order $p^{2} q$ are solvable, groups of order $p q r$ are solvable and the product of solvable groups are solvable.

Proposition 6.8. Let G be solvable and $K<G, K$ is solvable.
Proof idea. Intersect K with the groups in the normal series with abelian quotients for G, we get a normal series with abelian quotients but for K.

Definition 6.9. A short exact sequence is a sequence of group and homomorphism $1 \rightarrow G_{1} \xrightarrow{f} G_{2} \xrightarrow{g} G_{3} \rightarrow 1$ with f injective, g surjective and $\operatorname{Im}(f)=\operatorname{ker}(g)$.

Proposition 6.10. Let $1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1$ be a short exact sequence, G is solvable if and only if K and H are solvable.

Proof idea. Assume that G is solvable, then $f(K)$ is solvable (hence K as well). If G_{i} are the groups in the normal series for G, let $H_{i}=g\left(G_{i}\right)$ be the ones for H, then show that this is a normal series with abelian factors.

Assume K and H are solvable. Let $J_{i}=g^{-1}\left(H_{i}\right)$ and $J_{i}=f\left(K_{i-n}\right)$ for the rest, J_{i} is a normal series with abelian quotients.

Theorem 6.11. Every group of order less than 60 is solvable.
Theorem 6.12 (Burnside). Every group of order $p^{a} q^{b}$ is solvable.
Theorem 6.13 (Feit-Thompson). Every finite group of odd order is solvable.

7 Finitely Generated Abelian Groups and Semidirect Products

Definition 7.1. A group G is called finitely many generated if there are elements g_{1}, \ldots, g_{n} in G such that $G=\left\langle g_{1}, \cdots, g_{n}\right\rangle$.
Lemma 7.2. An abelian group G is finitely generated if for some positive integer n, there is a surjective homomorphism from \mathbb{Z}^{n} to G.

Theorem 7.3 (Structure theorem). Let G be a finitely generated abelian group, then there exists unique $r \in \mathbb{N}$ and $n_{1}, \ldots, n_{t} \in \mathbb{N}_{>1}$ such that $G \cong \mathbb{Z}^{r} \times \mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{t} \mathbb{Z}$.

Definition 7.4. Let G be a group and B and N be subgroups of G such that $G=N B$, $N \cap B=\{1\}$ and $N \triangleleft G$. We say that G is a semidirect product of N and B. Also, if N and B are groups and $\phi: B \rightarrow \operatorname{Aut}(N)$ is a group homomorphism, we define $N \rtimes_{\phi} B$ to be the semidirect product of N and B relative to ϕ. It is the group $N \times B$ with the following operation:

$$
\left(n_{1}, b_{1}\right) \cdot\left(n_{2}, b_{2}\right)=\left(n_{1} \phi\left(b_{1}\right)\left(n_{2}\right), b_{1} b_{2}\right)
$$

Proposition 7.5. $N \rtimes_{\phi} B \cong N \times B$ if and only if ϕ is trivial.
Proof idea. Use the definitions.
Proposition 7.6. $N \rtimes_{\phi} B$ is abelian if and only if both N and B are abelian and ϕ is trivial.
Proof idea. Use the definitions.

Proposition 7.7. Let N and B be groups and ϕ and ψ be homomorphisms $B \rightarrow \operatorname{Aut}(N)$, then $N \rtimes_{\phi} B \cong N \rtimes_{\psi} B$ if and only if there exists automorphisms $f \in \operatorname{Aut}(N)$ and $g \in \operatorname{Aut}(B)$ such that $\forall b \in B, \psi(b)=f \circ \phi(g(b)) \circ f^{-1}$. The isomorphism between the two semidirect products is $(n, b) \mapsto\left(f(n), g^{-1}(b)\right)$.

Proof idea. Just verify that the map seen is an isomorphism.
Lemma 7.8. Let $n \in \mathbb{N}, \operatorname{Aut}(\mathbb{Z} / n \mathbb{Z}) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$.
Proof idea. For any $a \in \mathbb{Z} / n \mathbb{Z}$ such that $(a, n)=1$, show that $f_{a}(x)=a x$ is in $\operatorname{Aut}(\mathbb{Z} / n \mathbb{Z})$, then show that $a \mapsto f_{a}$ is an isomorphism.

Proposition 7.9. If $p \mid(q-1)$, there is a unique non-abelian group of order $p q$.
Proof idea. We know that any q-Sylow Q is normal. Let P be any p-Sylow, G is a semidirect product of Q and P. There is a non-abelian semidirect product when ϕ maps 1 to $a \mapsto h a$, where h is an element of order p of $(\mathbb{Z} / q \mathbb{Z})^{\times}$. It is clear that any other homomorphism that works will just have a different h, but then we can transform it as in proposition 7.7 to get the isomorphism.

8 Complex Representation of Finite Groups

Definition 8.1 (Representation). Let G be a finite group, V be a finite dimensional vector space over \mathbb{C} and $\rho: G \rightarrow \operatorname{Aut}(V)$ be a group homomorphism, (ρ, V) is called a finite representation of G.

Definition 8.2 (Morphism of representation). Let (ρ, V) and (τ, W) be representations of a finite group G, a linear map $T: V_{1} \rightarrow V_{2}$ is called a morphism of ρ_{1} to ρ_{2} if for any $g \in G, \rho_{2}(g) \circ T=T \circ \rho_{1}(g)$. We will denote $\operatorname{Hom}_{G}\left(V_{1}, V_{2}\right)$ to be the subspace of $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ with linear maps satisfying this property.

Definition 8.3 (Character group). For a group G, the character group of G, denoted G^{*}, is the set of group homomorphisms from G to \mathbb{C}^{\times}.

Proposition 8.4. The following are properties of the character group.

1. $(H \times G)^{*} \cong H^{*} \times G^{*}$.
2. $(\mathbb{Z} / n \mathbb{Z})^{*} \cong \mathbb{Z} / n \mathbb{Z}$.
3. If G is finite and abelian, $G^{*} \cong G$.
4. For a general group $G, G^{*}=\left(G / G^{\prime}\right)^{*}$.

Proof idea. 1. Define the map $\phi:(H \times G)^{*} \rightarrow H^{*} \times G^{*}$ with $f \mapsto(f(\cdot, 1), f(1, \cdot))$. Show that it is an isomorphism.
2. Observe that $f \in(\mathbb{Z} / n \mathbb{Z})^{*}$ is only defined by where it sends the generator, and it must send it to a generator of the group of nth roots of unity (this group is isomorphic to $\mathbb{Z} / n \mathbb{Z}$).
3. Use the structure theorem and the two previous points.
4. Show that if $f \in G^{*}$, then $f([x, y])=1$ and so $G^{\prime} \subseteq \operatorname{ker}(f)$, then the result follows from the first isomorphism theorem.

Theorem 8.5. Let (ρ, V) be a representation of G, there exists a inner product that is G invariant (i.e. for all $v, w \in V,\langle\rho(g) v, \rho(g) w\rangle=\langle v, w\rangle$).

Proof idea. Take any inner product (\cdot, \cdot) and let $\langle u, v\rangle=\frac{1}{|G|} \sum_{g \in G}(\rho(g) u, \rho(g) v)$, verify that $\langle\cdot, \cdot\rangle$ is G-invariant.

Theorem 8.6. Any representation decomposes as a sum of irreducible representations.
Proof idea. Argue by induction. If U is a subrepresentation, then U^{\perp} (w.r.t. a G-invariant inner product) is also a subrepresentation.

Theorem 8.7. Let G be an abelian group, every representation of G decomposes into a direct sum of 1-dimensional representations.

Proof idea. First prove that $\rho(g)$ is diagonalizable. Then use the fact that commuting diagonalizable linear operator are simultaneously diagonalizable.

Lemma 8.8 (Schur). Let (ρ, V) and (τ, W) be irreducible representations of G, we have the following:

$$
\operatorname{Hom}_{G}(V, W) \cong \begin{cases}0 & \rho \not \approx \tau \\ \mathbb{C} & \rho \cong \tau\end{cases}
$$

Proof idea. Note that if $T \in \operatorname{Hom}_{G}(V, W), \operatorname{ker}(T)$ and $\operatorname{Im}(T)$ are subrepresentations, this implies T is either trivial or an isomorphism. Now, look at an eigenspace of T and show that it must be equal to the whole vector space.

Definition 8.9. Let (ρ, V) and (τ, W) be representations of $G, \sigma: G \rightarrow \operatorname{Aut}(\operatorname{Hom}(V, W))$ is a new representation with $\sigma(g) T=\tau(g) \circ T \circ \rho\left(g^{-1}\right)$.

Theorem 8.10. We get that for any $g \in G, \chi_{\sigma}(g)=\overline{\chi_{\rho}(g)} \chi_{\tau}(g)$.
Proof idea. No need to learn it.
Definition 8.11. Let (ρ, V) be a representation of G, define the projection operator as $\pi_{\rho}: V \rightarrow V$ with $\pi_{\rho}=\frac{1}{|G|} \sum_{g \in G} \rho(g)$.

Theorem 8.12. If $\rho=\rho_{1}^{a_{1}} \oplus \cdots \oplus \rho_{t}^{a_{t}}$ where ρ_{1} is the trivial representation, then

$$
\pi_{\rho}=I d_{V_{1}^{a_{1}}} \oplus 0 \oplus \cdots \oplus 0
$$

From this, we get the following:

$$
a_{1}=\operatorname{Tr}\left(\pi_{\rho}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g)=\left\langle\chi_{\rho}, \chi_{1}\right\rangle
$$

Proof idea. Note that $V^{G}=\left(V_{1}^{a_{1}}\right)^{G} \oplus \cdots \oplus\left(V_{1}^{a_{t}}\right)^{G}$ and that except for $i=1,\left(V_{i}^{a_{i}}\right)^{G}=$ $\{0\}$ because it is a subrepresentation. The result follows.

Theorem 8.13. The characters of irreducible representations are orthogonal with respect to the G-invariant inner product.

Proof idea. Use $\operatorname{dim}\left(\operatorname{Hom}(V, W)^{G}\right)=\frac{1}{|G|} \sum_{g \in G} \chi_{\sigma}(g)=\left\langle\chi_{\rho}, \chi_{\tau}\right\rangle$. Then use Schur's lemma.

Proposition 8.14. Here are some consequences of the last theorem.

1. A representation ρ decomposes into an irreducible representation: $\rho=\rho_{1}^{a_{1}} \oplus \cdots \oplus \rho_{t}^{a_{t}}$.
2. $a_{i}=\left\langle\chi_{\rho}, \chi_{\rho_{i}}\right\rangle$.
3. χ_{ρ} determines ρ up to isomorphism.
4. $\rho^{\text {reg }}=\rho_{1}^{\operatorname{dim}\left(\rho_{1}\right)} \oplus \cdots \oplus \rho_{t}^{\operatorname{dim}\left(\rho_{t}\right)}$.
5. ρ is irreducible if and only if $\left\|\chi_{\rho}\right\|=1$.
6. There exists finitely many irreducible characters (hence representations).

Proof idea.

1. Done above.
2. Follows from orthogonality of the irreducible characters.
3. Follows from the last part.
4. Follows from the fact that $\chi_{\text {reg }}$ is 0 everywhere but on the identity.
5. Follows from orthonormality of the irreducible characters.
6. Since they are orthonormal, they can be bigger than the dimension of Class (G).

Definition 8.15. We define a more general operator. Let $\alpha \in \operatorname{Class}(G)$, we define the operator $A_{\rho}=\sum_{g \in G} \alpha(g) \rho(g)$.

Lemma 8.16. For two representations ρ and τ of $G, A_{\rho \oplus \tau}=A_{\rho} \oplus A_{\tau}$.
Proof idea. Use the definitions.
Theorem 8.17. Let $\chi_{\rho_{1}}, \ldots, \chi_{\rho_{t}}$ be the characters of all the irreducible representations of G, they form an orthonormal basis of Class (G), in particular, $t=h(G)$.

Proof idea. Let $\beta \in \operatorname{Class}(G)$ be a function orthogonal to all irreducible characters. Let $\alpha=\bar{\beta}$ and for an irreducible representation ρ_{i}, show that $A_{\rho_{i}} \equiv 0$. Using the last lemma, we get $A_{\rho^{\mathrm{reg}}} \equiv 0$, which is equivalent to $\alpha=\bar{\beta} \equiv 0$.

Proposition 8.18. Let $g, h \in G$ and $\left\{\chi_{i} \mid i \in\{1, \ldots, h(G)\}\right\}$ be the irreducible representations of G, then:

$$
\sum_{i=1}^{h(G)} \chi_{i}(g) \overline{\chi_{i}(h)}= \begin{cases}\left|\operatorname{Cent}_{G}(g)\right| & \text { if } g \text { and } h \text { are conjugate } \\ 0 & \text { otherwise }\end{cases}
$$

Proof idea. Let g_{i} be the representative for the conjugacy classes and $c_{i}=\left|\operatorname{Conj}\left(g_{i}\right)\right|$, also let T be the character table (i.e. $\left.(T)_{i j}=\chi_{i}\left(g_{j}\right)\right)$ and $D=\operatorname{diag}\left(\frac{\left|c_{1}\right|}{n}, \ldots, \frac{\left|c_{h(G)}\right|}{n}\right)$. The row orthogonality condition says that $T D T^{*}=I_{h(G)}$, implying that $T^{-1}=D T^{*}$. We obtain $T^{*} T=D^{-1} \operatorname{diag}\left(\frac{n}{\left|c_{1}\right|}, \ldots, \frac{n}{\left|c_{h(G)}\right|}\right)$, showing the result since $\frac{|G|}{|\operatorname{Conj}(g)|}=\left|\operatorname{Cent}_{G}(g)\right|$.

Proposition 8.19. For $n \geq 4$, the representation $\rho^{s t, 0}$ of A_{n} is irreducible.
Proof idea. Recall that $\chi=\chi_{1}+\chi_{0}$ where χ is the standard representation, χ_{1} is the trivial one and $\chi_{0}=\chi_{\rho^{s t, 0}}$. We will use $\|\chi\|^{2}=\left\|\chi_{1}\right\|^{2}+\left\langle\chi_{1}, \chi_{0}\right\rangle+\left\langle\chi_{0}, \chi_{1}\right\rangle+\left\|\chi_{0}\right\|^{2}$. Show that $\|\chi\|^{2}=2$, let A_{n} act diagonally on $\{1, \ldots, n\}^{2}$, show that there are two orbits, then use CFF with the fact that $\# \operatorname{Fix}(\sigma)=\chi(\sigma)$. Now, show that $\left\langle\chi_{1}, \chi_{0}\right\rangle=$ $\left\langle\chi_{0}, \chi_{1}\right\rangle=0$ and since χ_{1} is irreducible, the result follows.

Proposition 8.20. Let $z \in Z(G)$ and V be an irreducible representation of G, then z acts on V as a multiple of the identity.

Proof idea. Let V_{λ} be an eigenspace of $\rho(z)$, show that V_{λ} is a non-trivial subrepresentation, hence equal to V.

