Important Results - MATH 456

Ralph Sarkis 260729917

January 12, 2018

1 Basic Concepts

Definition 1.1 (Some important groups). S_n denotes the group of permutations of a set of size *n*, it is called the symmetric group. A_n denotes the even permutations in S_n , it is called the alternating group. The dihedral group is the set of symmetrices of a regular *n*-gon on the plane: $D_n = \langle x^n = y^2 = 1, yxy = x^{-1} \rangle$.

Theorem 1.2 (Lagrange). *Let H* be a subgroup of G, then $[G : H] = \frac{|G|}{|H|}$, this is the index of *H* in *G*.

Proof idea. Observe that cosets form equivalence classes so *G* is a disjoin union of them, also each coset has the size of *H*, the result follows. \Box

Corollary 1.3. *The order of any subgroup* $H \le G$ *divides the order of the group* G*, the order of any element also divides* |G|*.*

Proposition 1.4. *If* \mathbb{F} *is a finite field, then* \mathbb{F}^{\times} *is a cyclic group.*

Proof idea. Denote $q = |\mathbb{F}|$, show that for every h dividing q - 1, there is at most one group of order h (it uses the roots of $x^h - 1$). For each divisor h of q - 1 with an element of order h, we have $\phi(h)$ elements of order h. We get that there must be an element of each order that divides q - 1 to get enough elements, in particular, we get an element of order q - 1.

Proposition 1.5. *If* \mathbb{L} *is a finite field containing* \mathbb{F} *, a field with q elements, then* \mathbb{E} *has order a power of q.*

Proof idea. Think of \mathbb{L} as a vector space over \mathbb{F} , as \mathbb{L} is finite, it must have dimension $n < \infty$, implying that \mathbb{L} is isomorphic to \mathbb{F}^n as a vector space.

Definition 1.6 (Centralizer and normalizer). Let $H \leq G$, the centralizer is $Cent_G(H) = \{g \in G \mid \forall h \in H, gh = hg\}$. The normalizer is $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$.

Definition 1.7 (Commutator). The commutator subgroup of *G* is $G' = [G, G] = \{[x, y] = xyx^{-1}y^{-1} \mid x, y \in G\}.$

Proposition 1.8. The commutator subgroup is a normal subgroup and $G^{ab} = G/G'$ is abelian. Moreover, G/N being abelian implies that $N \supseteq G'$.

Proof idea. For the first part, we use the fact that for any $g, a, b \in G$, we have $gabg^{-1} = gag^{-1}gbg^{-1}, g[x, y]g^{-1} = [gxg^{-1}, gyg^{-1}]$, then see that $gG'g^{-1} \subseteq G'$. For the second part, use $yx = xy(y^{-1}x^{-1}yx)$ and $y^{-1}x^{-1}yx \in G'$ to prove G^{ab} is abelian and xyN = yxN to show $[x, y] \in N$ for any x, y.

Proposition 1.9. Let B < G and $N \lhd G$, then $B \cap N \lhd B$, BN = NB < G and $|BN| = \frac{|B| \cdot |N|}{|B \cap N|}$. If *B* is also normal, then $BN \lhd G$ and $B \cap N \lhd G$.

Proof idea. Just use the definitions. For the cardinality part, let $f : B \times N \to BN$ with f(b,n) = bn, then show that $f^{-1}(x)$ has size $|B \cap N|$.

2 Isomorphism Theorems

Proposition 2.1. Let $f : G \to H$ be a group homomorphism, then $A < G \implies f(A) < H$, $B < H \implies f^{-1}(B) < G$ and $B \lhd H \implies f^{-1}(B) \lhd G$.

Proof idea. Just need to check the definitions.

Lemma 2.2. Let f be a group homomorphism, then f is injective if and only if ker(f). Moreover, the fiber of any element in the image is a coset of ker(f).

Theorem 2.3 (First isomorphism theorem). Let $f : G \to H$ be a homomorphism, $K \triangleleft G$, and $K \subseteq \text{ker}(f) = N$, then there is a unique homomorphism $F : G/K \to H$ such that the following diagram commutes:

Proof idea. The map is $F : G/K \to H$ with F(gK) = f(g), it is unique because π_K is surjective.

Corollary 2.4. $G/N \cong \text{Im}(f)$.

Proof idea. Take K = N.

Corollary 2.5. *If* (|G|, |H|) = 1*, then f is trivial* (*i.e.* ker(*f*) = *G*)*.*

Proof idea. We know that |G/N| divides |G|, but also divides |H| since $G/N \cong \text{Im}(f)$, this implies |G/N| = 1.

Corollary 2.6 (Chinese remainder theorem). *Let* $m, n \in \mathbb{N}$ *with* (m, n) = 1*, we have* $\mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Proof idea. Take $f : \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ with $f(x) = (x \pmod{m}, x \pmod{n})$ and look at the kernel.

Theorem 2.7 (Second isomorphism theorem). *Let* B < G *and* $N \lhd G$ *be subgroups, then* $BN/N \cong B/(B \cap N)$.

Proof idea. Let $f : BN \to B/(B \cap N)$ with $f(bn) = b \cdot B \cap N$ and use FIT. \Box

Theorem 2.8 (Correspondence theorem). Let $f : G \to H$ be a surjective homomorphism, then f induces a bijection between the subgroups of G containing ker(f) and the subgroups of H. Moreover, let ker $(f) < G_1 < G_2$, then $G_1 \lhd G_2$ if and only if $f(G_1) \lhd f(G_2)$ giving $G_2/G_1 \cong f(G_2)/f(G_1)$.

Proof idea. The first and second part uses definitions, the last part uses the composition $G_2 \to f(G_2) \to f(G_2)/f(G_1)$ that has kernel $f^{-1}(f(G_1)) = G_1$, then apply FIT. \Box

Theorem 2.9 (Third isomorphism theorem). *Let H* and *K* be normal subgroups of G such that $H \leq K$, then $(G/H)/(H/K) \cong G/K$.

Proof idea. Apply the correspondence theorem with H = G/N, $f = \pi_N$, $G_1 = K$ and $G_2 = G$.

3 Group Actions

Lemma 3.1 (Orbit-Stabilizer formula). Let *G* act on *S* and $s \in S$, then $|\operatorname{Orb}(s)| = \frac{|G|}{|\operatorname{Stab}(s)|}$.

Proof idea. Let ϕ : $G / \operatorname{Stab}(s) \to \operatorname{Orb}(s)$, be defined by $\phi(g \operatorname{Stab}(s)) = g * s$, show that this is well-defined and that this is an isomorphism.

Proposition 3.2. Let G act on S and $s, t \in S$ with $t \in Orb(s)$, then $Stab_G(t)$ is conjugate to $Stab_G(s)$.

Proof idea. Let $g \in G$ with g * s = t and $h \in \text{Stab}(s)$, then $ghg^{-1} * t = t$ and we get $g \operatorname{Stab}(s)g^{-1} \subseteq \operatorname{Stab}(t)$, we get the other direction similarly.

Proposition 3.3. *Let H and K be two subgroups of G with finite index, then* $H \cap K$ *also has finite index in G*.

Proof idea. Let *G* act diagonally on $G/H \times G/K$, the stabilizer of (H, K) is $H \cap K$, then use the orbit-stabilizer formula.

Lemma 3.4. A group G acting on S is equivalent to a homomorphism $\phi : G \to \Sigma_S$, we say that this actions affords the permutation representation ϕ . Moreover, $\ker(\phi) = \bigcap_{g \in G} \operatorname{Stab}(s)$.

Proof idea. For any $g \in G$ and $s \in S$, $\phi(g)(s) = g * s$, this is a homomorphism. \Box

Theorem 3.5 (Cayley). *Every finite group is isomorphic to a subgroup of* $S_{|G|}$.

Proof idea. Let *G* act on itself by multiplication, the stabilizers are all trivial, so the permutation representation is injective, the result follows. \Box

Definition 3.6 (Coset representation). Let $H \triangleleft G$, G acts on G/H affording the homomorphism $\phi : G \rightarrow S_m$ where m = [G : H]. ϕ is called the coset representation, $\ker(\phi) = \bigcap_{g \in G} gHg^{-1}$ is the maximal subgroup of H which is normal in G.

Proposition 3.7. *Let G be a finite group and* H < G *of index p*, *where p is the minimal prime dividing the order of G*, *then H is normal in G*.

Proof idea. Consider the coset representation ϕ : $G \to S_p$, we get $p = [G : H] | [G : \ker(\phi)]$ and $[G : \ker(\phi)] | p!$, leading to $[G : \ker(\phi)] = p$, or $H = K \implies H \lhd G$. \Box

Theorem 3.8 (Cauchy-Frobenius Formula). Let *G* act on a set *S*, then the number of ordbits is equal to $\frac{1}{|G|} \sum_{g \in G} \#Fix(g)$, where #Fix(g) denotes the number of fixed points of *G*.

Proof idea. Write $T(g,s) = \begin{cases} 1 & g * s = s \\ 0 & g * s \neq s \end{cases}$ and observe that $\#\text{Fix}(g) = \sum_{s \in S} T(g,s)$ and $|\operatorname{Stab}(s)| = \sum_{g \in G} T(g,s)$. Now expand, rearrange and simplify $\sum_{g \in G} \#\text{Fix}(g)$.

Corollary 3.9. *If G acts transitively on S, then there exists a* $g \in G$ *with no fixed points.*

Proof idea. Suppose $\#Fix(g) \ge 1$ for any g, use #Fix(e) = |S| and CFF to arrive at a contradiction.

Proposition 3.10. *Let G act transitively on S*, $s \in S$ *and* $K \triangleleft G$, *the number of orbits of K on its action on S is* $[G : K \operatorname{Stab}_{G}(s)]$.

Proof idea. Observe that g * K * s = K * s if and only if $k^{-1}g \in \text{Stab}_G(s)$ if and only if $g \in K \text{Stab}_G(s)$. Since the action of *G* on the *K* orbits is transitive, $G/(K \text{Stab}_G(s))$ is in bijection with the *K* orbits.

4 Symmetric Group

Lemma 4.1. Two elements $\sigma, \tau \in S_n$ are conjugates if and only if they have the same cycle type.

Proof idea. Use the fact that $\tau(i_1 i_2 \dots i_t) \tau^{-1} = (\tau(i_1) \tau(i_2) \dots \tau(i_t))$ and find the τ that works in reverse.

Corollary 4.2. There are p(n) conjugacy classes in S_N , where p(n) denotes the number of partitions of n.

Lemma 4.3. The S_n -conjugacy class of an element $\sigma \in A_n$ is a disjoint union of $[S_n : A_n \operatorname{Cent}_{S_n}(\sigma)] A_n$ -conjugacy classes. In particular, there are two such conjugacy classes if there is an odd permutation commuting with σ , otherwise there is only one.

Proof idea. Apply proposition 3.10 with $G = S_n$, $K = A_n$ and S being the conjugacy class of S_n .

Lemma 4.4. Let $\sigma \in A_N$, then $\text{Cent}_{S_n}(\sigma)$ contains odd permutation unless the disjoint cycle form of σ contains only odd cycles of different lengths.

Lemma 4.5. A normal subgroup $N \triangleleft G$ is a union of disjoint conjugacy classes.

Proof idea. The conjugacy classes are orbits of a group action so they are disjoint, N being normal implies the conjugacy classes of all its elements are contained in N.

Lemma 4.6. *The alternating group* A_5 *is simple.*

Proof idea. Look at the cycle types and the size of each conjugacy class in A_5 by observing the conjugacy classes in S_5 as well. Conclude that a normal group can only have size 1 or 60.

Theorem 4.7. *The alternating groups* A_n *are simple for* $n \ge 5$ *.*

Proof idea. Proof by induction, base case done above. Let $N \triangleleft A_n$, with $N \neq \{1\}$, show that for any *i*, there is a non-trivial $\rho \in N$ such that $\rho(i) = i$. Now, consider each copy of A_{n-1} that fixes an element *i*, call it G_i . Since G_i is simple and $N \cap G_i$ is normal in G_i , $N \cap G_i = G_i$, this shows that $N \supseteq \langle G_1, \ldots, G_n \rangle = A_n$.

Proposition 4.8. *Suppose that* A_n *acts transitively on a set of size* m > 1*, then* $m \ge n$ *.*

Proof idea.

Proposition 4.9. Let $\sigma \neq 1$ be a permutation of S_n , $n \geq 3$, then the conjugacy class of σ has more than one element.

5 *p*-groups, Cauchy's and Sylow's theorems

Lemma 5.1 (Class equation). *Let G be a group, then we have the class equation:*

$$|G| = |Z(G)| + \sum_{\text{reps } x \notin Z(G)} \frac{|G|}{|\operatorname{Cent}_G(x)|}$$

Proposition 5.2. *If G has an even number of conjugacy classes, then G has even order.*

Proof idea. Observe that the inverse function f acts on the conjugacy classes and induces a bijection $\text{Conj}(x) \leftrightarrow \text{Conj}(x^{-1})$. Since f fixes Conj(1), it fixes another one, yielding a bijection on some $\text{Conj}(x_0)$ with $x_0 \neq 1$. If |G| were odd, $|\text{Conj}(x_0)|$ must be odd but since $f^2 = 1$, this implies f fixes a point in $\text{Conj}(x_0)$ which leads to a contradiction.

Lemma 5.3. For any $M \in \mathbb{N}$, up to isomorphisms, there are finitely many groups of order at most M.

Proof idea. Consider the number of possible binary functions.

Lemma 5.4. Let $q \in \mathbb{Q}_{>0}$, and $k \in \mathbb{N}$, there are finitely many tuples of positive integers (n_1, \ldots, n_k) such that $q = \frac{1}{n_1} + \cdots + \frac{1}{n_k}$.

Proof idea. Order the fractions in increasing order, deduce a bound for the last denominator and then use induction on $q - \frac{1}{n_k}$ and a tuple of k - 1 integers.

Theorem 5.5. Let $N \in \mathbb{N}$, up to isomorphism, there are finitely many finite groups with N conjugacy classes.

Proof idea. Use the last lemma with the class equation.

Lemma 5.6. Let G be a p-group (i.e. $|G| = p^r$, $r \in \mathbb{N}$), then $Z(G) \neq \{1\}$.

Proof idea. Write the class equation, then look at the equation in $\mathbb{Z}/p\mathbb{Z}$.

Lemma 5.7. Let G be a p-group and $H \neq \{1\}$ a normal subgroup, $H \cap Z(G) \neq \{1\}$.

Proof idea. Write the class equation for the action of *G* on *H* by conjugation, then look at the equation in $\mathbb{Z}/p\mathbb{Z}$.

Theorem 5.8. *Let G be a p-group, then the following holds:*

- 1. For any $H \triangleleft G$, $H \neq G$, there exists $H^+ \triangleleft G$ such that $H < H^+$ and $[H^+ : H] = p$.
- 2. For any $H \triangleleft G$, $H \neq \{1\}$, there exists $H^- \triangleleft G$ such that $H^- < H$ and $[H^- : H] = p$.

Proof idea.

- 1. Since G/H is a *p*-group, there is a non-trivial $x \in Z(G/H)$, the order of *x* is a power of *p*, so you can get *y* of order *p*. Let $K = \langle y \rangle \triangleleft G/H$, we then use the quotient map and the correspondence theorem to lift *K* to H^+ .
- 2. Use induction, case |G| = p is clear. Choose an element $x \in H \cap Z(G)$ of order p. Let $K = \langle x \rangle \triangleleft G$, note that $K \subseteq H$. If H = K, take $H^- = \{1\}$. Otherwise, apply induction on G/K to find $(H/K)^-$ and use the correspondence theorem to lift it to H^- .

Lemma 5.9. Let G be any group and $H \subset Z(G)$ such that G/H is cyclic, then G is abelian.

 \square

Proof idea. Let $g \in G$ be such that gH generates G/H. This implies that every element is of the form g^ih , show that these elements commute.

Definition 5.10 (Frattini subgroup). The Frattini subgroup of a *p*-group *G* , denoted $\Phi(G)$, is the intersection of all the maximal subgroups of *G*.

Proposition 5.11. Let G be a p-group, $\Phi(G) \triangleleft G$ is a non-trivial abelian group where every non-zero element is of order p. It is the largest quotient with this property. Also, $\Phi(G) = G^pG'$.

Proof idea. Conjugation takes maximal subgroups to maximal subgroups so $\Phi(G)$ is normal. The index of a maximal subgroup H forces G/H to be abelian, so $H \supseteq G'$, implying $\Phi(G) \supseteq G'$ so $G/\Phi(G)$ is also abelian. Also, gH has order p so $g^p \in H$ and $H \supseteq G^p$ implying $\Phi(G) \supseteq G^p$. We get that $\Phi(G) \supseteq G^pG'$ and every non-trivial element has order p, this is true for any $N \triangleleft G$ with G/N abelian and elements killed by p. Then show $\Phi(G) \subseteq G^pG'$ by passing to a vector space over \mathbb{F}_p .

Lemma 5.12. *Let* A *be a finite abelian group with a prime* $p \mid |A|$ *,* A *has an element of order* p*.*

Proof idea. We use induction, case |A| = p is clear. Let *N* be a maximal subgroup of *A*, it is normal because *A* is abelian. If *p* divides |N| use induction. Otherwise, take $x \in A \setminus N$ and let $B = \langle x \rangle$, show that $p \mid |B|$, so we can find an element of order *p*. \Box

Proposition 5.13. Let *G* be a non-commutative *p*-group and *H* be a normal subgroup such that *G*/*H* is abelian and |H| = p, then H = G'. If every element of *G*/*H* has order *p*, then $H = \Phi(G)$.

Proof idea. By the definition of *G*', we have $G' \subseteq H$, but $G' \neq \{1\}$, so we must have G' = H. The second statement follows from proposition 5.11.

Proposition 5.14. Let G be a group of order p^rm where p is prime and (p,m) = 1, there exists a subgroup of order p^r .

Proof idea. We use induction, the case |G| = p is clear. If $p \mid |Z(G)|$, then take $N = \langle x \rangle \triangleleft G$, where x is of order p. Consider G/N, its order is $p^{r-1}m$, we can use induction and the correspondence theorem to lift a group of order p^r .

In the case where $p \nmid |Z(G)|$. Consider the class equation modulo p, and find that $\operatorname{Cent}_G(x)$ is a proper subgroup of order divisible by p^r so we can use induction. \Box

Corollary 5.15. Let $p_1^{a_1} \cdots p_k^{a_k}$ be the prime factorization of |G| and P_i be a subgroup of size $p_i^{a_i}$, then $G = \langle P_1, \dots, P_k \rangle$.

Proof idea. The order of $\langle P_1, \ldots, P_k \rangle$ is divisible by the order of the group.

Corollary 5.16 (Cauchy's theorem). *Let G be finite with* $p \mid |G|$ *, then G has an element of order p*.

Proof idea. We find a subgroup of order p^r , find an element of order p^b and then transform it to an element of order p.

Lemma 5.17. *Let P be a maximal p-subgroup of G and Q be any q-subgroup of G, where q is a different prime.* $Q \cap P = Q \cap N_G(P)$.

Proof idea. Since $P \subseteq N_G(P)$, we have $Q \cap P \subseteq Q \cap N_G(P) =: H$. For the other direction, see that HP is a *p*-subgroup of $N_G(P)$ but it must be *P* since *P* is maximal. This yields $H \subseteq P$ and the result follows.

Theorem 5.18 (Sylow). *Let G be a group of order* p^rm *where p is prime and* (p,m) = 1*, the following holds:*

- 1. Every maximal p-subgroup has order p^r (they are called p-Sylow subgroups).
- 2. All p-Sylow subgroups are conjugate to each other.
- 3. Let $n_p = |\operatorname{Syl}_n(G)|$, then $n_p \equiv 1 \pmod{p}$ and $n_p \mid m$.

Proof idea. Let $S = \{P_1, \ldots, P_a\}$ be the set of conjugates of some *p*-Sylow *P*. Let *Q*, any *p*-subgroup, act by conjugation on *S*, the size of $\operatorname{Orb}(P_i)$ is $\frac{|Q|}{|\operatorname{Stab}_Q(P_i)|} = \frac{|Q|}{|Q \cap P_i|}$. We see that the sizes are a power of *p* unless $Q \subseteq P_i$, in that case, the size is one.

If we take $Q = P_1$, we know that only the orbit of P_1 has size 1 because P_1 is maximal. Hence, *S* being the disjoin union of orbits has size congruent to 1 modulo *p*. Suppose towards a contradiction that *Q* is a maximal subgroup not in *S* and let it act on *S*. We get that all the orbits are congruent to 0 modulo *p*, contradicting our previous statement. Lastly, if we use the orbit stabilizer formula on the action of *G* by conjugation on the set of maximal subgroups, we get $a = \frac{|G|}{|N_G(P)|}$, so *a* divides |G|. \Box

Lemma 5.19. Let G be finite, $p \neq q$ be two primes dividing |G| and $P \in Syl_p(G), Q \in Syl_a(G)$, then $P \cap Q = \{1\}$.

Proof idea. The size of $P \cap Q$ divides |P| and |Q|, since (p,q) = 1, we must have $|P \cap Q| = 1$.

Lemma 5.20. *Let G be any group and A*, $B \triangleleft G$, *then for any* $a \in A$ *and* $b \in B$, ab = ba.

Proof idea. Note that $aba^{-1}b^{-1}$ is in both *A* and *B* so it must be 1, the result follows. \Box

Proposition 5.21. Let $p_1^{a_1} \cdots p_k^{a_k}$ be the prime factorization of |G| and P_i be a p_i -Sylow subgroup. $G = P_1 \times \cdots \times P_k$ if and only if for any $i, P_i \triangleleft G$.

Proof idea. Suppose all the P_i are normal, then take $f : P_1 \times \cdots \times P_k \to G$ be defined by $f(x_1, \ldots, x_k) = x_1 x_2 \cdots x_k$. Since P_i and P_j commute for $i \neq j$, f is a homomorphism, then show it is bijective.

Proposition 5.22. *Let G be finite,* $H \triangleleft G$ *and P be a p-Sylow subgroup of G. P* \cap *H is a maximal p-subgroup and HP*/*H is a p-Sylow subgroup of G*/*H.*

Proof idea. Show that $|Q \cap H| = |P \cap H|$ for any *p*-Sylow *Q* of *G*. Since a *p*-Sylow of *H* is contained in a *p*-Sylow of *G*, we see by cardinality that $H \cap P$ must be a *p*-Sylow of *H*. For the second part, calculate the size of HP/H and G/H.

Definition 5.23 (Nilpotent groups). A nilpotent group only has normal Sylow subgroups. Equivalently, for any prime *p* dividing the order of the group, there is a unique *p*-Sylow subgroup.

6 Composition Series and Solvable Groups

Definition 6.1. A normal series for *G* is a series of subgroups $G = G_0 \triangleright \cdots \triangleright G_n = \{1\}$ (it is usually strictly descending, namely $G_i \neq G_j$ for $i \neq j$).

Definition 6.2. A composition series for *G* is a normal series such that G_{i-1}/G_i is non-trivial and simple for all $i \in \{1, ..., n\}$. The quotients are called the composition factors, they are considered up to isomorphism but with multiplicity.

Definition 6.3. A group *G* is called solvable if it has a normal series in which all the composition factors are abelian.

Lemma 6.4. Any strictly descending normal series can be refined to a composition series. Moreover, if the composition factors are abelian, the refinement has composition factors isomorphic to $\mathbb{Z}/p\mathbb{Z}$ for some prime *p*.

Proof idea. Note that the quotients are non trivial and that |G| is the product of the orders of the quotients. Hence, a strictly descending normal series has bounded length. Assume that the series is not a composition series, take G_{i-1}/G_i that is not simple and take a non-trivial normal subgroup H', lift it to G_{i-1} and extend the series to $\cdots G_{i-1} \triangleright H \triangleright G_i \cdots$, the first part follows. For the second part, note that our construction still has abelian quotients. Also, finite abelian simple groups are isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

Corollary 6.5. *A* group *G* is solvable if and only if it has a composition series with composition factors being cyclic groups of prime order.

Theorem 6.6 (Jordan-Hölder). Let *G* be finite, any two composition series for *G* have the same composition factors (considered with multiplicity).

Examples 6.7. Any abelian group is solvable, *p*-groups are solvable, groups of order pq are solvable, groups of order p^2q are solvable, groups of order pqr are solvable and the product of solvable groups are solvable.

Proposition 6.8. Let G be solvable and K < G, K is solvable.

Proof idea. Intersect *K* with the groups in the normal series with abelian quotients for *G*, we get a normal series with abelian quotients but for *K*. \Box

Definition 6.9. A short exact sequence is a sequence of group and homomorphism $1 \rightarrow G_1 \xrightarrow{f} G_2 \xrightarrow{g} G_3 \rightarrow 1$ with *f* injective, *g* surjective and Im(f) = ker(g).

Proposition 6.10. *Let* $1 \rightarrow K \rightarrow G \rightarrow H \rightarrow 1$ *be a short exact sequence, G is solvable if and only if K and H are solvable.*

Proof idea. Assume that *G* is solvable, then f(K) is solvable (hence *K* as well). If G_i are the groups in the normal series for *G*, let $H_i = g(G_i)$ be the ones for *H*, then show that this is a normal series with abelian factors.

Assume *K* and *H* are solvable. Let $J_i = g^{-1}(H_i)$ and $J_i = f(K_{i-n})$ for the rest, J_i is a normal series with abelian quotients.

Theorem 6.11. *Every group of order less than 60 is solvable.*

Theorem 6.12 (Burnside). Every group of order $p^a q^b$ is solvable.

Theorem 6.13 (Feit-Thompson). Every finite group of odd order is solvable.

7 Finitely Generated Abelian Groups and Semidirect Products

Definition 7.1. A group *G* is called finitely many generated if there are elements g_1, \ldots, g_n in *G* such that $G = \langle g_1, \cdots, g_n \rangle$.

Lemma 7.2. An abelian group G is finitely generated if for some positive integer n, there is a surjective homomorphism from \mathbb{Z}^n to G.

Theorem 7.3 (Structure theorem). Let *G* be a finitely generated abelian group, then there exists unique $r \in \mathbb{N}$ and $n_1, \ldots, n_t \in \mathbb{N}_{>1}$ such that $G \cong \mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_t\mathbb{Z}$.

Definition 7.4. Let *G* be a group and *B* and *N* be subgroups of *G* such that G = NB, $N \cap B = \{1\}$ and $N \triangleleft G$. We say that *G* is a semidirect product of *N* and *B*. Also, if *N* and *B* are groups and $\phi : B \rightarrow \operatorname{Aut}(N)$ is a group homomorphism, we define $N \rtimes_{\phi} B$ to be the semidirect product of *N* and *B* relative to ϕ . It is the group $N \times B$ with the following operation:

$$(n_1, b_1) \cdot (n_2, b_2) = (n_1 \phi(b_1)(n_2), b_1 b_2)$$

Proposition 7.5. $N \rtimes_{\phi} B \cong N \times B$ if and only if ϕ is trivial.

Proof idea. Use the definitions.

Proposition 7.6. $N \rtimes_{\phi} B$ is abelian if and only if both N and B are abelian and ϕ is trivial.

Proof idea. Use the definitions.

Proposition 7.7. Let N and B be groups and ϕ and ψ be homomorphisms $B \to \operatorname{Aut}(N)$, then $N \rtimes_{\phi} B \cong N \rtimes_{\psi} B$ if and only if there exists automorphisms $f \in \operatorname{Aut}(N)$ and $g \in \operatorname{Aut}(B)$ such that $\forall b \in B, \psi(b) = f \circ \phi(g(b)) \circ f^{-1}$. The isomorphism between the two semidirect products is $(n, b) \mapsto (f(n), g^{-1}(b))$.

Proof idea. Just verify that the map seen is an isomorphism.

Lemma 7.8. Let $n \in \mathbb{N}$, $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$.

Proof idea. For any $a \in \mathbb{Z}/n\mathbb{Z}$ such that (a, n) = 1, show that $f_a(x) = ax$ is in Aut $(\mathbb{Z}/n\mathbb{Z})$, then show that $a \mapsto f_a$ is an isomorphism.

Proposition 7.9. *If* $p \mid (q-1)$ *, there is a unique non-abelian group of order pq.*

Proof idea. We know that any *q*-Sylow *Q* is normal. Let *P* be any *p*-Sylow, *G* is a semidirect product of *Q* and *P*. There is a non-abelian semidirect product when ϕ maps 1 to $a \mapsto ha$, where *h* is an element of order *p* of $(\mathbb{Z}/q\mathbb{Z})^{\times}$. It is clear that any other homomorphism that works will just have a different *h*, but then we can transform it as in proposition 7.7 to get the isomorphism.

8 Complex Representation of Finite Groups

Definition 8.1 (Representation). Let *G* be a finite group, *V* be a finite dimensional vector space over \mathbb{C} and $\rho : G \to \operatorname{Aut}(V)$ be a group homomorphism, (ρ, V) is called a finite representation of *G*.

Definition 8.2 (Morphism of representation). Let (ρ, V) and (τ, W) be representations of a finite group *G*, a linear map $T : V_1 \to V_2$ is called a morphism of ρ_1 to ρ_2 if for any $g \in G$, $\rho_2(g) \circ T = T \circ \rho_1(g)$. We will denote $\text{Hom}_G(V_1, V_2)$ to be the subspace of $\text{Hom}(V_1, V_2)$ with linear maps satisfying this property.

Definition 8.3 (Character group). For a group *G*, the character group of *G*, denoted G^* , is the set of group homomorphisms from *G* to \mathbb{C}^{\times} .

Proposition 8.4. The following are properties of the character group.

- 1. $(H \times G)^* \cong H^* \times G^*$.
- 2. $(\mathbb{Z}/n\mathbb{Z})^* \cong \mathbb{Z}/n\mathbb{Z}$.
- *3. If G is finite and abelian,* $G^* \cong G$ *.*
- 4. For a general group $G, G^* = (G/G')^*$.
- *Proof idea.* 1. Define the map $\phi : (H \times G)^* \to H^* \times G^*$ with $f \mapsto (f(\cdot, 1), f(1, \cdot))$. Show that it is an isomorphism.

- 2. Observe that $f \in (\mathbb{Z}/n\mathbb{Z})^*$ is only defined by where it sends the generator, and it must send it to a generator of the group of *n*th roots of unity (this group is isomorphic to $\mathbb{Z}/n\mathbb{Z}$).
- 3. Use the structure theorem and the two previous points.
- 4. Show that if $f \in G^*$, then f([x, y]) = 1 and so $G' \subseteq \text{ker}(f)$, then the result follows from the first isomorphism theorem.

Theorem 8.5. Let (ρ, V) be a representation of *G*, there exists a inner product that is *G*-invariant (i.e. for all $v, w \in V$, $\langle \rho(g)v, \rho(g)w \rangle = \langle v, w \rangle$).

Proof idea. Take any inner product (\cdot, \cdot) and let $\langle u, v \rangle = \frac{1}{|G|} \sum_{g \in G} (\rho(g)u, \rho(g)v)$, verify that $\langle \cdot, \cdot \rangle$ is *G*-invariant.

Theorem 8.6. Any representation decomposes as a sum of irreducible representations.

Proof idea. Argue by induction. If *U* is a subrepresentation, then U^{\perp} (w.r.t. a *G*-invariant inner product) is also a subrepresentation.

Theorem 8.7. *Let G be an abelian group, every representation of G decomposes into a direct sum of* 1*-dimensional representations.*

Proof idea. First prove that $\rho(g)$ is diagonalizable. Then use the fact that commuting diagonalizable linear operator are simultaneously diagonalizable.

Lemma 8.8 (Schur). *Let* (ρ, V) *and* (τ, W) *be irreducible representations of G, we have the following:*

$$\operatorname{Hom}_{G}(V,W) \cong \begin{cases} 0 & \rho \not\cong \tau \\ \mathbb{C} & \rho \cong \tau \end{cases}$$

Proof idea. Note that if $T \in \text{Hom}_G(V, W)$, ker(T) and Im(T) are subrepresentations, this implies T is either trivial or an isomorphism. Now, look at an eigenspace of T and show that it must be equal to the whole vector space.

Definition 8.9. Let (ρ, V) and (τ, W) be representations of $G, \sigma : G \to Aut(Hom(V, W))$ is a new representation with $\sigma(g)T = \tau(g) \circ T \circ \rho(g^{-1})$.

Theorem 8.10. We get that for any $g \in G$, $\chi_{\sigma}(g) = \overline{\chi_{\rho}(g)}\chi_{\tau}(g)$.

Proof idea. No need to learn it.

Definition 8.11. Let (ρ, V) be a representation of *G*, define the projection operator as $\pi_{\rho} : V \to V$ with $\pi_{\rho} = \frac{1}{|G|} \sum_{g \in G} \rho(g)$.

Theorem 8.12. If $\rho = \rho_1^{a_1} \oplus \cdots \oplus \rho_t^{a_t}$ where ρ_1 is the trivial representation, then

$$\pi_{\rho} = Id_{V_1^{a_1}} \oplus 0 \oplus \cdots \oplus 0$$

From this, we get the following:

$$a_1 = Tr(\pi_{\rho}) = \frac{1}{|G|} \sum_{g \in G} \chi_{\rho}(g) = \langle \chi_{\rho}, \chi_1 \rangle$$

Proof idea. Note that $V^G = (V_1^{a_1})^G \oplus \cdots \oplus (V_1^{a_i})^G$ and that except for i = 1, $(V_i^{a_i})^G = \{0\}$ because it is a subrepresentation. The result follows.

Theorem 8.13. *The characters of irreducible representations are orthogonal with respect to the G-invariant inner product.*

Proof idea. Use dim(Hom(V, W)^{*G*}) = $\frac{1}{|G|} \sum_{g \in G} \chi_{\sigma}(g) = \langle \chi_{\rho}, \chi_{\tau} \rangle$. Then use Schur's lemma.

Proposition 8.14. *Here are some consequences of the last theorem.*

- 1. A representation ρ decomposes into an irreducible representation: $\rho = \rho_1^{a_1} \oplus \cdots \oplus \rho_t^{a_t}$.
- 2. $a_i = \langle \chi_{\rho}, \chi_{\rho_i} \rangle$.
- 3. χ_{ρ} determines ρ up to isomorphism.

4.
$$\rho^{reg} = \rho_1^{\dim(\rho_1)} \oplus \cdots \oplus \rho_t^{\dim(\rho_t)}$$

- 5. ρ is irreducible if and only if $||\chi_{\rho}|| = 1$.
- 6. There exists finitely many irreducible characters (hence representations).

Proof idea.

- 1. Done above.
- 2. Follows from orthogonality of the irreducible characters.
- 3. Follows from the last part.
- 4. Follows from the fact that χ_{reg} is 0 everywhere but on the identity.
- 5. Follows from orthonormality of the irreducible characters.
- 6. Since they are orthonormal, they can be bigger than the dimension of Class(G).

Definition 8.15. We define a more general operator. Let $\alpha \in Class(G)$, we define the operator $A_{\rho} = \sum_{g \in G} \alpha(g)\rho(g)$.

Lemma 8.16. For two representations ρ and τ of G, $A_{\rho\oplus\tau} = A_{\rho} \oplus A_{\tau}$.

Proof idea. Use the definitions.

Theorem 8.17. Let $\chi_{\rho_1}, \ldots, \chi_{\rho_t}$ be the characters of all the irreducible representations of *G*, they form an orthonormal basis of Class(*G*), in particular, t = h(G).

Proof idea. Let $\beta \in \text{Class}(G)$ be a function orthogonal to all irreducible characters. Let $\alpha = \overline{\beta}$ and for an irreducible representation ρ_i , show that $A_{\rho_i} \equiv 0$. Using the last lemma, we get $A_{\rho^{\text{reg}}} \equiv 0$, which is equivalent to $\alpha = \overline{\beta} \equiv 0$.

Proposition 8.18. *Let* $g, h \in G$ *and* $\{\chi_i \mid i \in \{1, ..., h(G)\}\}$ *be the irreducible representations of G, then:*

$$\sum_{i=1}^{h(G)} \chi_i(g) \overline{\chi_i(h)} = \begin{cases} |\operatorname{Cent}_G(g)| & \text{if } g \text{ and } h \text{ are conjugate} \\ 0 & \text{otherwise} \end{cases}$$

Proof idea. Let g_i be the representative for the conjugacy classes and $c_i = |\operatorname{Conj}(g_i)|$, also let T be the character table (i.e. $(T)_{ij} = \chi_i(g_j)$) and $D = \operatorname{diag}\left(\frac{|c_1|}{n}, \dots, \frac{|c_{h(G)}|}{n}\right)$. The row orthogonality condition says that $TDT^* = I_{h(G)}$, implying that $T^{-1} = DT^*$. We obtain $T^*T = D^{-1}\operatorname{diag}\left(\frac{n}{|c_1|}, \dots, \frac{n}{|c_{h(G)}|}\right)$, showing the result since $\frac{|G|}{|\operatorname{Conj}(g)|} = |\operatorname{Cent}_G(g)|$.

Proposition 8.19. For $n \ge 4$, the representation $\rho^{st,0}$ of A_n is irreducible.

Proof idea. Recall that $\chi = \chi_1 + \chi_0$ where χ is the standard representation, χ_1 is the trivial one and $\chi_0 = \chi_{\rho^{st,0}}$. We will use $\|\chi\|^2 = \|\chi_1\|^2 + \langle\chi_1,\chi_0\rangle + \langle\chi_0,\chi_1\rangle + \|\chi_0\|^2$. Show that $\|\chi\|^2 = 2$, let A_n act diagonally on $\{1,\ldots,n\}^2$, show that there are two orbits, then use CFF with the fact that $\#Fix(\sigma) = \chi(\sigma)$. Now, show that $\langle\chi_1,\chi_0\rangle = \langle\chi_0,\chi_1\rangle = 0$ and since χ_1 is irreducible, the result follows.

Proposition 8.20. *Let* $z \in Z(G)$ *and* V *be an irreducible representation of* G*, then* z *acts on* V *as a multiple of the identity.*

Proof idea. Let V_{λ} be an eigenspace of $\rho(z)$, show that V_{λ} is a non-trivial subrepresentation, hence equal to V.