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Abstract

This document contains a summary of all the key definitions, results, and theorems from class.
There are probably typos, and so I would be grateful if you brought those to my attention :-).

Syllabus: Lp space, duality, weak convergence, Young, Holder, and Minkowski inequalities, point-set
topology, topological space, dense sets, completeness, compactness, connectedness, path-connectedness,
separability, Tychnoff theorem, Stone-Weierstrass Theorem, Arzela-Ascoli, Baire category theorem,
open mapping theorem, closed graph theorem, uniform boudnedness principle, Hahn Banch theorem.
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1. Lp Spaces: Completeness and Approximation

1.1. Normed Vector Spaces

Definition 1 (`p space). Let (a1, an, ...) be a sequence. Then, the `p-space is:

`p :=

{
(a1, a2, ...) |

∞∑
n=1

|an|p < +∞

}
(1)

Theorem 1 (Riesz-Fisher). Lp(X) is complete.

Definition 2 (Lp space). Let E be a measurable set and let 1 ≤ p <∞. Then, Lp(E) is the collection of
measurable functions f for which |f |p is Lebesgue integrable over E.

Definition 3 (Equivalent Functions). Let F be the collection of all measurable extended real-valued
functions on E that are finite a.e. on E. Define two functions f and g to be equivalent, and write f ∼ g
if g(x) = f(x) a.e. on E.

Definition 4 (Essentially Bounded). We call a function f ∈ F to be essentially bounded if there exists
some M ≥ 0, called the essential upper bound for f , for which

|f(x)| ≤M

for almost every x ∈ E. L∞(E) is the collection of equivalence classes [f ] for which f is essentially
bounded.

Definition 5 (Norm). Let X be a linear space. A real-valued functional || · || on X is called a norm
provided that for each f and g in X and each real number α,

(1) (The Triangle Inequality).

||f + g|| ≤ ||f ||+ ||g||

(2) (Positive Homogeneity).

||αf || = |α|||f ||

(3) (Non-Negativity).

||f || ≥ 0 and ||f || = 0 if and only if f = 0

Definition 6 (Normed Linear Space). X is said to be a normed linear space if X is equipped with a
norm.

Definition 7 (Essential Supremum). Let f ∈ L∞(E). ||f ||∞ is called the essential supremum and is
defined as:

||f ||∞ := {M | M is an essential upper bound for f}

Theorem: || · ||∞ is a norm on L∞(E).
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1.2. The Inequalities of Young, Hölder, and Minkowski

Definition 8 (p-norm). Let E be a measurable set, 1 < p < ∞, and let f ∈ Lp(E). Then, define the
p-norm to be:

||f ||p :=
[∫

E
|f |p

] 1
p

(2)

Definition 9 (Conjugate). The conjugate of a number p ∈]1,∞[ is the number q = p/(p− 1), which is
the unique number q ∈]1,∞[ for which

1

p
+

1

q
= 1 (3)

The conjugate of 1 is defined to be ∞ and the conjugate of ∞ is defined to be 1.

Definition 10 (Young’s Inequality). For 1 < p <∞, q the conjugate of p, and any two positive numbers
a and b, we have:

ab ≤ ap

p
+
bq

q
(4)

Theorem 2 (Hölder’s Inequality). Let E ⊆ R be measurable, 1 ≤ p <∞, and q the conjugate of p. If f
belongs to Lp(E), and g belongs to Lq(E), then their product f · g is integrable over E and:∫

E
|f · g| ≤ ||f ||p · ||g||q. (5)

Moreover, if f 6= 0, then the function defined as:

f∗ := ||f ||1−pp · sgn(f) · |f |p−1 (6)

belongs to Lq(E), ∫
E
f · f∗ = ||f ||p and ||f∗||q = 1

We call f∗ defined as above to be called the conjugate function of f .

Theorem 3 (Minkowski’s Inequality). Let E be a measurable set and 1 ≤ p ≤ ∞. If the functions f and
g belong to Lp(E), then so does their sum f + g. Moreover,

||f + g||p ≤ ||f ||p + ||g||p (7)

Theorem 4 (Cauchy-Schwarz Inequality). Let E be a measurable set and let f and g be measurable
functions over E for which f2 and g2 are integrable over E. Then, f · g is integrable over E and∫

E
|f · g| ≤

√∫
E
f2 ·

√∫
E
g2 (8)

Corollary 1. Let E be a measurable set and 1 < p < ∞. Suppose F is a family of functions in Lp(E)
that is bounded in Lp(E) in the sense that there is a constant M for which

||f ||p ≤M for all f ∈ F

Then, the family F is uniformly integrable over E.

Corollary 2. Let E be a measurable set of finite measure and 1 ≤ p1 < p2 ≤ ∞. Then, Lp2(E) ⊆ Lp1(E).
Furthermore,

||f ||p1 ≤ c||f ||p2

for all f in Lp2(E), where c = [m(E)]
p2−p1
q1p2 if p2 <∞ and c = [m(E)]

1
p1 if p2 =∞.
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1.3. Lp is complete: the Reisz-Fischer Theorem

Definition 11 (Converge). A sequence {fn} in a linear space X normed by || · || is said to converge to
f in X provided:

lim
n→∞

||f − fn|| = 0

Definition 12 (Cauchy). A sequence {fn} in a linear space X that is normed by ||·|| is said to be Cauchy
in X provided for each ε > 0, there exists a N ∈ N such that

||fn − fm|| < ε ∀ m,n ≥ N (9)

Definition 13 (Complete). A normed linear space X is called complete if every Cauchy sequence in X
converges to a function in X. A complete normed linear space is called a Banach space.

Proposition 1. Let X be a normed linear space. Then, every convergent sequence in X is Cauchy.
Moreover, a Cauchy sequence in X converges if it has a convergent subsequence.

Definition 14. Let X be a linear space normed by || · ||. A sequence {fn} in X is said to be rapidly
Cauchy if there is a convergent series of positive numbers

∑∞
k=1 εk for which

||fk+1 − fk|| ≤ ε2
k for all k

Proposition 2. Let X be a normed linear space. Then, every rapidly Cauchy sequence in X is Cauchy.
Furthermore, every Cauchy sequence has a rapidly Cauchy subsequence.

Proposition 3. Let E be a measurable set and 1 ≤ p ≤ ∞. Then, every rapidly Cauchy sequence in
Lp(E) converges with respect to the Lp(E) norm and pointwise a.e. on E to a function in Lp(E).

Theorem 5 (Riesz-Fischer Theorem). Let E be a measurable set and 1 ≤ p ≤ ∞. Then Lp(E) is a
Banach space. Moreover, if {fn} → f in Lp(E), a subsequence of {fn} converges pointwise a.e. on E to
f .

Theorem 6. Let E be a measurable set and 1 ≤ p < ∞. Suppose {fn} is a sequence in Lp(E) that
converges pointwise a.e. on E to the function f which belongs to Lp(E). Then:

{fn} → f in Lp(E) ⇐⇒ lim
n→∞

∫
E
|fn|p =

∫
E
|f |p

Definition 15 (Tight). A family F of measurable functions on E is said to be tight over E provided
that for each ε > 0, there exists a subset E0 of E of finite measure for which∫

E\E0

|f | < ε for all f ∈ F

Theorem 7. Let E be a measurable set and let 1 ≤ p < ∞. Suppose {fn} is a sequence in Lp(E) that
converges pointwise a.e. on E to the function f which belongs to Lp(E). Then, {fn} → f in Lp(E) ⇐⇒
{|fn|p} is uniformly integrable and tight over E.

1.4. Approximation and Separability

Definition 16 (Dense). Let X be a normed linear space with norm || · ||. Given two subsets F and G
of X with F ⊆ G, we say that F is dense in G provided for each function g in G and ε > 0, there is a
function f ∈ F for which ||f − g|| < ε.
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Proposition 4. Let E be a measurable set and let 1 ≤ p ≤ ∞. Then, the subspace of simple functions
in Lp(E) is dense in Lp(E).

Proposition 5. Let [a, b] be a closed, bounded interval and 1 ≤ p < ∞. Then, the subspace of step
functions on [a, b] is dense in Lp[a, b].

Definition 17 (Separable). A normed linear spaceX is said to be separable provided there is a countable
subset that is dense in X.

Theorem 8. Let E be a measurable set and 1 ≤ p < ∞. Then, the normed linear space Lp(E) is
separable.

Theorem 9. Suppose E is measurable and let 1 ≤ p < ∞. Then, Cc(E) (the set of all continuous
functions with compact support on E) is dense in Lp(E).

1.5. Results from the Homework

(1) (When Hölder’s inequality → equality): There is equality in Hölder’s Inequality ⇐⇒ there exists
constants α, β, both of which non-zero, for which:

α|f |p = β|g|q

a.e. on E.
(2) (Extension of Hölder’s Inequality for 3 functions): Let E ⊆ R be measurable, let 1 ≤ p < ∞,

1 ≤ q <∞, 1 ≤ r <∞ such that:

1

p
+

1

q
+

1

r
= 1

If f ∈ Lp(E), q ∈ Lq(E), and h ∈ Lr(E), then fgh ∈ L(E) and:∫
E
|fgh| ≤ ||f ||p||g||q||h||r

(3) For 1 ≤ p ≤ ∞, q conjugate of p, f ∈ Lp(E):

||f ||p = max
g∈Lq(E),||g||q≤1

∫
E
fg

(4) (Lp dominated convergence theorem): Let {fn} be a sequence of measurable functions that converge
pointwise a.e. on E to f . For 1 ≤ p < ∞, suppose ∃ a function g ∈ Lp(E) such that ∀ n ∈ N,
|fn| ≤ g a.e. on E. Then, {fn} → f in Lp(E).

(5) Assume 1 ≤ p <∞, if E ⊆ R has finite measure, 1 ≤ p <∞, and {fn} is a sequence of measurable
functions which converge pointwise a.e. on E to f , then {fn} → f in Lp(E) if ∃ a θ > 0 such that
{fn} belongs to and is bounded as a subset of Lp+θ(E).

(6) The space c of all convergent sequences of real numbers and the space c0 of all sequences which
converge to zero are Banach spaces with respect to the `∞ norm.

(7) Let E ⊆ R be measurable, 1 ≤ p ≤ ∞, q the conjugate of p, and S a dense subset of Lq(E). If
g ∈ Lp(E) and

∫
E g · g = 0 for all g ∈ S, then g = 0.

(8) (Separability of `p): For 1 ≤ p <∞, `p is separable. `∞ is not separable.
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2. Lp Spaces: Duality and Weak Convergence

2.1. Riesz Representation Theorem for the Dual of Lp, 1 ≤ p <∞

Definition 18 (Linear Functional). A linear functional on a linear space X is a real-valued function T
on T such that for g and g in X and α and β real numbers,

T (α · g + β · h) = α · T (g) + β · T (h) (10)

Definition 19 (Bounded). For a normed linear space X, a linear functional T on X is said to be bounded
provided there is an M ≥ 0 for which

|T (f)| ≤M · ||f || for all f ∈ X (11)

The infimum of all such M is called the norm of T and is denoted by ||T ||∗.

Proposition 6 (Continuity Property of a Bounded Linear Functional). Let T be a bounded linear
functional on the normed space X. Then, if {fn} → f in X, then {T (fn)} → {T (f)}.

Proposition 7. Let X be a normed vector space. Then, the collection of bounded linear functionals on
X is a linear space which is normed by || · ||∗. This normed vector space is called the dual space of X,
and is denoted by X∗.

Proposition 8. Let E ⊆ R be measurable, 1 ≤ p < ∞, q the conjugate of p, g ∈ Lq(E). Define the
functional T on Lp(E) by:

T (f) :=

∫
E
g · f ∀f ∈ Lp(E) (12)

Then, T is a bounded linear functional on Lp(E) and ||T ||∗ = ||g||q.

Proposition 9. Let T , S be bounded linear functionals on the normed vector space X. If T = S on a
dense subset X0 of X, then T = S.

Lemma 10. Let E ⊆ R be measurable, 1 ≤ p <∞. Suppose that g is integrable over E and there exists
a M ≥ 0 for which ∣∣∣∣∫

E
g · f

∣∣∣∣ ≤M ||f ||p ∀f ∈ Lp(E), f simple

Then, g ∈ Lq(E), where q is the conjugate of p. Moreover, ||g||q ≤M .

Theorem 11. Let [a, b] be a closed, bounded interval, and 1 ≤ p < ∞. Suppose that T is a bounded
linear functional on Lp[a, b]. Then, there is a functional g ∈ Lq[a, b], where q is the conjugate of p, for
which:

T (f) =

∫ b

a
g · f ∀f ∈ Lp[a, b] (13)

Theorem 12 (Riesz-Representation Theorem for the Dual of Lp(E)). Let E ⊆ R be measurable, 1 ≤ p <
∞, and q the conjugate of p. For all g ∈ Lq(E), define the bounded linear functional Rg on Lp(E) by:

Rg :=
∫
E
g · f ∀f ∈ Lp(E) (14)

Then, for each bounded linear functional T on Lp(E), there exists a unique g ∈ Lq(E) for which

(1) Rg = T and
(2) ||T ||∗ = ||g||q
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2.2. Weak Sequential Convergence in Lp

Definition 20 (Converge Weakly). Let X be a normed vector space. A sequence {fn} in X is said to
converge weakly in X to f provided that

lim
n→∞

T (fn) = T (f) ∀T ∈ X∗ (15)

we write

{fn}⇀ f

to mean that f and each fn belong to X and {fn} converges weakly in X to f .

Definition 21. Let E ⊆ R be measurable, 1 ≤ p < ∞, q the conjugate of p. Then, {fn} ⇀ f in Lp(E)
⇐⇒

lim
n→∞

∫
E
g · fn =

∫
E
g · f ∀g ∈ Lq(E) (16)

Theorem 13. Let E ⊆ R be measurable, 1 ≤ p <∞. Suppose that {fn}⇀ f in Lp(E). Then:

{fn} is bounded and ||f ||p ≤ lim inf ||fn||p

Corollary 3. Let E ⊆ R be measurable, 1 ≤ p <∞, q the conjugate of p. Suppose {fn} converges weakly
to f in Lp(E) and {gn} converges strongly to g ∈ Lq(E). Then:

lim
n→∞

∫
E
gn · fn =

∫
E
g · f (17)

Definition 22 (Linear Span). Let X be a normed vector space, and let S ⊆ X. Then, the linear span
of S is the vector space consisting of all linear functionals of the form:

f =
n∑
k=1

αk · fk (18)

where each αk ∈ R and fk ∈ S. It is the set of all finite linear combinations of elements in S. We care
about this since Lp is an infinite dimensional space, so we want to find a way to approximate it with
finitely many elements.

Proposition 10 (Characterisation of Weak Convergence in Lp(E)). Let E ⊆ R be measurable, 1 ≤ p <∞,
q the conjugate of P . Assume that F ⊆ Lq(E) whose linear span is dense in Lq(E). Let {fn} be a bounded
sequence in Lp(E), and let f ∈ Lp(E). Then, {fn}⇀ f in Lp(E) ⇐⇒

lim
n→∞

∫
E
fn · g =

∫
E
f · g ∀g ∈ F (19)

Theorem 14. Let E ⊆ R be measurable, 1 ≤ p <∞. Suppose that {fn} is a bounded sequence in Lp(E)
and f belongs to Lp(E). Then, {fn}⇀ f in Lp(E) ⇐⇒ ∀ measurable sets A ⊆ E:

lim
n→∞

∫
A
fn =

∫
A
f (20)

if p > 1, then it is sufficient to consider sets A of finite measure.

Theorem 15. Let [a, b] be a closed and bounded interval, 1 < p < ∞. Suppose that {fn} is a bounded
sequence in Lp[a, b] and f ∈ Lp[a, b]. Then, {fn}⇀ f in Lp(E) in Lp[a, b] ⇐⇒

lim
n→∞

[∫ x

a
fn

]
=

∫ x

a
f ∀x ∈ [a, b] (21)
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Lemma 16 (Riemann-Lebesgue Lemma; used in Fourier Series :-)). Let I = [−π, π], 1 ≤ p <∞. ∀n ∈ N,
define fn(x) := sin(nx) for x ∈ I. Then, {fn} converges weakly in Lp(I) to f ≡ 0.

Theorem 17. Let E ⊆ R be measurable, 1 < p <∞. Suppose that {fn} is a bounded sequence in Lp(E)
that converges pointwise a.e. on E to f . Then, {fn}⇀ f in Lp(E).

This theorem was used in the proof but was not covered in Analysis 3:

Theorem 18 (Vitali Convergence Theorem). Let E ⊆ R be measurable and of finite measure.
Suppose that the sequence of functions {fn} is uniformly integrable over E. Then, if {fn} → f
pointwise a.e. on E, then f is integrable over E and limn→∞

∫
E fn = f .

Theorem 19 (Radon-Riesz Theorem). Let E ⊆ R be measurable, 1 < p < ∞. Suppose that {fn} ⇀
f in Lp(E). Then:

{fn} → f in Lp(E) ⇐⇒ lim
n→∞

||fn||p = ||f ||p (22)

Corollary 4. (Not Covered in Class): Let E ⊆ R be measurableand 1 < p < ∞. Suppose that {fn} ⇀
f in Lp(E). Then, a subsequence of {fn} converges strongly to f ⇐⇒ ||f ||p = lim inf ||fn||p.

2.3. Weak Sequential Compactness (“Compactness Found!”)

Theorem 20. Let E ⊆ R be measurable, 1 < p < ∞. Then, every bounded sequence in Lp(E) has a
subsequence that converges weakly in Lp(E) to a function in Lp(E).

Theorem 21 (Helly’s Theorem). Let X be a SEPARABLE normed vector space and {Tn} a sequence in
its dual space X∗ that is bounded; that is, ∃ a M > 0 for which

|Tn(f)| ≤M · ||f || ∀f ∈ X, ∀n ∈ N

Then, there is a subsequence {Tnk
} of {Tn} and T ∈ X∗ for which

lim
k→∞

Tnk
(f) = T (f) ∀f ∈ X (23)

Definition 23 (Weakly Sequentially Compact (Compact in the “weak topology”). Let X be a normed
vector space. Then, a subsetK ⊆ X is weakly sequentially compact in X provided that every sequence
{fn} in K has a subsequence that converges weakly to f ∈ K.

Theorem 22 (The Unit Ball is Weakly Sequentially Compact). Let E ⊆ R be measurable, 1 < p < ∞.
Define:

B1 := {f ∈ Lp(E) | ||f ||p ≤ 1} . (24)

B1 is weakly sequentially compact in Lp(E).

2.4. Results from the Homework

(1) (Reisz-Representation Theorem for the Dual of `p): Let 1 ≤ p <∞, q the conjugate of p. Then for
all {gn} ∈ `q, define the bounded linear functional Rg on `p by:

Rg := T ({fn}) =
∞∑
n=1

gnfn (25)

∀ {fn} ∈ `p. Then, for each bounded linear functional T on `p, there exists a unique {gn} ∈ `q for
which:
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(1) Rg = T
(2) ||T ||∗ = ||{gn}||q

(2) Let c be the vector space of all real sequences that converge to a real number and let c0 be the
subspace of c comprising of all sequences that converge to zero. Norm each vector space with the
`∞ norm. Then, c∗ = `1 and c∗0 = `1.

(3) Assume that h is a continuous function defined on all of R that is periodic with period T and∫ T
0 h = 0. Let [a, b] be a closed + bounded interval. For each n ∈ N, define fn(x) := h(nx). Define
f ≡ 0 on [a, b]. Then, {fn} converges weakly to f in Lp[a, b].

(4) Let 1 < p <∞, assume f0 ∈ Lp(R). For each n ∈ N, define fn(x) := f0(x− n). Define f ≡ 0 on R.
Then, {fn} converges weakly to f in Lp(R). Not true for p = 1!

(5) For 1 ≤ p < ∞, for each n ∈ N, let en ∈ `p be the standard basis sequence. If p > 1, then
{en} converges weakly to zero in `p, but no subsequence converges strongly to zero. {en} does not
converge at all in `1.

(6) (Uniform Boundedness Principle): Let E ⊆ R be measurable, 1 ≤ p <∞, and q the conjugate of p.
Suppose that {fn} is a sequence in Lp(E) for which for each g ∈ Lq(E), the sequence {

∫
E gfn} is

bounded. Show that {fn} is bounded in Lp(E).

(7) {xn} in C[0, 1] fails to have a strongly convergent subsequence. Suitably modify this to work in any
C[a, b] by:

fn :=

(
x− a
b− a

)n
(8) In `p, 1 < p <∞, every bounded sequence in `p has a weakly convergent subsequence.

(9) Let X be a normed vector space, and let {Tn} be a sequence in X∗ for which there exists an M ≥ 0
such that ||Tn||∗ ≤ M for all n ∈ N. Let S ⊆ X be a dense subset such that {Tn(g)} is Cauchy for
all g ∈ S. Then:

(1) {Tn(g)} is Cauchy for all g ∈ X.
(2) The limiting functional is linear and bounded.

(10) Helly’s theorem fails when X = L∞[0, 1]. To see why, consider a sequence of linear functionals
induced by the Rademacher functions.

3. Metric Spaces

This section was not covered in class, but since we have homework on this chapter I figured
having this as a review from analysis 2 might be helpful. Also, there are a few terms/results
that I don’t think we covered in analysis 2.

3.1. Examples of Metric Spaces

Definition 24 (Metric Space). Let X be a non-empty set. A function ρ : X ×X → R is called a metric
if ∀ x, y ∈ X:

(1) ρ(x, y) ≥ 0
(2) ρ(x, y) = 0 ⇐⇒ x = y
(3) ρ(x, y) = ρ(y, x)
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(4) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (Triangle Inequality).

A non-empty set together with a metric, denoted (X, ρ) is called a metric space.

Definition 25 (Discrete Metric). For any non-empty set X, the discrete metric ρ is defined by setting
ρ(x, y) = 0 if x = y and ρ(x, y) = 1 if x 6= y.

Definition 26 (Metric Subspace). For any metric space (X, ρ), let Y ⊆ X be non-empty. Then, the
restriction of ρ to Y × Y defines a metric on Y . We define this induced metric space as a metric
subspace.

Example 3.1 (Examples of metric spaces). The following are examples of metric spaces:

(1) Every non-empty subset of a Euclidean space.
(2) Lp(E), where E ⊆ R is a measurable set.
(3) C[a, b].

Definition 27 (Product Metric). For metric spaces (X1, ρ1) and (X2, ρ2), we define the product metric
τ on the cartesian product X1 ×X2 by setting, for (x1, x2) and (y1, y2) in X1 ×X2:

τ((x1, x2), (y1, y2)) := {[ρ1(x1, x2)]
2 + [ρ2(y1, y2)]

2}1/2 (26)

Definition 28. Two metrics ρ and σ on a set X are said to be equivalent if there are positive numbers
c1 and c2 such that ∀ x1, x2 ∈ X,

c1σ(x1, x2) ≤ ρ(x1, x2) ≤ c2σ(x1, x2)

Definition 29 (Isometry). Amapping f : (X, ρ)→ (Y, σ) between two metric spaces is called an isometry
provided that f is surjective and ∀x1, x2 ∈ X:

σ(f(x1), f(x2)) = ρ(x1, x2) (27)

We say that two metric spaces are isometric if there is an isometry from one to another.

3.2. Open Sets, Closed Sets, and Convergent Sequences

Definition 30 (Open Ball). Let (X, ρ) be a metric space. For a point x ∈ X and r > 0, the set:

B(x, r) :=
{
x′ ∈ X | ρ(x′, x) < r

}
(28)

is called the open ball centred at x of radius r. A subset O ⊆ X is said to be open if ∀x ∈ O, there
exists an open ball centred at x and contained in O. For a point x ∈ X, an open set containing x is called
a neighbourhood of x.

Proposition 11. Let X be a metric space. The whole set X and the empty set ∅ are open. The
intersection of any two open sets is open. The union of any collection of open sets is open.

Proposition 12. Let X be a subspace of a metric space Y and E ⊆ X. Then, E is open in X ⇐⇒
E = X ∩ O, where O is open in Y .

Definition 31 (Closure). For a subset E ⊆ X, a point x ∈ X is called a point of closure of E provided
that every neighbourhood of x contains a point in E. The collection of the points of closure of E is called
the closure of E and is denoted by E.

Proposition 13. For E ⊆ X, where X is a metric space, its closure E is closed. Moreover, E is the
smallest closed subset of X containing E in the sense that if F is closed and if E ⊆ F , then E ⊆ F .
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Definition 32 (Converge). A sequence {xn} in a metric space (X, ρ) is said to converge to the point
x ∈ x provided that:

lim
n→∞

ρ(xn, x) = 0

that is, ∀ ε > 0, ∃ an index N such that ∀n ≥ N , ρ(xn, x) < ε.

Proposition 14. Let ρ and σ be equivalent metrics on a non-empty set X. Then, a subset X is open in
a metric space (X, ρ) ⇐⇒ it is open in (X,σ).

3.3. Continuous Mappings Between Metric Spaces

Definition 33 (Continuous). A mapping f from a metric space X to a metric space Y is continuous at
the point x ∈ X if ∀ {xn} ∈ X, if {xn} → x, then {f(xn)} → f(x). f is said to be continuous if it is
continuous at every point in X.

Proposition 15 (ε-δ criteria for continuity). A mapping from a metric space (X, ρ) to a metric (Y, σ) is
continuous at the point x ∈ X ⇐⇒ ∀ ε > 0, ∃ δ > 0 such that if ρ(x, x′) < δ, then σ(f(x), f(x′)) < ε.
That is:

f(B(x, δ)) ⊆ B(f(x), ε) (29)

Proposition 16. A mapping f from a metric space X to a metric space Y is continuous ⇐⇒ ∀ open
subsets O ⊆ Y , the inverse image under f of O, f−1(O), is an open subset of X.

Proposition 17. The composition of continuous mappings between metric spaces, when defined, is
continuous.

Definition 34 (Uniformly Continuous). A mapping from a metric space (X, ρ) to a metric space (Y, σ) is
said to be uniformly continuous if ∀ ε > 0, ∃ δ > 0 such that ∀u, v ∈ X, if ρ(u, v) < δ, σ(f(u), f(v)) < ε.

Definition 35 (Lipschitz). A mapping f : (X, ρ)→ (Y, σ) is said to be Lipschitz if ∃ a c ≥ 0 such that
∀ u, v ∈ X:

σ(f(u), f(v)) ≤ cρ(u, v)

3.4. Complete Metric Spaces

Definition 36 (Cauchy). A sequence {xn} in a metric space (X, ρ) is said to be a Cauchy sequence if
∀ε > 0, there exists a N ∈ N such that if m,n ≥ N , then ρ(xn, xm) < ε.

Definition 37 (Complete). A metric space X is said to be complete if every Cauchy sequence in X
converges to a point in X.

Proposition 18. Let [a, b] be a closed and bounded interval of real numbers. Then, C[a, b] with the
metric induced by the max norm is complete.

Proposition 19 (Characterisation of Complete Subspaces of Metric Spaces). Let E ⊆ X, where X is a
complete metric space. Then, the metric subspace E is complete ⇐⇒ E is a closed subset of X.

Theorem 23. The following are complete metric spaces:

(1) Every non-empty closed subset of Rn.
(2) E ⊆ R measurable, 1 ≤ p ≤ ∞, each non-empty closed subset of Lp(E).
(3) Each non-empty closed subset of C[a, b].
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Definition 38 (Diameter). Let E be a non-empty subset of a metric space (X, ρ). We define the diameter
of E, denoted by diam(E), by:

diam(E) := sup {ρ(x, y) | x, y ∈ E} (30)

We say that E is bounded if it has finite diameter.

Definition 39 (Contracting Sequence). A decreasing sequence {En} of non-empty subsets of X is called
a contracting sequence if:

lim
n→∞

diam(En) = 0 (31)

Theorem 24 (Cantor Intersection Theorem). Let X be a metric space. Then, X is complete ⇐⇒
whenever {Fn} is a contracting sequence of non-empty closed subsets of X, there is a point x ∈ X for
which:

∞⋂
n=1

Fn = {x} (32)

Theorem 25. Let (X, ρ) be a metric space. Then, there is a complete metric space (X̃, ρ̃) for which X
is a dense subset of X̃ and

ρ(u, v) = ρ̃(u, v) ∀ u, v ∈ X (33)

we call such a space the completion of (X, ρ).

3.5. Compact Metric Spaces

Definition 40 (Compact Metric Space). A metric space X is called compact if every open cover of X
has a finite sub-cover. A subset K ⊆ X is compact if K, considered as a metric subspace of X, is compact.

Formulation of compactness in terms of closed sets: Let T be a collection of open subsets of a
metric space X. Define F to be the collection of the complements of elements in T . Since the elements
of T are open, the elements of F are closed. Thus, T is a cover ⇐⇒ the elements of F have empty
intersection. By deMorgan’s law, we can formulate compactness in terms of closed sets as:

A metric space X is compact ⇐⇒ every collection of closed sets with empty intersection has
a finite sub-collection whose intersection is non-empty.

This property is called the finite intersection property.

Definition 41 (Finite Intersection Property). A collection of sets F is said to have the finite intersection
property if any finite sub-collection of F has a non-empty intersection.

Proposition 20 (Compactness in terms of closed sets). A metric space X is compact ⇐⇒ every
collection F of closed subsets of X with the finite intersection property has a non-empty intersection.

Definition 42 (Totally Bounded). A metric space X is totally bounded if ∀ ε > 0, the space X can be
covered by a finite number of open balls of radius ε. A subset E ⊆ X is said to be totally bounded if
E, a s a subspace of the metric space X, is totally bounded.

Definition 43 (ε-net). Let E be a subset of a metric space X. A ε-net for R is a finite collection of open
balls {B(xk, ε)}nk=1 with centres xk ∈ X whose union covers E.

Proposition 21. A metric space E is totally bounded ⇐⇒ ∀ ε > 0, there is a finite ε-net for E.
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Proposition 22. A subset of Euclidean space Rn is bounded ⇐⇒ it is totally bounded.

Definition 44 (Sequentially Compact). A metric space X is sequentially compact if every sequence
in X has a subsequence that converges to a point in X.

Theorem 26 (Characterisation of Compactness for a metric space). . Let X be a metric space. Then,
TFAE:

(1) X is complete and totally bounded.
(2) X is compact.
(3) X is sequentially compact.

The following three propositions of this chapter are just breaking down these equivalences, so I will
not write them.

Theorem 27. Let K ⊆ Rn. Then, TFAE:

(1) K is closed and bounded.
(2) K is compact.
(3) K is sequentially compact.

Observe: The equivalence (1) ⇐⇒ (2) is the Heine-Borel theorem. The equivalence (2) ⇐⇒ (3) is the
Bolzano-Weierstrass theorem.

Proposition 23. Let f be a continuous mapping from a compact metric space X to a compact metric
space Y . Then, its image f(X) is compact.

Theorem 28 (Extreme Value Theorem). Let X be a metric space. Then, X is compact ⇐⇒ every
continuous real-valued function on X attains a minimum and maximum value.

Definition 45 (Lebesgue Number). Let X be a metric space, and let {Oλ}λ∈Λ be an open cover of X.
Thus, each x ∈ X is contained in a member of the cover, Oλ. Since Oλ is open, ∃ ε > 0 such that:

B(x, ε) ⊆ Oλ

In general, ε on X, but for compact metric spaces we can get uniform control. This ε that uniformly works
is called the Lebesgue number for the cover {Oλ}λ∈Λ.

Lemma 29. Let {Oλ}λ∈Λ be an open cover of a compact metric space X. Then, there is a number ε > 0
such that for each x ∈ X, the open ball B(x, ε) is contained in some member of the cover.

Proposition 24. A continuous mapping from a compact space (X, ρ) to a metric space (Y, σ) is uniformly
continuous.

3.6. Separable Metric Spaces

Definition 46 (Dense & Separable). A subset D of a metric space X is dense in X if every non-empty
subset of X contains a point of D. A metric space is separable if there is a countable subset of X that
is dense in X.

The Weierstrass Approximation Theorem states that polynomials are dense in C[a, b]. So, C[a, b]
is separable, with the countable dense set being the set of polynomials with rational coefficients.

Proposition 25. A compact metric space is separable.

Proposition 26. A metric space X is separable ⇐⇒ there is a countable collection of {On} of open
subsets of X such that any open subset of X is the union of a sub-collection of {On}.
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Proposition 27. Every subspace of a separable metric space is separable.

Theorem 30. Each of the following are separable metric spaces:

(1) Every non-empty subset of Euclidean space Rn.
(2) 1 ≤ p <∞, Lp(E) and all non-empty subsets of Lp(E).
(3) Each non-empty subset of C[a, b].

3.7. Results from the Homework

(1) {(Xn, ρn)}∞n=1 a countable collection of metric spaces. Then, the following is a metric on the
Cartesian product:

ρ∗(x, y) =
∞∑
n=1

1

2n
· ρn(xn, yn)

1 + ρn(xn + yn)

(2) A continuous mapping between metric spaces remains continuous if an equivalent metric is imposed
on the domain and an equivalent metric is imposed on the domain.

(3) The distance function (from a point to a set) is continuous.
(4) {x ∈ X | dist(x,E) = 0} = E.
(5) (Sequential Definition of Uniform Continuity): For a mapping f of a metric space (X, ρ) to the

metric space (Y, σ), f is uniformly continuous ⇐⇒ for all sequences {un} and {vn} in X:

if lim
n→∞

ρ(un, vn) = 0 then lim
n→∞

σ(f(un), f(vn)) = 0

(6) If X and Y are metric spaces, with Y complete, and f a uniformly continuous mapping from
E ⊆ X → Y , then f has a uniquely uniformly continuous extension mapping f of E to Y .

(7) Let E ⊆ X, X a compact metric space. Then, the metric subspace E is compact ⇐⇒ E is a closed
subset of X.

(8) E ⊆ X, X complete. Then, E is totally bounded ⇐⇒ E is totally bounded.
(9) The closed unit ball in `2 is not compact.

4. Topological Spaces

4.1. Open Sets, Closed Sets, Bases, and Sub-bases

Definition 47 (Open Sets). Let X be a non-empty set. A topology T for X is a collection of subsets of
X, called open sets, posessing the following properties:

(1) The entire set X and the empty set ∅ are open.
(2) The finite intersection of open sets are open.
(3) The union of any collection of open sets is open.

A non-empty set X, together with a topology on X, is called a topological space. For a point x ∈ X,
an open set that contains x is called a neighbourhood of x.

Proposition 28. A subset E ⊆ X is open ⇐⇒ for each x ∈ E, there exists a neighbourhood of x that
is contained in E.

Example 1 (Metric Topology). Let (X, ρ) be a metric space. Let O ⊆ X be open if for all x ∈ O, ∃
an open ball at x that is contained in O. This collection of open sets forms a topology; we call this the
metric topology induced by ρ.
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Example 2 (Discrete Topology). This topology is “too much.” Let X be a non-empty subset. Let
T := P(X). Then, every set containing a point is a neighbourhood of that point. This is induced by the
discrete metric.

Example 3 (Trivial Topology). Let X be non-empty. Define T := {X, ∅}. The only neighbourhood of
any point is the whole set X.

Definition 48 (Topological Subspaces). Let (X, T ) be a topological space and let E be a non-empty
subset of X. The inherited topology S for E is the set of all sets of the form E ∩ T , where O ∈ T . The
topological space (E,S) is called a subspace of (X, T ).

Definition 49 (Base for the Topology). The building blocks of a topology is called a base. Let (X, T ) be
a topological space. For a point x ∈ X, a collection of neighbourhoods of x, Bx, is called a base for the
topology at X if ∀ neighbourhoods U of x, there exists a set B in the collection Bx for which B ⊆ U .

A collection of open sets B is called a base for the topology T provided it contains a base for the
topology at each point.

A base for a topology completely determines a topology, alongside ∅ and X.

Proposition 29. For a non-empty set X, let B be a collection of subsets of X. Then, B is a base for a
topology for X ⇐⇒ :

(1) B covers X. That is:

X =
⋃
B∈B

B (34)

(2) If B1, B2 ∈ B, and x ∈ B1 ∩B2, then there is a set B3 ∈ B for which x ∈ B3 ⊆ B1 ∩B2.

The unique topology that has B as its base consists of ∅ and unions of sub-collections of B.

Definition 50 (Product Topology). Let (X, T ) and (Y,S) be two topological spaces. In the cartesian
product X × Y , consider the collection of sets B containing the products O1×O2, where O1 is open in X
and O2 is open in Y . Then, B is a base for a topology on X × Y , which we call the product topology.

Definition 51 (Sub-base). Let (X, T ) be a topological space. The collection of S of T that covers X is
called a sub-base for the topology T provided intersections of finite collections of S are a base for T .

Definition 52 (Closure). Let E ⊆ X be a subset of a topological space. A point x ∈ E is called a point
of closure of E if every neighbourhood of x contains a point in E. The collection of the points of closure
of E is called the closure of E, denoted E.

Proposition 30. Let X be a topological space, E ⊆ X. Then, E is closed. Moreover, E is the smallest
closed subset of X containing E in the sense that if F is closed and E ⊆ F , then E ⊆ F .

Proposition 31. A subset of a topological space X is open ⇐⇒ its complement is closed.

Proposition 32. Let X be a topological space. Then, (a) ∅ and X are closed, (b) the union of a finite
collection of closed sets is closed, (c) the intersection of any collection of closed sets in X is closed.
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4.2. Separation Properties

Motivation: Separation properties for a topology allow us to discriminate between which topologies
discriminate between certain disjoint pairs of sets, which will then allow us to study a robust collection of
cts real-valued functions on X.

Definition 53 (Neighbourhood). A neighbourhood of K for a subset K ⊆ X is an open set that
contains K.

Definition 54 (Separated by Neighbourhoods). We say that two disjoint sets A and B in X can be
separated by disjoint neighbourhoods provided that there exists neighbourhoods of A and B, respectively,
that are disjoint.

Definition 55 (Separation Properties of Topological Spaces). . In the order of most general to least
general, they are:

(1) Tychonoff Separation Property: For each two points u, v ∈ X, there exists a neighbourhood of
u that does not contain v and a neighbourhood of v that does not contain u.

(2) Hausdorff Separation Property: Each two points inX can be separated by disjoint neighbourhoods.
(3) Regular Separation Property: Tychonoff + each closed set and a point not in the set can be

separated by disjoint neighbourhoods.
(4) Normal Separation Property: Tychonoff + each two disjoint closed sets can be separated by

disjoint neighbourhoods.

Proposition 33. A topological space is Tychonoff ⇐⇒ every set containing a single point, {x}, is closed.

Proposition 34. Every metric space is normal.

Lemma 31. F is closed ⇐⇒ dist(x, F ) > 0 ∀ x /∈ F .

Proposition 35. Let X be a Tychonoff topological space. Then, X is normal ⇐⇒ whenever U is
a neighbourhood of a closed subset of F of X, there is another neighbourhood of F whose closure is
contained in U . that is, there is an open set O for which:

F ⊆ O ⊆ O ⊆ U (35)

4.3. Countability and Separability

Definition 56 (Converge, Limit). A sequence {xn} in a topological space X is said to converge to the
point x ∈ X if for each neighbourhood U of x, there exists an index N ∈ N such that if n ≥ N , then xn
belongs to U . This point is called a limit of the sequence.

Definition 57 (First and Second Countable). A topological space X is first countable if there is a
countable base at each point. A space X is said to be second countable if there is a countable base for
the topology.

Example 4. Every metric space is first countable.

Proposition 36. Let X be a first countable topological space. For a subset E ⊆ X, a point x ∈ X is
called a point of closure of E ⇐⇒ it is a limit of a sequence in E. Thus, a subset E of X is closed ⇐⇒
whenever a sequence in E converges to x ∈ X, we have that x ∈ E.

Definition 58 (Dense/Separable). A subset E ⊆ X is dense in X if every open set in X contains a point
of E. We call X separable if it has a countable dense subset.

Definition 59 (Metrisable). A topological space X is said to be metrisable if the topology is induced
by the metric.

Theorem 32. Let X be a second countable topological space. Then, X is metrisable ⇐⇒ it is normal.
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4.4. Continuous Mappings between Topological Spaces

Definition 60 (Continuous). For topological spaces (X, T ), (Y,S), a mapping f : X → Y is said to be
continuous at the point x0 in X if, for every neighbourhood O if f(x0), there is a neighbourhood U of
x0 for which f(U) ⊆ O. We say that f is continuous provided it is continuous at each point in X.

Proposition 37. A mapping f : X → Y between topological spaces X and Y is continuous ⇐⇒ for
any open subset O in Y , its inverse image under f , f−1(O), is an open subset of X.

Proposition 38. The composition of continuous mappings between topological spaces, when defined, is
continuous.

Definition 61 (Stronger). Given two topologies T1 and T2 for a set X, if T2 ⊆ T1, then we say that T2 is
weaker than T1, and that T1 is stronger than T2.

Proposition 39. Let X be a non-empty set and let S be a collection of subsets of X that covers X. The
collection of subsets of X consisting of intersections of finite collections of S is a base for a topology T of
X. It is the weakest topology containing S in the sense that if T ′ is any other topology for X containing
S, then T ⊆ T ′.

Definition 62 (Weak Topology). Let X be a non-empty set and F := {fα | X → Xα}α∈Λ a collection of
mappings, where each Xα is a topological space. The weakest topology for X that contains the collection
of sets

{f−1
α (Oα) | fα ∈ F , Oα open in Xα} (36)

is called the weak topology for X induced by F .

Proposition 40. Let X be a non-empty set, F := {fλ | X → Xλ}λ∈Λ a collection of mappings where
each Xλ is a topological space. The weak topology for X induced by F is the topology on X that has the
fewest number of sets covering the topologies on X for which each mapping fλ : X → Xλ is continuous.

Definition 63 (Homeomorphism). Amapping from a topological spaceX → Y is said to be a homeomorphism
if it is bijective and has a continuous inverse f−1 : Y → X. Two topological spaces are said to be
homeomorphic if there exists a homeomorphism between them. The notion of homeomorphism induces
a notion of an equivalence relation between spaces.

4.5. Compact Topological Spaces

Definition 64 (Cover). A collection of sets {Eλ}λ∈Λ is said to be a cover of a set E if E ⊆
⋃
λ∈ΛEλ.

Definition 65 (Compact). A topological space X is said to be compact if every open cover of X has a
finite sub-cover. A subset K ⊆ X is compact if K, considered as a topological space with the subspace
topology inherited from X, is compact.

Proposition 41. A topological space X is compact ⇐⇒ every collection of closed subsets of X that
posesses the finite intersection property has non-empty intersection.

Proposition 42. A closed subset K of a compact topological space is compact.

Proposition 43. A compact subspace K of a Hausdorff topological space is a closed subset of X.

Definition 66 (Sequentially Compact). A topological space X is said to be sequentially compact if
every sequence in X has a subsequence that converges to a point in X.

Proposition 44. Let X be a second countable topological space. Then, X is compact ⇐⇒ it is
sequentially compact.
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Theorem 33. A compact Hausdorff space is normal.

Proposition 45. A continuous one-to-one mapping f of a compact space X onto a Hausdorff space Y is
a homeomorphism.

Proposition 46. The continuous image of a compact topological space is compact.

Corollary 5. A continuous real-valued function on a compact topological space takes on a minimum and
maximum functional value.

Definition 67 (Countably Compact). A topological space is countably compact if every countable
open cover has a finite subcover.

4.6. Connected Topological Space

Definition 68 (Separated). Two non-empty subsets of a topological space separate X if they are disjoint
and their union is X.

Definition 69 (Connected). A topological space which cannot be separated by open sets is said to be
connected. A subset E ⊆ X is connected if there do NOT exist open subsets O1, O2 of X for which:

O1 ∩ E 6= ∅
O2 ∩ E 6= ∅
E ⊆ O1 ∪ O2,

E ∩ O1 ∩ O2 = ∅

Proposition 47. Let f be a continuous mapping of a connected space X to a topological space Y . Then,
its image f(X) is connected.

Proposition 48. For A set C ∈ R, the following are equivalent.

(1) C is an interval.
(2) C is convex.
(3) C is connected.

Definition 70 (Intermediate Value Property). A topological space X has the intermediate value
property if the image of any continuous real-valued function on X is an interval.

Proposition 49. A topological space has the intermediate value property ⇐⇒ it is connected.

Definition 71 (Arcwise connected). A topological space X is arcwise connected if, for each pair
u, v ∈ X, there exists a continuous map f : [0, 1]→ X for which f(0) = u and f(1) = v. Note:

(1) Connected ⇐⇒ arcwise connected in Rn.
(2) Arcwise connected ⇒ connected (in general)
(3) There exist connected but non-arcwise connected spaces (in general).

4.7. Results from Homework

(1) LetX be a topological space. Then, X is Hausdorff ⇐⇒ the diagonalD := {(x1, x2) ∈ X×X | x1 =
x2} is closed as a subset of X ×X.

(2) The Moore plane is separable. The subspace R×{0} is not separable. Thus, the Moore plane is not
metrisable and not second countable.

(3) Let X and Y be topological spaces. Then, you can construct a continuous map from a Hausdorff
space to a non-Hausdorff space, and you can do the same for a normal space to a non-normal space.
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(4) If ρ1 and ρ2 are metrics on a set X that induce topologies T1 and T2, respectively, then if they
generate the same topology T1 = T2, then they are NOT necessarily equivalent. A counter example
would be:

ρ1 := |x− y|

ρ2 :=
|x− y|

1 + |x− y|
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