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1 Borel Sets

We will work for some time on R exclusively. Before beginning Measure
Theory: a quick recap of Topology.

Definition 1.1 (Open Set). A subset U C R is called open if either U = ()
or else
Ve € U,3r >0 such that (v —r,x+r) CU

Some examples of open sets: 0, R, (a,b), (a,00),(—00,a). There are many
more because any union of an open set is still open and any finite intersection
of open sets is open.

Definition 1.2 (Closed Set). F' C R is called closed if R\ F' := F* is open.

F is closed <= F contains all points x € R which have the property that
Vr>0,(x—r,x+7r)NF #0.

If F C R is any set, the closure of F, denoted by F, is the smallest closed
set that contains F.

Definition 1.3 (Compact). A subset G C R is compact if given any
collection {U;}ier of open sets Uy C R with G C U;eUs, there exists J C 1,
J finite, such that G C Uje U;
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Theorem 1.1 (Heine-Borel). G C R is compact <= G is closed and
bounded. To be bounded means G C (a,b) for some a,b € R.

Corollary 1.1.1 (Nested Set Theorem). Let {F,,}>°; be a countable collection
of non-empty, bounded, closed sets F,, C R with F,11 C F,Vn, then

M Fy 0

Proof. Suppose N2, F,, = () solet U, = Ef be open sets, such that U® ,U,, =
R. We also have that U, C U,41, since the F,, were nested. Now F} is
compact by Heine-Borel and Fy C U2 ,U,, = by compactness I can find a
finite subcover of Fy, say F C UN_,U,, = Uy = F§

On the other hand Fy C Fj by the nested property which implies Fy = ()
which is a contradiction. O

2 Measure Theory

We want to measure the size of a set. We will deal with a subset of R.

It turns out that one needs to select a class of subsets of R that one wants
to measure. This class of subsets will have certain properties which are as
follows.

Definition 2.1 (c-algebra). A collection A of subsets of R is called a
o-algebra if it satisfies

1.he A
2. If A€ A then A€ A
3. If {Ap}o2, C A then U2 A, € A

Observe the following:

e R € A always



o If {4}, € Athen UY_| A, € A (just define A,, =) for n > N)
o If {A4,}5°, C Athen N2 A4, € A (since (N5, Ap)¢ = US2, AS)

o If A, B € Athen A\ B € A too since A\ B= AN B¢

Examples:

1. A={0,R} “Minimal o-algebra”
2. A=P(R) = Collection of all subsets of R. “Maximum o-algebra”

In fact, if A is any o-algebra, then {), R} C A C P(R)

For better examples, let F' be any collection of subsets of R. I want to make
F into a o-algebra. Define m = {A | A is a o-algebra that satisfies F' C A}.
m # () since it contains P(R)

If A,B€m,Icandefine ANB={ACR|Aec Aand A € B} and I can do
the same for N;c1 A arbitrary intersection of o-algebra is still a o-algebra

Define F; = NacmA as a o-algebra and F C F and it is the minimal
o-algebra with these properties. If G is a o-algebra with F C G, then F' C G.
F'is the o-algebra generated by F. Concretely, F' consists of all subsets of
R that can be constructed by applying countable unions, intersections, and
complements to elements of F.

Definition 2.2 (Borel Sets). The o-algebra B of Borel Sets is the o-algebra F
generated by
F={UCR|U open}

Remark. B is also the o-algebra generated by the family of all closed subsets
of R

Singletons {z} C R are closed so if A C R is at most countable then A is
Borel. (e.g @Q C R) (e.g R\ Q)

Not all Subsets of R are Borel. One can actually show that the cardinality
of B is the same as the cardinality of R. On the other hand P(R) has strictly
larger cardinality.



3 Lebesgue Outer Measure

We are hoping to measure the size of subsets of R. Ideally we would like to
find or construct a function

m: P(R) = Rxo U {400} = [0, 0]

Which satisfies the following measure requirements:
1. If I = [a,b] or (a,b) or [a,b), or (a,b], a,b € R,a < b then m(I) =
b — a = measure of interval

2. m is translation invariant. i.eif E C Rand z € R, let E+2z = {y+x |
y € E} then m(E 4+ z) = m(E)

3. If {E;}7_; is a finite collection of pairwise disjoint £; C R then
n
m (Uj_ Ey) = > m(E;)
j=1

4. The same as (3) except for n = 0o

Theorem 3.1. There is no such m satisfying all 4 requirements

The proof for this will come later. The solution for this is that we do not
try to measure all subsets of R. So we have m : P(R) — [0, oo] but now we
will just be happy with m : A — [0, 00] where A is a o-algebra which has
enough elements. For example A > B.

We will follow H. Lebesgue as we proceed in two steps.

Step 1: construct Lebesgue outer measure m* : P(R) — [0, 00| satisfying
requirements 1,2, and 3.

Step 2: Use m* to define A and let m € m* | A

To create this Lebesgue outer measure on R we satisfy a weakened version of
requirement (3) that can be called (3w). For any countably infinite collection
{E;}52, of arbitrary subsets Ej C R

m* (U2, Ey) <Y m(E;)
j=1
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Theorem 3.2 (Lebesgue Outer Measure). There is a map m* : P(R) —
R>o U {400} that satisfies the measure requirements 1, 2, and Sw.

This m* is called the Lebesgue outer measure on R.
How do we define outer measure m*(A)?
Observe that any A C R can be covered by some countable infinite collection
{1, };’;’1 of bounded open intervals, which are allowed to be empty, but we
do not assume that I; be pairwise disjoint.
For example: I; = (—j,7), j =1,2,3...
Let
Ca = {{I;}721 | I; bounded open intervals such that A C U72;1;}

Ca # 0 by our example so for each {I;} € C4, I can consider
Zﬁ(lj) € R>o U {+00} (¢ denotes length)
j=1

Definition 3.1 (Outer Measure).

m*(A) = inf €(Ij) S RZO U {+OO}

This defines a map m* : P(R) — Rx>o U {+00}

Simple Properties:

e Monotonicity: If A C B then m*(A) < m*(B). Indeed by definition
Cp C C4 hence the infimum over Cg is > than the infimum over C4.

o Empty Set: m* (@) = 0. Given any 1 > ¢ > 0, let [; = (—¢/,€/), j =
1,2,.. . {l;} € Cpand 352 | U(I;) =232 ¢ = Z from the geometric

series going to zero so m* () < 12_66 Vo<e<1




e If A € R is finite or countable infinite then m* (A) = 0. Indeed
enumerate all elements of A by {a;}72,. (If A is finite say |A| = n let
aj = ay for all j >n). Forany 0 <e <1, let I; = (—ej +aj,a; +ej)
so A C U2 I and 272, U(1;) = ¢ hence as before, m* (4) = 0. For
example m* (Q) =0

We will now prove that the Lebesgue outer measure satisfies 1, 2, and 3w of
the measure requirements.

Proof of Property 1: i.e m* (I) = ¢(I) for any interval I C R

Assume that I = [a,b], a < b are finite numbers. Assume that I is a bounded
closed interval. Our goal is to show that m* (I) = b — a. One direction of
inequality is easy to prove, the other is quite tedious and will be left out.

For any € > 0let I} = (a —¢,b4+¢€) > I,let I[; =0,j > 2so {[;} € Cr =
m* (1) <3722, €(Ij) = b—a+ 2e. Let € — 0 and we obtain m* (I) < b — a.

Proof of Property 2: i.e VA C R,Vz € R, m* (A + z) = m* (4)

Ca and Ca4, are naturally in bijection via {I;} + {I; + z}. Furthermore
f(]j + 1’) = f([j)

m(A+z) = inf 0I; +x
Ato)=, it Sl +a)

= inf UI;)=m*(A
B DAL = (4)

Proof of Property 3w: i.e If {£;}7_; is a finite collection of pairwise disjoint

E; C R then m* (U?:1Ej> = Z?:l m* (Ej)

If m* (Ej) = +o0o for some j, then the property holds. We may assume that
m* (E;) < 400 Vj. Let € > 0. By the definition of infimum, for each j > 0,
there is

{Ij,k}zozl € CEJ» such that ZE(I]‘JC) <m* (Ej) + €277
k=1
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Thus {I;}32, is still countable and it covers U532, E)j meaning it belongs to
CU}?‘;1EJ’ so by definition
o0 [e.o] [e.9] o0 ) [e.9]
m | JE; | <D0D ) <D (m* (Ej) +e277) = m* (E)) +e

j=1 j=1 k=1 j=1 j=1

Then let € — 0. Clearly, by taking all E; = () except finitely many, we have
the same subadditivity 3w for finite collections.

Corollary 3.2.1. m* ([0,1]N(R\ Q)) =1 =¢([0,1])

Proof.

<0+1
O
Corollary 3.2.2. R\ Q is uncountable
Proof. 1f not, then
m*(R\Q)=0>m*([0,1]Nn(R\Q)) =1 O

4 The o-Algebra Of Lebesgue Measurable Sets

m* does not satisfy the third measurability requirement without the weak
3w condition. We can construct some examples to prove this. A, B C
R, AN B = 0, such that m* (AU B) < m* (A) + m* (B) later in the class.

The idea to avoid this problem is to look at “reasonable” subsets of R for
which this paradox disappears.

Definition 4.1 (Carathéodory). E C R is called (Lebesque) measurable if
VACR
m*(A)=m*(ANE)+m*(ANE°)



Remark. This is equivalent to Lebesgue’s definition: E is measurable if and

only if
U C R such that E C U and m* (u\ E) < e

But we will discuss this later.

Suppose that A is measurable and B C R is any set such that AN B = ()
then
m*(AUB)=m* | (AUB)NA ]| +m* | (AUB)N A°
=A =B

Going back to our counter example for m* and measurability requirement
3, A or B would have to be unmeasurable.

Here’s another observation: For E, A C R arbitrary sets we have
A=(ANE)U(ANE°)

So by 3w m* (A) < m*(ANE)+m* (AN E°), so E is measurable <=
VACR

|m* (A) > m* (AN E) +m* (AN E)
This holds trivially for m* (A) = oo

Example 1: () is measurable. VA C R

m* (A) = m* (AFTD) +m* (ANR)

Example 2: R is measurable. VA C R
m*(A) =m* (ANR) +m* (AN E°)
Proposition. E C R with m* (E) =0, then E is measurable.

Corollary. FEvery countable set is measurable. Q measurable — R\ Q are
measurable

Proof. Let A C R be any set
ANECE=m"(ANE)<m*(E)=0
ANE‘CA=m"(ANE°) <m*(A)

Som*(A)Zm*(AﬁEC)—i—W



Our goal is to show that Lebesgue measurable sets £ = {E C R | E is measurable}
is a o-algebra on R. We just need to show that if {F;}52, with E; € L, Vj,
then U2, E; € £

Proposition. If {E;}7 | C L then U]_E; € L

Proof. We use mathematical induction. n = 1 is trivial so we set the base
case as n = 2. Iy, Fs are measurable, Let A C R be any set

m* (A) =m* (E1 N A)+m* (AN EY)
=m* (AN E1) +m* ((ANEY) N E2) +m* ((AN EY) N ES)
“(ANED) +m* (AN EY) N Ey)) +m* (AN (E{NES))
=m*(ANE1) +m*((ANEY) N E) + m* (AN (E1 U E»)°)
m* (A N (El U Ez)) (A N (El U EQ)C) (3W)
So Ei1UEy e L.
Induction step n > 2
00 n—1
UE]-: UEj U FE, € L by the n = 2 case O
~ Pt

To prove that this also applies to countable sets, we use

Proposition (Analog of measurability requirement 3 for m* | £). Suppose
A C R is any set and {Ej}?zl is a finite disjoint collection of sets Ej € L,
then

m* [ A E; | =Y m* (AN E))
Jj=1 Jj=1

In particular take A =R to get m* (U?Zl Ej> = > m*(Ej)
Proposition. If {E£;}32, is a countable family with E; € L V], then U2, Ej €

L. In particular, L is a o-algebra.

We Wf)uld like to have the Borel sets be measurable, i.e B C £. Recall that
B =F, where F = {U C R | U is open } and ~ denotes the o-algebra.



This results follows from the measurability of intervals combined with the
measurability of the union of measurable sets.

Proposition. If I C R is any interval, then I is measurable.

Theorem 4.1. £ = Lebesgue Measurable subsets of R form a o-algebra that
contains the Borel o-algebra B

Proof. We already know that L is a oc-algebra. If we can show that £
contains all open sets U C R, then £ (being a o-algebra) must contain B
which is the o-algebra generated by open sets. Now if U C R is any (non
empty) open set then by definition Vo € U,3I, > = where I, is an open
interval and I, C U.

We want to choose I, to be the “maximal” such. So by assigning
ag =1inf{z € R| (z,2) C U} satisfies a; < x

and
by :==sup{y € R | (z,y) C U} satisfies z < b,

so I, = (ay,b;) is an open interval that contains x and by construction
I, € U. 1t is the largest such, in the sense that if a; > —oo then a, ¢ U
and symmetrically if b, < oo then b, ¢ U.

For any y € I, we have y < by, so there is z > y such that (z,2) CU soy €
U. Indeed, if a, € U then since U open, Jr > 0 such that (a, —r,a,+7r) C U
contradicting the definition of a,.

So U = Uzepl,. It is a huge union, however if z, 2’ € U,z # 2/, then either
I.N I, =0, or if not then necessarily I, = I/, since I, U I,/ is then another
open interval that contains xz & 2/ and is a subset of U, so by maximality
it must equal I, & I,. So, throwing away all repeated I,, we can write
U = Ujerl, for some I where the intervals I,, are pairwise disjoint. By
density of Q@ C R, each such interval contains a different rational number
ri € I,. Since Q is countable, I is at worst countable.

So every U open is an at most countable disjoint union of open intervals.

Since such intervals belong ot £, and L is a g-algebra, it follows that every
U open is in L as desired. O
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Proposition (The o-algebra L is also translation invariant). If E C L and
rER then E4+x €L

Proof. Given any A C R,

m* (A) =m* (A —x)
=m*"((A—2)NE)+m*((A—2x)NE°
=m*(ANE+z)+m*(AN(E+ 2)°) (m* translation invariant)

O]

Remark. If A € £ with m* (A) < oo, and B C R is any set with A C B,
then
m* (B\ A) =m*(B) —m* (A)

5 OQOuter and Inner Approximation of Lebesgue Measurable
Sets

Definition 5.1 (Gebiet-Durchshnitt). A subset A C R is called a Gs if
A =52, A; where A; are all open (possibly empty).

Definition 5.2 (Fermé-Somme). A subset A C R is called a F, if A =
U, A; where A; are all closed (possibly empty).

Clearly, A is G5 <= A¢is Fys. Also clearly, all G5 and F, sets are Borel.
Of course not all G5 are open, e.g [0,1] = N2, (—%, 1+ %) and not all F,
are closed. e.g. (0,1) = U, [},1-1]

Q is clearly Fy, so R\ Q is G5. With this, we can give several equivalent
formulations of measurability.

Theorem 5.1. Let E C R be any set, then the following are equivalent:

1. Fel

2. ¥Ye>0,3U D E, U open, m* (U\ E) <€
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3. 3G C R a Gs set, G D E, withm* (G\ E) =0
4. Ye>0,3F C E, F closed, m*(E\ F) < ¢
5. 3F CR a F, set, F C E withm*(E\ F)=0

Proposition. For an E € £ with m* (E) < co. Then Ve > 0, H{I;}7_; a
finite disjoint family of open intervals so that if we let U = Uj_,1; (open)
then m* (EAU) < e.

6 Lebesgue Measure

We can now take m* and restrict it to £. m* |..

Definition 6.1 (Lebesgue Measure). This Lebesgue Measure is a function

m=m"|g: L = R>o U {400}

This means that for E € £ we define m(E) = m* (F). Clearly, m satisfies
the measurability requirements 1, 2, & 3 as we have proved earlier. It also
satisfies requirement 4 which was requirement 3 for countably infinite sets.

Proposition. If{Ej};’il is a countably infinite collection of pairwise disjoint
sets Ej € L (possibly empty), then U2, E; € L and

[e.9] [e.9]

m | | JE | =) m(E))
j=1 j=1
Proof. We proved earlier that U2, E; € £ and that
(o.9] o0
m | | JE | < m(E))
j=1 j=1
For the opposite inequality, for each n we proved earlier that
n n
m | |JE | =) m(E)
j=1 j=1
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But U?_, E; C U7, Ej, hence

o0 n n
m UEj >m UEj :Zm(Ej) Vn
j=1 j=1 j=1
Take the limit as n — oo to get
o0 o
m | JE; | =Y mE)
j=1 J=1

As desired. This argument shows that measurability requirement 3 and 3w
together imply 4. O

7 Non-Measurable Sets

We saw earlier that if £ C R satisfies m* (F) = 0 then F € L. In particular,
VE C E, m*(F) <m*(E) =0, so F € L too. This however totally fails
when m* (E) > 0.

Theorem 7.1 (Vitali). For any E C R with m* (E) > 0, there is an F C E
which is NOT measurable. The construction uses the axiom of choice (and
it 1s really needed).

The proof of this theorem and construction of a Vitali set are currently
omitted due to length.
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