Honours Analysis 3

Zachary Probst *

September 27, 2021

1 Borel Sets

We will work for some time on \mathbb{R} exclusively. Before beginning Measure Theory: a quick recap of Topology.

Definition 1.1 (Open Set). A subset $U \subset \mathbb{R}$ is called open if either $U=\emptyset$ or else

$$
\forall x \in U, \exists r>0 \text { such that }(x-r, x+r) \subset U
$$

Some examples of open sets: $\emptyset, \mathbb{R},(a, b),(a, \infty),(-\infty, a)$. There are many more because any union of an open set is still open and any finite intersection of open sets is open.

Definition 1.2 (Closed Set). $F \subset \mathbb{R}$ is called closed if $\mathbb{R} \backslash F:=F^{c}$ is open.
F is closed $\Longleftrightarrow F$ contains all points $x \in \mathbb{R}$ which have the property that $\forall r>0,(x-r, x+r) \cap F \neq \emptyset$.

If $F \subset \mathbb{R}$ is any set, the closure of F, denoted by \bar{F}, is the smallest closed set that contains F.

Definition 1.3 (Compact). A subset $G \subset \mathbb{R}$ is compact if given any collection $\left\{U_{i}\right\}_{i \in I}$ of open sets $U_{i} \subset \mathbb{R}$ with $G \subset \cup_{i \in I} U_{i}$, there exists $J \subset I$, J finite, such that $G \subset \cup_{j \in J} U_{j}$

[^0]Theorem 1.1 (Heine-Borel). $G \subset \mathbb{R}$ is compact $\Longleftrightarrow G$ is closed and bounded. To be bounded means $G \subset(a, b)$ for some $a, b \in \mathbb{R}$.

Corollary 1.1.1 (Nested Set Theorem). Let $\left\{F_{n}\right\}_{n=1}^{\infty}$ be a countable collection of non-empty, bounded, closed sets $F_{n} \subset \mathbb{R}$ with $F_{n+1} \subset F_{n} \forall n$, then

$$
\cap_{n=1}^{\infty} F_{n} \neq \emptyset
$$

Proof. Suppose $\cap_{n=1}^{\infty} F_{n}=\emptyset$ so let $U_{n}=F_{n}^{c}$ be open sets, such that $\cup_{n=1}^{\infty} U_{n}=$ \mathbb{R}. We also have that $U_{n} \subset U_{n+1}$, since the F_{n} were nested. Now F_{1} is compact by Heine-Borel and $F_{1} \subset \cup_{n=1}^{\infty} U_{n} \Rightarrow$ by compactness I can find a finite subcover of F_{1}, say $F \subset \cup_{n=1}^{N} U_{n}=U_{N}=F_{N}^{c}$

On the other hand $F_{N} \subset F_{1}$ by the nested property which implies $F_{N}=\emptyset$ which is a contradiction.

2 Measure Theory

We want to measure the size of a set. We will deal with a subset of \mathbb{R}.
It turns out that one needs to select a class of subsets of \mathbb{R} that one wants to measure. This class of subsets will have certain properties which are as follows.

Definition 2.1 (σ-algebra). A collection \mathcal{A} of subsets of \mathbb{R} is called a σ-algebra if it satisfies

1. $\emptyset \in \mathcal{A}$
2. If $A \in \mathcal{A}$ then $A^{c} \in \mathcal{A}$
3. If $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}$ then $\cup_{n=1}^{\infty} A_{n} \in \mathcal{A}$

Observe the following:

- $\mathbb{R} \in \mathcal{A}$ always
- If $\left\{A_{n}\right\}_{n=1}^{N} \subset \mathcal{A}$ then $\cup_{n=1}^{N} A_{n} \in \mathcal{A}$ (just define $A_{n}=\emptyset$ for $n>N$)
- If $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \mathcal{A}$ then $\cap_{n=1}^{\infty} A_{n} \in \mathcal{A}$ (since $\left.\left(\cap_{n=1}^{\infty} A_{n}\right)^{c}=\cup_{n=1}^{\infty} A_{n}^{c}\right)$
- If $A, B \in \mathcal{A}$ then $A \backslash B \in \mathcal{A}$ too since $A \backslash B=A \cap B^{c}$

Examples:

1. $\mathcal{A}=\{\emptyset, \mathbb{R}\}$ "Minimal σ-algebra"
2. $\mathcal{A}=\mathcal{P}(\mathbb{R})=$ Collection of all subsets of \mathbb{R}. "Maximum σ-algebra"

In fact, if \mathcal{A} is any σ-algebra, then $\{\emptyset, \mathbb{R}\} \subseteq \mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$
For better examples, let F be any collection of subsets of \mathbb{R}. I want to make F into a σ-algebra. Define $m=\{\mathcal{A} \mid \mathcal{A}$ is a σ-algebra that satisfies $F \subset \mathcal{A}\}$. $m \neq \emptyset$ since it contains $\mathcal{P}(\mathbb{R})$

If $\mathcal{A}, \mathcal{B} \in m$, I can define $\mathcal{A} \cap \mathcal{B}=\{A \subset \mathbb{R} \mid A \in \mathcal{A}$ and $A \in \mathcal{B}\}$ and I can do the same for $\cap_{i \in I} \mathcal{A}$ arbitrary intersection of σ-algebra is still a σ-algebra

Define $\hat{F}_{i}=\cap_{\mathcal{A} \in m} \mathcal{A}$ as a σ-algebra and $F \subset \hat{F}$ and it is the minimal σ-algebra with these properties. If G is a σ-algebra with $F \subset G$, then $\hat{F} \subset G$. \hat{F} is the σ-algebra generated by F. Concretely, \hat{F} consists of all subsets of \mathbb{R} that can be constructed by applying countable unions, intersections, and complements to elements of F.
Definition 2.2 (Borel Sets). The σ-algebra \mathcal{B} of Borel Sets is the σ-algebra \hat{F} generated by

$$
F=\{U \subset \mathbb{R} \mid U \text { open }\}
$$

Remark. \mathcal{B} is also the σ-algebra generated by the family of all closed subsets of \mathbb{R}

Singletons $\{x\} \subset \mathbb{R}$ are closed so if $A \subset \mathbb{R}$ is at most countable then A is Borel. (e.g $\mathbb{Q} \subset \mathbb{R}$) (e.g $\mathbb{R} \backslash \mathbb{Q}$)

Not all Subsets of \mathbb{R} are Borel. One can actually show that the cardinality of \mathcal{B} is the same as the cardinality of \mathbb{R}. On the other hand $\mathcal{P}(\mathbb{R})$ has strictly larger cardinality.

3 Lebesgue Outer Measure

We are hoping to measure the size of subsets of \mathbb{R}. Ideally we would like to find or construct a function

$$
m: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}_{\geq 0} \cup\{+\infty\}=[0, \infty]
$$

Which satisfies the following measure requirements:

1. If $I=[a, b]$ or (a, b) or $[a, b)$, or $(a, b], a, b \in \mathbb{R}, a \leq b$ then $m(I)=$ $b-a=$ measure of interval
2. m is translation invariant. i.e if $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, let $E+x=\{y+x \mid$ $y \in E\}$ then $m(E+x)=\mathrm{m}(\mathrm{E})$
3. If $\left\{E_{j}\right\}_{j=1}^{n}$ is a finite collection of pairwise disjoint $E_{j} \subset \mathbb{R}$ then

$$
m\left(\cup_{j=1}^{n} E_{j}\right)=\sum_{j=1}^{n} m\left(E_{j}\right)
$$

4. The same as (3) except for $n=\infty$

Theorem 3.1. There is no such m satisfying all 4 requirements

The proof for this will come later. The solution for this is that we do not try to measure all subsets of \mathbb{R}. So we have $m: \mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$ but now we will just be happy with $m: \mathcal{A} \rightarrow[0, \infty]$ where \mathcal{A} is a σ-algebra which has enough elements. For example $\mathcal{A}>\mathcal{B}$.

We will follow H. Lebesgue as we proceed in two steps.
Step 1: construct Lebesgue outer measure $m^{\star}: \mathcal{P}(\mathbb{R}) \rightarrow[0, \infty]$ satisfying requirements 1,2 , and 3.
$\underline{\text { Step 2: Use } m^{\star} \text { to define } \mathcal{A} \text { and let } m \subset m^{\star} \mid \mathcal{A}, ~(1)}$
To create this Lebesgue outer measure on \mathbb{R} we satisfy a weakened version of requirement (3) that can be called (3w). For any countably infinite collection $\left\{E_{j}\right\}_{j=1}^{\infty}$ of arbitrary subsets $E_{j} \subset \mathbb{R}$

$$
m^{\star}\left(\cup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} m\left(E_{j}\right)
$$

Theorem 3.2 (Lebesgue Outer Measure). There is a map $m^{\star}: \mathcal{P}(\mathbb{R}) \rightarrow$ $\mathbb{R}_{\geq 0} \cup\{+\infty\}$ that satisfies the measure requirements 1, 2, and 3w.

This m^{\star} is called the Lebesgue outer measure on \mathbb{R}.

How do we define outer measure $m^{\star}(A)$?

Observe that any $A \subseteq \mathbb{R}$ can be covered by some countable infinite collection $\left\{I_{j}\right\}_{j=1}^{\infty}$ of bounded open intervals, which are allowed to be empty, but we do not assume that I_{j} be pairwise disjoint.

For example: $I_{j}=(-j, j), j=1,2,3 \ldots$
Let
$\mathcal{C}_{A}=\left\{\left\{I_{j}\right\}_{j=1}^{\infty} \mid I_{j}\right.$ bounded open intervals such that $\left.A \subset \cup_{j=1}^{\infty} I_{j}\right\}$
$\mathcal{C}_{A} \neq \emptyset$ by our example so for each $\left\{I_{j}\right\} \in \mathcal{C}_{A}$, I can consider

$$
\left.\sum_{j=1}^{\infty} \ell\left(I_{j}\right) \in \mathbb{R}_{\geq 0} \cup\{+\infty\} \quad \text { (} \ell \text { denotes length }\right)
$$

Definition 3.1 (Outer Measure).

$$
m^{\star}(A):=\inf _{\left\{I_{j}\right\} \in \mathcal{C}_{\mathcal{A}}} \sum_{j=1}^{\infty} \ell\left(I_{j}\right) \in \mathbb{R}_{\geq 0} \cup\{+\infty\}
$$

This defines a map $m^{\star}: \mathcal{P}(\mathbb{R}) \rightarrow \mathbb{R}_{\geq 0} \cup\{+\infty\}$
Simple Properties:

- Monotonicity: If $A \subseteq B$ then $m^{\star}(A) \leq m^{\star}(B)$. Indeed by definition $\mathcal{C}_{B} \subseteq \mathcal{C}_{A}$ hence the infimum over \mathcal{C}_{B} is \geq than the infimum over \mathcal{C}_{A}.
- Empty Set: $m^{\star}(\emptyset)=0$. Given any $1>\epsilon>0$, let $I_{j}=\left(-\epsilon^{j}, \epsilon^{j}\right), j=$ $1,2, \ldots\left\{I_{j}\right\} \in \mathcal{C}_{\emptyset}$ and $\sum_{j=1}^{\infty} \ell\left(I_{j}\right)=2 \sum_{j=1}^{\infty} \epsilon^{j}=\frac{2 \epsilon}{1-\epsilon}$ from the geometric series going to zero so $m^{\star}(\emptyset) \leq \frac{2 \epsilon}{1-\epsilon} \forall 0<\epsilon<1$
- If $A \in \mathbb{R}$ is finite or countable infinite then $m^{\star}(A)=0$. Indeed enumerate all elements of A by $\left\{a_{j}\right\}_{j=1}^{\infty}$. (If A is finite say $|A|=n$ let $a_{j}=a_{n}$ for all $\left.j>n\right)$. For any $0<\epsilon<1$, let $I_{j}=\left(-\epsilon^{j}+a_{j}, a_{j}+\epsilon^{j}\right)$ so $A \subseteq \cup_{j=1}^{\infty} I_{j}$ and $\sum_{j=1}^{\infty} \ell\left(I_{j}\right)=\frac{2 \epsilon}{1-\epsilon}$ hence as before, $m^{\star}(A)=0$. For example $m^{\star}(\mathbb{Q})=0$

We will now prove that the Lebesgue outer measure satisfies 1,2 , and 3 w of the measure requirements.

Proof of Property 1: i.e $m^{\star}(I)=\ell(I)$ for any interval $I \subseteq \mathbb{R}$
Assume that $I=[a, b], a<b$ are finite numbers. Assume that I is a bounded closed interval. Our goal is to show that $m^{\star}(I)=b-a$. One direction of inequality is easy to prove, the other is quite tedious and will be left out.

For any $\epsilon>0$ let $I_{1}=(a-\epsilon, b+\epsilon)>I$, let $I_{j}=\emptyset, j \geq 2$ so $\left\{I_{j}\right\} \in \mathcal{C}_{I} \Rightarrow$ $m^{\star}(I) \leq \sum_{j=1}^{\infty} \ell\left(I_{j}\right)=b-a+2 \epsilon$. Let $\epsilon \rightarrow 0$ and we obtain $m^{\star}(I) \leq b-a$.

Proof of Property 2: i.e $\forall A \subset \mathbb{R}, \forall x \in \mathbb{R}, m^{\star}(A+x)=m^{\star}(A)$
\mathcal{C}_{A} and \mathcal{C}_{A+x} are naturally in bijection via $\left\{I_{j}\right\} \leftrightarrow\left\{I_{j}+x\right\}$. Furthermore $\ell\left(I_{j}+x\right)=\ell\left(I_{j}\right)$

$$
\begin{aligned}
m^{\star}(A+x) & =\inf _{\left\{I_{j}+x\right\} \in \mathcal{C}_{A+x}} \sum_{j=1}^{\infty} \ell\left(I_{j}+x\right) \\
& =\inf _{\left\{I_{j}\right\} \in \mathcal{C}_{A}} \sum_{j=1}^{\infty} \ell\left(I_{j}\right)=m^{\star}(A)
\end{aligned}
$$

Proof of Property 3w: i.e If $\left\{E_{j}\right\}_{j=1}^{n}$ is a finite collection of pairwise disjoint $E_{j} \subset \mathbb{R}$ then $m^{\star}\left(\cup_{j=1}^{n} E_{j}\right)=\sum_{j=1}^{n} m^{\star}\left(E_{j}\right)$

If $m^{\star}\left(E_{j}\right)=+\infty$ for some j, then the property holds. We may assume that $m^{\star}\left(E_{j}\right)<+\infty \forall j$. Let $\epsilon>0$. By the definition of infimum, for each $j \geq 0$, there is

$$
\left\{I_{j, k}\right\}_{k=1}^{\infty} \in \mathcal{C}_{E_{j}} \text { such that } \sum_{k=1}^{\infty} \ell\left(I_{j, k}\right)<m^{\star}\left(E_{j}\right)+\epsilon 2^{-j}
$$

Thus $\left\{I_{j, k}\right\}_{k=1}^{\infty}$ is still countable and it covers $\cup_{j=1}^{\infty} E_{j}$ meaning it belongs to $\mathcal{C}_{\cup_{j=1}^{\infty}} E_{j}$, so by definition

$$
m^{\star}\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \ell\left(I_{j, k}\right)<\sum_{j=1}^{\infty}\left(m^{\star}\left(E_{j}\right)+\epsilon 2^{-j}\right)=\sum_{j=1}^{\infty} m^{\star}\left(E_{j}\right)+\epsilon
$$

Then let $\epsilon \rightarrow 0$. Clearly, by taking all $E_{j}=\emptyset$ except finitely many, we have the same subadditivity 3 w for finite collections.

Corollary 3.2.1. $m^{\star}([0,1] \cap(\mathbb{R} \backslash \mathbb{Q}))=1=\ell([0,1])$

Proof.

$$
\begin{aligned}
m^{\star}([0,1] \cap(\mathbb{R} \backslash \mathbb{Q})) & \leq m^{\star}([0,1])=1 \\
& \leq m^{\star}([0,1] \cap(\mathbb{Q}))+m^{\star}([0,1] \cap(\mathbb{R} \backslash \mathbb{Q})) \\
& \leq 0+1
\end{aligned}
$$

Corollary 3.2.2. $\mathbb{R} \backslash \mathbb{Q}$ is uncountable

Proof. If not, then

$$
m^{\star}(\mathbb{R} \backslash \mathbb{Q})=0 \geq m^{\star}([0,1] \cap(\mathbb{R} \backslash \mathbb{Q}))=1
$$

4 The σ-Algebra Of Lebesgue Measurable Sets

m^{\star} does not satisfy the third measurability requirement without the weak 3 w condition. We can construct some examples to prove this. $A, B \subset$ $\mathbb{R}, A \cap B=\emptyset$, such that $m^{\star}(A \cup B)<m^{\star}(A)+m^{\star}(B)$ later in the class.

The idea to avoid this problem is to look at "reasonable" subsets of \mathbb{R} for which this paradox disappears.

Definition 4.1 (Carathéodory). $E \subseteq R$ is called (Lebesgue) measurable if $\forall A \subset \mathbb{R}$

$$
m^{\star}(A)=m^{\star}(A \cap E)+m^{\star}\left(A \cap E^{c}\right)
$$

Remark. This is equivalent to Lebesgue's definition: E is measurable if and only if

$$
\exists U \subset \mathbb{R} \text { such that } E \subset U \text { and } m^{\star}(u \backslash E)<\epsilon
$$

But we will discuss this later.

Suppose that A is measurable and $B \subset \mathbb{R}$ is any set such that $A \cap B=\emptyset$ then

$$
m^{\star}(A \cup B)=m^{\star}(\underbrace{(A \cup B) \cap A}_{=A})+m^{\star}(\underbrace{(A \cup B) \cap A^{c}}_{=B})
$$

Going back to our counter example for m^{\star} and measurability requirement $3, A$ or B would have to be unmeasurable.

Here's another observation: For $E, A \subset \mathbb{R}$ arbitrary sets we have

$$
A=(A \cap E) \cup\left(A \cap E^{c}\right)
$$

So by $3 \mathrm{w} m^{\star}(A) \leq m^{\star}(A \cap E)+m^{\star}\left(A \cap E^{c}\right)$, so E is measurable \Longleftrightarrow $\forall A \subset \mathbb{R}$

$$
m^{\star}(A) \geq m^{\star}(A \cap E)+m^{\star}\left(A \cap E^{c}\right)
$$

This holds trivially for $m^{\star}(A)=\infty$
Example 1: \emptyset is measurable. $\forall A \subset \mathbb{R}$

$$
m^{\star}(A)=m^{\star}(A \cap \emptyset)+m^{\star}(A \cap \mathbb{R})
$$

Example 2: \mathbb{R} is measurable. $\forall A \subset \mathbb{R}$

$$
m^{\star}(A)=m^{\star}(A \cap \mathbb{R})+m^{\star}\left(A \cap E^{c}\right)
$$

Proposition. $E \subset \mathbb{R}$ with $m^{\star}(E)=0$, then E is measurable.
Corollary. Every countable set is measurable. \mathbb{Q} measurable $\rightarrow \mathbb{R} \backslash \mathbb{Q}$ are measurable

Proof. Let $A \subset \mathbb{R}$ be any set

$$
\begin{aligned}
A \cap E \subset E & \Rightarrow m^{\star}(A \cap E) \leq m^{\star}(E)=0 \\
A \cap E^{c} \subset A & \Rightarrow m^{\star}\left(A \cap E^{c}\right) \leq m^{\star}(A) \\
\text { So } m^{\star}(A) & \geq m^{\star}\left(A \cap E^{c}\right)+m^{\star}(A \cap E)
\end{aligned}
$$

Our goal is to show that Lebesgue measurable sets $\mathcal{L}=\{E \subset \mathbb{R} \mid E$ is measurable $\}$ is a σ-algebra on \mathbb{R}. We just need to show that if $\left\{E_{j}\right\}_{j=1}^{\infty}$ with $E_{j} \in \mathcal{L}, \forall j$, then $\cup_{j=1}^{\infty} E_{j} \in \mathcal{L}$
Proposition. If $\left\{E_{j}\right\}_{j=1}^{n} \subset \mathcal{L}$ then $\cup_{j=1}^{n} E_{i} \in \mathcal{L}$

Proof. We use mathematical induction. $n=1$ is trivial so we set the base case as $n=2 . E_{1}, E_{2}$ are measurable, Let $A \subset \mathbb{R}$ be any set

$$
\begin{align*}
m^{\star}(A) & =m^{\star}\left(E_{1} \cap A\right)+m^{\star}\left(A \cap E_{1}^{c}\right) \\
& =m^{\star}\left(A \cap E_{1}\right)+m^{\star}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}\right)+m^{\star}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}^{c}\right) \\
& =m^{\star}\left(A \cap E_{1}\right)+m^{\star}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}\right)+m^{\star}\left(A \cap\left(E_{1}^{c} \cap E_{2}^{c}\right)\right) \\
& =m^{\star}\left(A \cap E_{1}\right)+m^{\star}\left(\left(A \cap E_{1}^{c}\right) \cap E_{2}\right)+m^{\star}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \\
& \geq m^{\star}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m^{\star}\left(A \cap\left(E_{1} \cup E_{2}\right)^{c}\right) \tag{3w}
\end{align*}
$$

So $E_{1} \cup E_{2} \in \mathcal{L}$.
Induction step $n \geq 2$

$$
\bigcup_{j=1}^{\infty} E_{j}=\left(\bigcup_{j=1}^{n-1} E_{j}\right) \cup E_{n} \in \mathcal{L} \text { by the } n=2 \text { case }
$$

To prove that this also applies to countable sets, we use
Proposition (Analog of measurability requirement 3 for $m^{\star} \mid \mathcal{L}$). Suppose $A \subset \mathbb{R}$ is any set and $\left\{E_{j}\right\}_{j=1}^{n}$ is a finite disjoint collection of sets $E_{j} \in \mathcal{L}$, then

$$
m^{\star}\left(A \cap \bigcup_{j=1}^{n} E_{j}\right)=\sum_{j=1}^{n} m^{\star}\left(A \cap E_{j}\right)
$$

In particular take $A=\mathbb{R}$ to get $m^{\star}\left(\bigcup_{j=1}^{n} E_{j}\right)=\sum m^{\star}\left(E_{j}\right)$
Proposition. If $\left\{E_{j}\right\}_{j=1}^{\infty}$ is a countable family with $E_{i} \in \mathcal{L} \forall j$, then $\cup_{j=1}^{\infty} E_{j} \in$ \mathcal{L}. In particular, \mathcal{L} is a σ-algebra.

We would like to have the Borel sets be measurable, i.e $\mathcal{B} \subset \mathcal{L}$. Recall that $\mathcal{B}=\hat{\mathcal{F}}$, where $\mathcal{F}=\{U \subset \mathbb{R} \mid U$ is open $\}$ and ${ }^{\wedge}$ denotes the σ-algebra.

This results follows from the measurability of intervals combined with the measurability of the union of measurable sets.

Proposition. If $I \subseteq \mathbb{R}$ is any interval, then I is measurable.
Theorem 4.1. $\mathcal{L}=$ Lebesgue Measurable subsets of \mathbb{R} form a σ-algebra that contains the Borel σ-algebra \mathcal{B}

Proof. We already know that \mathcal{L} is a σ-algebra. If we can show that \mathcal{L} contains all open sets $U \subset \mathbb{R}$, then \mathcal{L} (being a σ-algebra) must contain \mathcal{B} which is the σ-algebra generated by open sets. Now if $U \subset \mathbb{R}$ is any (non empty) open set then by definition $\forall x \in U, \exists I_{x} \ni x$ where I_{x} is an open interval and $I_{x} \subset U$.

We want to choose I_{x} to be the "maximal" such. So by assigning

$$
a_{x}:=\inf \{z \in \mathbb{R} \mid(z, x) \subset U\} \text { satisfies } a_{x}<x
$$

and

$$
b_{x}:=\sup \{y \in \mathbb{R} \mid(x, y) \subset U\} \text { satisfies } x<b_{x}
$$

so $I_{x}:=\left(a_{x}, b_{x}\right)$ is an open interval that contains x and by construction $I_{x} \in U$. It is the largest such, in the sense that if $a_{x}>-\infty$ then $a_{x} \notin U$ and symmetrically if $b_{x}<\infty$ then $b_{x} \notin U$.

For any $y \in I_{x}$, we have $y<b_{x}$, so there is $z>y$ such that $(x, z) \subset U$ so $y \in$ U. Indeed, if $a_{x} \in U$ then since U open, $\exists r>0$ such that $\left(a_{x}-r, a_{x}+r\right) \subset U$ contradicting the definition of a_{x}.

So $U=\cup_{x \in U} I_{x}$. It is a huge union, however if $x, x^{\prime} \in U, x \neq x^{\prime}$, then either $I_{x} \cap I_{x^{\prime}}=\emptyset$, or if not then necessarily $I_{x}=I_{x^{\prime}}$, since $I_{x} \cup I_{x^{\prime}}$ is then another open interval that contains $x \& x^{\prime}$ and is a subset of U, so by maximality it must equal $I_{x} \& I_{x^{\prime}}$. So, throwing away all repeated I_{x}, we can write $U=\cup_{i \in I} I_{x}$ for some I where the intervals $I_{x_{i}}$ are pairwise disjoint. By density of $\mathbb{Q} \subset \mathbb{R}$, each such interval contains a different rational number $r_{i} \in I_{x_{i}}$. Since \mathbb{Q} is countable, I is at worst countable.

So every U open is an at most countable disjoint union of open intervals. Since such intervals belong of \mathcal{L}, and \mathcal{L} is a σ-algebra, it follows that every U open is in \mathcal{L} as desired.

Proposition (The σ-algebra \mathcal{L} is also translation invariant). If $E \subset \mathcal{L}$ and $x \in \mathbb{R}$ then $E+x \in \mathcal{L}$

Proof. Given any $A \subset \mathbb{R}$,

$$
\begin{aligned}
m^{\star}(A) & =m^{\star}(A-x) \\
& =m^{\star}((A-x) \cap E)+m^{\star}\left((A-x) \cap E^{c}\right) \\
& =m^{\star}(A \cap E+x)+m^{\star}\left(A \cap(E+x)^{c}\right) \quad\left(m^{\star} \text { translation invariant }\right)
\end{aligned}
$$

Remark. If $A \in \mathcal{L}$ with $m^{\star}(A)<\infty$, and $B \subset \mathbb{R}$ is any set with $A \subset B$, then

$$
m^{\star}(B \backslash A)=m^{\star}(B)-m^{\star}(A)
$$

5 Outer and Inner Approximation of Lebesgue Measurable Sets

Definition 5.1 (Gebiet-Durchshnitt). A subset $A \subset \mathbb{R}$ is called a G_{δ} if $A=\cap_{i=1}^{\infty} A_{i}$ where A_{i} are all open (possibly empty).

Definition 5.2 (Fermé-Somme). A subset $A \subset \mathbb{R}$ is called a F_{σ} if $A=$ $\cup_{i=1}^{\infty} A_{i}$ where A_{i} are all closed (possibly empty).

Clearly, A is $G_{\delta} \Longleftrightarrow A^{c}$ is F_{δ}. Also clearly, all G_{δ} and F_{σ} sets are Borel. Of course not all G_{δ} are open, e.g $[0,1]=\cap_{i=1}^{\infty}\left(-\frac{1}{i}, 1+\frac{1}{i}\right)$ and not all F_{σ} are closed. e.g. $(0,1)=\cup_{i=1}^{\infty}\left[\frac{1}{i}, 1-\frac{1}{i}\right]$
\mathbb{Q} is clearly F_{σ}, so $\mathbb{R} \backslash \mathbb{Q}$ is G_{δ}. With this, we can give several equivalent formulations of measurability.

Theorem 5.1. Let $E \subset \mathbb{R}$ be any set, then the following are equivalent:

1. $E \in \mathcal{L}$
2. $\forall \epsilon>0, \exists U \supset E, U$ open, $m^{\star}(U \backslash E)<\epsilon$
3. $\exists G \subset \mathbb{R} a G_{\delta}$ set, $G \supset E$, with $m^{\star}(G \backslash E)=0$
4. $\forall \epsilon>0, \exists F \subset E, F$ closed, $m^{\star}(E \backslash F)<\epsilon$
5. $\exists F \subset \mathbb{R}$ a F_{σ} set, $F \subset E$ with $m^{\star}(E \backslash F)=0$

Proposition. For an $E \in \mathcal{L}$ with $m^{\star}(E)<\infty$. Then $\forall \epsilon>0, \exists\left\{I_{j}\right\}_{j=1}^{n} a$ finite disjoint family of open intervals so that if we let $U=\cup_{j=1}^{n} I_{j}$ (open) then $m^{\star}(E \Delta U)<\epsilon$.

6 Lebesgue Measure

We can now take m^{\star} and restrict it to $\mathcal{L} .\left.m^{\star}\right|_{\mathcal{L}}$.
Definition 6.1 (Lebesgue Measure). This Lebesgue Measure is a function

$$
m:=\left.m^{\star}\right|_{\mathcal{L}}: \mathcal{L} \rightarrow \mathbb{R}_{\geq 0} \cup\{+\infty\}
$$

This means that for $E \in \mathcal{L}$ we define $m(E)=m^{\star}(E)$. Clearly, m satisfies the measurability requirements $1,2, \& 3$ as we have proved earlier. It also satisfies requirement 4 which was requirement 3 for countably infinite sets.

Proposition. If $\left\{E_{j}\right\}_{j=1}^{\infty}$ is a countably infinite collection of pairwise disjoint sets $E_{j} \in \mathcal{L}$ (possibly empty), then $\cup_{j=1}^{\infty} E_{j} \in \mathcal{L}$ and

$$
m\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} m\left(E_{j}\right)
$$

Proof. We proved earlier that $\cup_{j=1}^{\infty} E_{j} \in \mathcal{L}$ and that

$$
m\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} m\left(E_{j}\right)
$$

For the opposite inequality, for each n we proved earlier that

$$
m\left(\bigcup_{j=1}^{n} E_{j}\right)=\sum_{j=1}^{n} m\left(E_{j}\right)
$$

But $\cup_{j=1}^{n} E_{j} \subset \cup_{j=1}^{\infty} E_{j}$, hence

$$
m\left(\bigcup_{j=1}^{\infty} E_{j}\right) \geq m\left(\bigcup_{j=1}^{n} E_{j}\right)=\sum_{j=1}^{n} m\left(E_{j}\right) \forall n
$$

Take the limit as $n \rightarrow \infty$ to get

$$
m\left(\bigcup_{j=1}^{\infty} E_{j}\right) \geq \sum_{j=1}^{\infty} m\left(E_{j}\right)
$$

As desired. This argument shows that measurability requirement 3 and 3 w together imply 4.

7 Non-Measurable Sets

We saw earlier that if $E \subset \mathbb{R}$ satisfies $m^{\star}(E)=0$ then $E \in \mathcal{L}$. In particular, $\forall F \subset E, m^{\star}(F) \leq m^{\star}(E)=0$, so $F \in \mathcal{L}$ too. This however totally fails when $m^{\star}(E)>0$.

Theorem 7.1 (Vitali). For any $E \subset \mathbb{R}$ with $m^{\star}(E)>0$, there is an $F \subset E$ which is NOT measurable. The construction uses the axiom of choice (and it is really needed).

The proof of this theorem and construction of a Vitali set are currently omitted due to length.

[^0]: *Notes from the lectures of Valentino Tosatti

