
Honours Analysis 3

Zachary Probst *

September 27, 2021

1 Borel Sets

We will work for some time on R exclusively. Before beginning Measure
Theory: a quick recap of Topology.

Definition 1.1 (Open Set). A subset U ⊂ R is called open if either U = ∅
or else

∀x ∈ U,∃r > 0 such that (x− r, x+ r) ⊂ U

Some examples of open sets: ∅,R, (a, b), (a,∞), (−∞, a). There are many
more because any union of an open set is still open and any finite intersection
of open sets is open.

Definition 1.2 (Closed Set). F ⊂ R is called closed if R \F := F c is open.

F is closed ⇐⇒ F contains all points x ∈ R which have the property that
∀r > 0, (x− r, x+ r) ∩ F ̸= ∅.

If F ⊂ R is any set, the closure of F , denoted by F , is the smallest closed
set that contains F .

Definition 1.3 (Compact). A subset G ⊂ R is compact if given any
collection {Ui}i∈I of open sets Ui ⊂ R with G ⊂ ∪i∈IUi, there exists J ⊂ I,
J finite, such that G ⊂ ∪j∈JUj

*Notes from the lectures of Valentino Tosatti
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Theorem 1.1 (Heine-Borel). G ⊂ R is compact ⇐⇒ G is closed and
bounded. To be bounded means G ⊂ (a, b) for some a, b ∈ R.

Corollary 1.1.1 (Nested Set Theorem). Let {Fn}∞n=1 be a countable collection
of non-empty, bounded, closed sets Fn ⊂ R with Fn+1 ⊂ Fn∀n, then

∩∞
n=1Fn ̸= ∅

Proof. Suppose ∩∞
n=1Fn = ∅ so let Un = F c

n be open sets, such that ∪∞
n=1Un =

R. We also have that Un ⊂ Un+1, since the Fn were nested. Now F1 is
compact by Heine-Borel and F1 ⊂ ∪∞

n=1Un ⇒ by compactness I can find a
finite subcover of F1, say F ⊂ ∪N

n=1Un = UN = F c
N

On the other hand FN ⊂ F1 by the nested property which implies FN = ∅
which is a contradiction.

2 Measure Theory

We want to measure the size of a set. We will deal with a subset of R.

It turns out that one needs to select a class of subsets of R that one wants
to measure. This class of subsets will have certain properties which are as
follows.

Definition 2.1 (σ-algebra). A collection A of subsets of R is called a
σ-algebra if it satisfies

1. ∅ ∈ A

2. If A ∈ A then Ac ∈ A

3. If {An}∞n=1 ⊂ A then ∪∞
n=1An ∈ A

Observe the following:

� R ∈ A always
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� If {An}Nn=1 ⊂ A then ∪N
n=1An ∈ A (just define An = ∅ for n > N)

� If {An}∞n=1 ⊂ A then ∩∞
n=1An ∈ A (since (∩∞

n=1An)
c = ∪∞

n=1A
c
n)

� If A,B ∈ A then A \B ∈ A too since A \B = A ∩Bc

Examples:

1. A = {∅,R} “Minimal σ-algebra”

2. A = P(R) = Collection of all subsets of R. “Maximum σ-algebra”

In fact, if A is any σ-algebra, then {∅,R} ⊆ A ⊆ P(R)

For better examples, let F be any collection of subsets of R. I want to make
F into a σ-algebra. Define m = {A | A is a σ-algebra that satisfies F ⊂ A}.
m ̸= ∅ since it contains P(R)

If A,B ∈ m, I can define A∩B = {A ⊂ R | A ∈ A and A ∈ B} and I can do
the same for ∩i∈IA arbitrary intersection of σ-algebra is still a σ-algebra

Define F̂i = ∩A∈mA as a σ-algebra and F ⊂ F̂ and it is the minimal
σ-algebra with these properties. IfG is a σ-algebra with F ⊂ G, then F̂ ⊂ G.
F̂ is the σ-algebra generated by F . Concretely, F̂ consists of all subsets of
R that can be constructed by applying countable unions, intersections, and
complements to elements of F .

Definition 2.2 (Borel Sets). The σ-algebra B of Borel Sets is the σ-algebra F̂
generated by

F = {U ⊂ R | U open }

Remark. B is also the σ-algebra generated by the family of all closed subsets
of R

Singletons {x} ⊂ R are closed so if A ⊂ R is at most countable then A is
Borel. (e.g Q ⊂ R) (e.g R \Q)

Not all Subsets of R are Borel. One can actually show that the cardinality
of B is the same as the cardinality of R. On the other hand P(R) has strictly
larger cardinality.
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3 Lebesgue Outer Measure

We are hoping to measure the size of subsets of R. Ideally we would like to
find or construct a function

m : P(R) → R≥0 ∪ {+∞} = [0,∞]

Which satisfies the following measure requirements:

1. If I = [a, b] or (a, b) or [a, b), or (a, b], a, b ∈ R, a ≤ b then m(I) =
b− a = measure of interval

2. m is translation invariant. i.e if E ⊂ R and x ∈ R, let E+x = {y+x |
y ∈ E} then m(E + x) = m(E)

3. If {Ej}nj=1 is a finite collection of pairwise disjoint Ej ⊂ R then

m
(
∪n
j=1Ej

)
=

n∑
j=1

m(Ej)

4. The same as (3) except for n = ∞
Theorem 3.1. There is no such m satisfying all 4 requirements

The proof for this will come later. The solution for this is that we do not
try to measure all subsets of R. So we have m : P(R) → [0,∞] but now we
will just be happy with m : A → [0,∞] where A is a σ-algebra which has
enough elements. For example A > B.

We will follow H. Lebesgue as we proceed in two steps.

Step 1: construct Lebesgue outer measure m⋆ : P(R) → [0,∞] satisfying
requirements 1,2, and 3.

Step 2: Use m⋆ to define A and let m ⊂ m⋆ | A

To create this Lebesgue outer measure on R we satisfy a weakened version of
requirement (3) that can be called (3w). For any countably infinite collection
{Ej}∞j=1 of arbitrary subsets Ej ⊂ R

m⋆(∪∞
j=1Ej) ≤

∞∑
j=1

m(Ej)
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Theorem 3.2 (Lebesgue Outer Measure). There is a map m⋆ : P(R) →
R≥0 ∪ {+∞} that satisfies the measure requirements 1, 2, and 3w.

This m⋆ is called the Lebesgue outer measure on R.

How do we define outer measure m⋆(A)?

Observe that any A ⊆ R can be covered by some countable infinite collection
{Ij}∞j=1 of bounded open intervals, which are allowed to be empty, but we
do not assume that Ij be pairwise disjoint.

For example: Ij = (−j, j), j = 1, 2, 3 . . .

Let

CA = {{Ij}∞j=1 | Ij bounded open intervals such that A ⊂ ∪∞
j=1Ij}

CA ̸= ∅ by our example so for each {Ij} ∈ CA, I can consider

∞∑
j=1

ℓ(Ij) ∈ R≥0 ∪ {+∞} (ℓ denotes length)

Definition 3.1 (Outer Measure).

m⋆(A) := inf
{Ij}∈CA

∞∑
j=1

ℓ(Ij) ∈ R≥0 ∪ {+∞}

This defines a map m⋆ : P(R) → R≥0 ∪ {+∞}

Simple Properties:

� Monotonicity : If A ⊆ B then m⋆(A) ≤ m⋆(B). Indeed by definition
CB ⊆ CA hence the infimum over CB is ≥ than the infimum over CA.

� Empty Set : m⋆ (∅) = 0. Given any 1 > ϵ > 0, let Ij = (−ϵj , ϵj), j =
1, 2, . . . {Ij} ∈ C∅ and

∑∞
j=1 ℓ(Ij) = 2

∑∞
j=1 ϵ

j = 2ϵ
1−ϵ from the geometric

series going to zero so m⋆ (∅) ≤ 2ϵ
1−ϵ ∀0 < ϵ < 1
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� If A ∈ R is finite or countable infinite then m⋆ (A) = 0. Indeed
enumerate all elements of A by {aj}∞j=1. (If A is finite say |A| = n let

aj = an for all j > n). For any 0 < ϵ < 1, let Ij =
(
−ϵj + aj , aj + ϵj

)
so A ⊆ ∪∞

j=1Ij and
∑∞

j=1 ℓ(Ij) =
2ϵ
1−ϵ hence as before, m⋆ (A) = 0. For

example m⋆ (Q) = 0

We will now prove that the Lebesgue outer measure satisfies 1, 2, and 3w of
the measure requirements.

Proof of Property 1: i.e m⋆ (I) = ℓ(I) for any interval I ⊆ R

Assume that I = [a, b], a < b are finite numbers. Assume that I is a bounded
closed interval. Our goal is to show that m⋆ (I) = b − a. One direction of
inequality is easy to prove, the other is quite tedious and will be left out.

For any ϵ > 0 let I1 = (a − ϵ, b + ϵ) > I, let Ij = ∅, j ≥ 2 so {Ij} ∈ CI ⇒
m⋆ (I) ≤

∑∞
j=1 ℓ(Ij) = b− a+ 2ϵ. Let ϵ → 0 and we obtain m⋆ (I) ≤ b− a.

Proof of Property 2: i.e ∀A ⊂ R, ∀x ∈ R, m⋆ (A+ x) = m⋆ (A)

CA and CA+x are naturally in bijection via {Ij} ↔ {Ij + x}. Furthermore
ℓ(Ij + x) = ℓ(Ij)

m⋆ (A+ x) = inf
{Ij+x}∈CA+x

∞∑
j=1

ℓ(Ij + x)

= inf
{Ij}∈CA

∞∑
j=1

ℓ(Ij) = m⋆ (A)

Proof of Property 3w: i.e If {Ej}nj=1 is a finite collection of pairwise disjoint

Ej ⊂ R then m⋆
(
∪n
j=1Ej

)
=

∑n
j=1m

⋆ (Ej)

If m⋆ (Ej) = +∞ for some j, then the property holds. We may assume that
m⋆ (Ej) < +∞ ∀j. Let ϵ > 0. By the definition of infimum, for each j ≥ 0,
there is

{Ij,k}∞k=1 ∈ CEj such that
∞∑
k=1

ℓ(Ij,k) < m⋆ (Ej) + ϵ2−j
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Thus {Ij,k}∞k=1 is still countable and it covers ∪∞
j=1Ej meaning it belongs to

C∪∞
j=1

Ej , so by definition

m⋆

 ∞⋃
j=1

Ej

 ≤
∞∑
j=1

∞∑
k=1

ℓ(Ij,k) <
∞∑
j=1

(m⋆ (Ej) + ϵ2−j) =
∞∑
j=1

m⋆ (Ej) + ϵ

Then let ϵ → 0. Clearly, by taking all Ej = ∅ except finitely many, we have
the same subadditivity 3w for finite collections.

Corollary 3.2.1. m⋆ ([0, 1] ∩ (R \Q)) = 1 = ℓ([0, 1])

Proof.

m⋆ ([0, 1] ∩ (R \Q)) ≤ m⋆ ([0, 1]) = 1

≤ m⋆ ([0, 1] ∩ (Q)) +m⋆ ([0, 1] ∩ (R \Q))

≤ 0 + 1

Corollary 3.2.2. R \Q is uncountable

Proof. If not, then

m⋆ (R \Q) = 0 ≥ m⋆ ([0, 1] ∩ (R \Q)) = 1

4 The σ-Algebra Of Lebesgue Measurable Sets

m⋆ does not satisfy the third measurability requirement without the weak
3w condition. We can construct some examples to prove this. A,B ⊂
R, A ∩B = ∅, such that m⋆ (A ∪B) < m⋆ (A) +m⋆ (B) later in the class.

The idea to avoid this problem is to look at “reasonable” subsets of R for
which this paradox disappears.

Definition 4.1 (Carathéodory). E ⊆ R is called (Lebesgue) measurable if
∀A ⊂ R

m⋆ (A) = m⋆ (A ∩ E) +m⋆ (A ∩ Ec)
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Remark. This is equivalent to Lebesgue’s definition: E is measurable if and
only if

∃U ⊂ R such that E ⊂ U and m⋆ (u \ E) < ϵ

But we will discuss this later.

Suppose that A is measurable and B ⊂ R is any set such that A ∩ B = ∅
then

m⋆ (A ∪B) = m⋆

(A ∪B) ∩A︸ ︷︷ ︸
=A

+m⋆

(A ∪B) ∩Ac︸ ︷︷ ︸
=B


Going back to our counter example for m⋆ and measurability requirement
3, A or B would have to be unmeasurable.

Here’s another observation: For E,A ⊂ R arbitrary sets we have

A = (A ∩ E) ∪ (A ∩ Ec)

So by 3w m⋆ (A) ≤ m⋆ (A ∩ E) + m⋆ (A ∩ Ec), so E is measurable ⇐⇒
∀A ⊂ R

m⋆ (A) ≥ m⋆ (A ∩ E) +m⋆ (A ∩ Ec)

This holds trivially for m⋆ (A) = ∞

Example 1: ∅ is measurable. ∀A ⊂ R

m⋆ (A) = ������
m⋆ (A ∩ ∅) +m⋆ (A ∩ R)

Example 2: R is measurable. ∀A ⊂ R

m⋆ (A) = m⋆ (A ∩ R) +m⋆ (A ∩ Ec)

Proposition. E ⊂ R with m⋆ (E) = 0, then E is measurable.

Corollary. Every countable set is measurable. Q measurable → R \ Q are
measurable

Proof. Let A ⊂ R be any set

A ∩ E ⊂ E ⇒ m⋆ (A ∩ E) ≤ m⋆ (E) = 0

A ∩ Ec ⊂ A ⇒ m⋆ (A ∩ Ec) ≤ m⋆ (A)

So m⋆ (A) ≥ m⋆ (A ∩ Ec) +������
m⋆ (A ∩ E)
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Our goal is to show that Lebesgue measurable sets L = {E ⊂ R | E is measurable}
is a σ-algebra on R. We just need to show that if {Ej}∞j=1 with Ej ∈ L, ∀j,
then ∪∞

j=1Ej ∈ L

Proposition. If {Ej}nj=1 ⊂ L then ∪n
j=1Ei ∈ L

Proof. We use mathematical induction. n = 1 is trivial so we set the base
case as n = 2. E1, E2 are measurable, Let A ⊂ R be any set

m⋆ (A) = m⋆ (E1 ∩A) +m⋆ (A ∩ Ec
1)

= m⋆ (A ∩ E1) +m⋆ ((A ∩ Ec
1) ∩ E2) +m⋆ ((A ∩ Ec

1) ∩ Ec
2)

= m⋆ (A ∩ E1) +m⋆ ((A ∩ Ec
1) ∩ E2) +m⋆ (A ∩ (Ec

1 ∩ Ec
2))

= m⋆ (A ∩ E1) +m⋆ ((A ∩ Ec
1) ∩ E2) +m⋆ (A ∩ (E1 ∪ E2)

c)

≥ m⋆ (A ∩ (E1 ∪ E2)) +m⋆ (A ∩ (E1 ∪ E2)
c) (3w)

So E1 ∪ E2 ∈ L.

Induction step n ≥ 2

∞⋃
j=1

Ej =

n−1⋃
j=1

Ej

 ∪ En ∈ L by the n = 2 case

To prove that this also applies to countable sets, we use

Proposition (Analog of measurability requirement 3 for m⋆ | L). Suppose
A ⊂ R is any set and {Ej}nj=1 is a finite disjoint collection of sets Ej ∈ L,
then

m⋆

A ∩
n⋃

j=1

Ej

 =
n∑

j=1

m⋆ (A ∩ Ej)

In particular take A = R to get m⋆
(⋃n

j=1Ej

)
=

∑
m⋆ (Ej)

Proposition. If {Ej}∞j=1 is a countable family with Ei ∈ L ∀j, then ∪∞
j=1Ej ∈

L. In particular, L is a σ-algebra.

We would like to have the Borel sets be measurable, i.e B ⊂ L. Recall that
B = F̂ , where F = {U ⊂ R | U is open } and ^ denotes the σ-algebra.
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This results follows from the measurability of intervals combined with the
measurability of the union of measurable sets.

Proposition. If I ⊆ R is any interval, then I is measurable.

Theorem 4.1. L = Lebesgue Measurable subsets of R form a σ-algebra that
contains the Borel σ-algebra B

Proof. We already know that L is a σ-algebra. If we can show that L
contains all open sets U ⊂ R, then L (being a σ-algebra) must contain B
which is the σ-algebra generated by open sets. Now if U ⊂ R is any (non
empty) open set then by definition ∀x ∈ U,∃Ix ∋ x where Ix is an open
interval and Ix ⊂ U .

We want to choose Ix to be the “maximal” such. So by assigning

ax := inf{z ∈ R | (z, x) ⊂ U} satisfies ax < x

and
bx := sup{y ∈ R | (x, y) ⊂ U} satisfies x < bx

so Ix := (ax, bx) is an open interval that contains x and by construction
Ix ∈ U . It is the largest such, in the sense that if ax > −∞ then ax /∈ U
and symmetrically if bx < ∞ then bx /∈ U .

For any y ∈ Ix, we have y < bx, so there is z > y such that (x, z) ⊂ U so y ∈
U . Indeed, if ax ∈ U then since U open, ∃r > 0 such that (ax−r, ax+r) ⊂ U
contradicting the definition of ax.

So U = ∪x∈UIx. It is a huge union, however if x, x′ ∈ U, x ̸= x′, then either
Ix ∩ Ix′ = ∅, or if not then necessarily Ix = Ix′ , since Ix ∪ Ix′ is then another
open interval that contains x & x′ and is a subset of U , so by maximality
it must equal Ix & Ix′ . So, throwing away all repeated Ix, we can write
U = ∪i∈IIx for some I where the intervals Ixi are pairwise disjoint. By
density of Q ⊂ R, each such interval contains a different rational number
ri ∈ Ixi . Since Q is countable, I is at worst countable.

So every U open is an at most countable disjoint union of open intervals.
Since such intervals belong ot L, and L is a σ-algebra, it follows that every
U open is in L as desired.
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Proposition (The σ-algebra L is also translation invariant). If E ⊂ L and
x ∈ R then E + x ∈ L

Proof. Given any A ⊂ R,

m⋆ (A) = m⋆ (A− x)

= m⋆ ((A− x) ∩ E) +m⋆ ((A− x) ∩ Ec)

= m⋆ (A ∩ E + x) +m⋆ (A ∩ (E + x)c) (m⋆ translation invariant)

Remark. If A ∈ L with m⋆ (A) < ∞, and B ⊂ R is any set with A ⊂ B,
then

m⋆ (B \A) = m⋆ (B)−m⋆ (A)

5 Outer and Inner Approximation of Lebesgue Measurable
Sets

Definition 5.1 (Gebiet-Durchshnitt). A subset A ⊂ R is called a Gδ if
A = ∩∞

i=1Ai where Ai are all open (possibly empty).

Definition 5.2 (Fermé-Somme). A subset A ⊂ R is called a Fσ if A =
∪∞
i=1Ai where Ai are all closed (possibly empty).

Clearly, A is Gδ ⇐⇒ Ac is Fδ. Also clearly, all Gδ and Fσ sets are Borel.
Of course not all Gδ are open, e.g [0, 1] = ∩∞

i=1

(
−1

i , 1 +
1
i

)
and not all Fσ

are closed. e.g. (0, 1) = ∪∞
i=1

[
1
i , 1−

1
i

]
Q is clearly Fσ, so R \ Q is Gδ. With this, we can give several equivalent
formulations of measurability.

Theorem 5.1. Let E ⊂ R be any set, then the following are equivalent:

1. E ∈ L

2. ∀ϵ > 0, ∃U ⊃ E, U open, m⋆ (U \ E) < ϵ
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3. ∃G ⊂ R a Gδ set, G ⊃ E, with m⋆ (G \ E) = 0

4. ∀ϵ > 0, ∃F ⊂ E, F closed, m⋆ (E \ F ) < ϵ

5. ∃F ⊂ R a Fσ set, F ⊂ E with m⋆ (E \ F ) = 0

Proposition. For an E ∈ L with m⋆ (E) < ∞. Then ∀ϵ > 0, ∃{Ij}nj=1 a
finite disjoint family of open intervals so that if we let U = ∪n

j=1Ij (open)
then m⋆ (E∆U) < ϵ.

6 Lebesgue Measure

We can now take m⋆ and restrict it to L. m⋆ |L.

Definition 6.1 (Lebesgue Measure). This Lebesgue Measure is a function

m := m⋆ |L: L → R≥0 ∪ {+∞}

This means that for E ∈ L we define m(E) = m⋆ (E). Clearly, m satisfies
the measurability requirements 1, 2, & 3 as we have proved earlier. It also
satisfies requirement 4 which was requirement 3 for countably infinite sets.

Proposition. If {Ej}∞j=1 is a countably infinite collection of pairwise disjoint
sets Ej ∈ L (possibly empty), then ∪∞

j=1Ej ∈ L and

m

 ∞⋃
j=1

Ej

 =
∞∑
j=1

m(Ej)

Proof. We proved earlier that ∪∞
j=1Ej ∈ L and that

m

 ∞⋃
j=1

Ej

 ≤
∞∑
j=1

m(Ej)

For the opposite inequality, for each n we proved earlier that

m

 n⋃
j=1

Ej

 =
n∑

j=1

m(Ej)
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But ∪n
j=1Ej ⊂ ∪∞

j=1Ej , hence

m

 ∞⋃
j=1

Ej

 ≥ m

 n⋃
j=1

Ej

 =
n∑

j=1

m(Ej) ∀n

Take the limit as n → ∞ to get

m

 ∞⋃
j=1

Ej

 ≥
∞∑
j=1

m(Ej)

As desired. This argument shows that measurability requirement 3 and 3w
together imply 4.

7 Non-Measurable Sets

We saw earlier that if E ⊂ R satisfies m⋆ (E) = 0 then E ∈ L. In particular,
∀F ⊂ E, m⋆ (F ) ≤ m⋆ (E) = 0, so F ∈ L too. This however totally fails
when m⋆ (E) > 0.

Theorem 7.1 (Vitali). For any E ⊂ R with m⋆ (E) > 0, there is an F ⊂ E
which is NOT measurable. The construction uses the axiom of choice (and
it is really needed).

The proof of this theorem and construction of a Vitali set are currently
omitted due to length.
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