Honours Analysis 3

Zachary Probst *

September 27, 2021

1 Borel Sets

We will work for some time on \mathbb{R} exclusively. Before beginning Measure Theory: a quick recap of Topology.

Definition 1.1 (Open Set). A subset $U \subset \mathbb{R}$ is called open if either $U = \emptyset$ or else

 $\forall x \in U, \exists r > 0 \text{ such that } (x - r, x + r) \subset U$

Some examples of open sets: \emptyset , \mathbb{R} , (a, b), (a, ∞) , $(-\infty, a)$. There are many more because any union of an open set is still open and any finite intersection of open sets is open.

Definition 1.2 (Closed Set). $F \subset \mathbb{R}$ is called closed if $\mathbb{R} \setminus F \coloneqq F^c$ is open.

F is closed \iff *F* contains all points $x \in \mathbb{R}$ which have the property that $\forall r > 0, (x - r, x + r) \cap F \neq \emptyset$.

If $F \subset \mathbb{R}$ is any set, the closure of F, denoted by \overline{F} , is the smallest closed set that contains F.

Definition 1.3 (Compact). A subset $G \subset \mathbb{R}$ is compact if given any collection $\{U_i\}_{i \in I}$ of open sets $U_i \subset \mathbb{R}$ with $G \subset \bigcup_{i \in I} U_i$, there exists $J \subset I$, J finite, such that $G \subset \bigcup_{j \in J} U_j$

^{*}Notes from the lectures of Valentino Tosatti

Theorem 1.1 (Heine-Borel). $G \subset \mathbb{R}$ is compact $\iff G$ is closed and bounded. To be bounded means $G \subset (a, b)$ for some $a, b \in \mathbb{R}$.

Corollary 1.1.1 (Nested Set Theorem). Let $\{F_n\}_{n=1}^{\infty}$ be a countable collection of non-empty, bounded, closed sets $F_n \subset \mathbb{R}$ with $F_{n+1} \subset F_n \forall n$, then

$$\bigcap_{n=1}^{\infty} F_n \neq \emptyset$$

Proof. Suppose $\bigcap_{n=1}^{\infty} F_n = \emptyset$ so let $U_n = F_n^c$ be open sets, such that $\bigcup_{n=1}^{\infty} U_n = \mathbb{R}$. We also have that $U_n \subset U_{n+1}$, since the F_n were nested. Now F_1 is compact by Heine-Borel and $F_1 \subset \bigcup_{n=1}^{\infty} U_n \Rightarrow$ by compactness I can find a finite subcover of F_1 , say $F \subset \bigcup_{n=1}^{N} U_n = U_N = F_N^c$

On the other hand $F_N \subset F_1$ by the nested property which implies $F_N = \emptyset$ which is a contradiction.

2 Measure Theory

We want to measure the size of a set. We will deal with a subset of \mathbb{R} .

It turns out that one needs to select a class of subsets of \mathbb{R} that one wants to measure. This class of subsets will have certain properties which are as follows.

Definition 2.1 (σ -algebra). A collection \mathcal{A} of subsets of \mathbb{R} is called a σ -algebra if it satisfies

- 1. $\emptyset \in \mathcal{A}$
- 2. If $A \in \mathcal{A}$ then $A^c \in \mathcal{A}$
- 3. If $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$

Observe the following:

• $\mathbb{R} \in \mathcal{A}$ always

- If $\{A_n\}_{n=1}^N \subset \mathcal{A}$ then $\cup_{n=1}^N A_n \in \mathcal{A}$ (just define $A_n = \emptyset$ for n > N)
- If $\{A_n\}_{n=1}^{\infty} \subset \mathcal{A}$ then $\cap_{n=1}^{\infty} A_n \in \mathcal{A}$ (since $(\cap_{n=1}^{\infty} A_n)^c = \bigcup_{n=1}^{\infty} A_n^c$)
- If $A, B \in \mathcal{A}$ then $A \setminus B \in \mathcal{A}$ too since $A \setminus B = A \cap B^c$

Examples:

- 1. $\mathcal{A} = \{\emptyset, \mathbb{R}\}$ "Minimal σ -algebra"
- 2. $\mathcal{A} = \mathcal{P}(\mathbb{R}) =$ Collection of all subsets of \mathbb{R} . "Maximum σ -algebra"

In fact, if \mathcal{A} is any σ -algebra, then $\{\emptyset, \mathbb{R}\} \subseteq \mathcal{A} \subseteq \mathcal{P}(\mathbb{R})$

For better examples, let F be any collection of subsets of \mathbb{R} . I want to make F into a σ -algebra. Define $m = \{\mathcal{A} \mid \mathcal{A} \text{ is a } \sigma\text{-algebra that satisfies } F \subset \mathcal{A}\}$. $m \neq \emptyset$ since it contains $\mathcal{P}(\mathbb{R})$

If $\mathcal{A}, \mathcal{B} \in m$, I can define $\mathcal{A} \cap \mathcal{B} = \{A \subset \mathbb{R} \mid A \in \mathcal{A} \text{ and } A \in \mathcal{B}\}$ and I can do the same for $\bigcap_{i \in I} \mathcal{A}$ arbitrary intersection of σ -algebra is still a σ -algebra

Define $\hat{F}_i = \bigcap_{\mathcal{A} \in m} \mathcal{A}$ as a σ -algebra and $F \subset \hat{F}$ and it is the minimal σ -algebra with these properties. If G is a σ -algebra with $F \subset G$, then $\hat{F} \subset G$. \hat{F} is the σ -algebra generated by F. Concretely, \hat{F} consists of all subsets of \mathbb{R} that can be constructed by applying countable unions, intersections, and complements to elements of F.

Definition 2.2 (Borel Sets). The σ -algebra \mathcal{B} of Borel Sets is the σ -algebra \hat{F} generated by

$$F = \{ U \subset \mathbb{R} \mid U \text{ open } \}$$

Remark. \mathcal{B} is also the σ -algebra generated by the family of all closed subsets of \mathbb{R}

Singletons $\{x\} \subset \mathbb{R}$ are closed so if $A \subset \mathbb{R}$ is at most countable then A is Borel. (e.g $\mathbb{Q} \subset \mathbb{R}$) (e.g $\mathbb{R} \setminus \mathbb{Q}$)

Not all Subsets of \mathbb{R} are Borel. One can actually show that the cardinality of \mathcal{B} is the same as the cardinality of \mathbb{R} . On the other hand $\mathcal{P}(\mathbb{R})$ has strictly larger cardinality.

3 Lebesgue Outer Measure

We are hoping to measure the size of subsets of \mathbb{R} . Ideally we would like to find or construct a function

$$m: \mathcal{P}(\mathbb{R}) \to \mathbb{R}_{>0} \cup \{+\infty\} = [0,\infty]$$

Which satisfies the following measure requirements:

- 1. If I = [a, b] or (a, b) or [a, b), or (a, b], $a, b \in \mathbb{R}$, $a \leq b$ then m(I) = b a = measure of interval
- 2. *m* is translation invariant. i.e if $E \subset \mathbb{R}$ and $x \in \mathbb{R}$, let $E + x = \{y + x \mid y \in E\}$ then m(E + x) = m(E)
- 3. If $\{E_j\}_{j=1}^n$ is a finite collection of pairwise disjoint $E_j \subset \mathbb{R}$ then

$$m\left(\cup_{j=1}^{n} E_{j}\right) = \sum_{j=1}^{n} m(E_{j})$$

4. The same as (3) except for $n = \infty$

Theorem 3.1. There is no such m satisfying all 4 requirements

The proof for this will come later. The solution for this is that we do not try to measure all subsets of \mathbb{R} . So we have $m : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ but now we will just be happy with $m : \mathcal{A} \to [0, \infty]$ where \mathcal{A} is a σ -algebra which has enough elements. For example $\mathcal{A} > \mathcal{B}$.

We will follow H. Lebesgue as we proceed in two steps.

Step 1: construct Lebesgue outer measure $m^* : \mathcal{P}(\mathbb{R}) \to [0, \infty]$ satisfying requirements 1,2, and 3.

Step 2: Use m^* to define \mathcal{A} and let $m \subset m^* \mid \mathcal{A}$

To create this Lebesgue outer measure on \mathbb{R} we satisfy a weakened version of requirement (3) that can be called (3w). For any countably infinite collection $\{E_j\}_{j=1}^{\infty}$ of arbitrary subsets $E_j \subset \mathbb{R}$

$$m^{\star}(\cup_{j=1}^{\infty}E_j) \le \sum_{j=1}^{\infty}m(E_j)$$

Theorem 3.2 (Lebesgue Outer Measure). There is a map $m^* : \mathcal{P}(\mathbb{R}) \to \mathbb{R}_{>0} \cup \{+\infty\}$ that satisfies the measure requirements 1, 2, and 3w.

This m^* is called the Lebesgue outer measure on \mathbb{R} .

How do we define outer measure $m^*(A)$?

Observe that any $A \subseteq \mathbb{R}$ can be covered by some countable infinite collection $\{I_j\}_{j=1}^{\infty}$ of bounded open intervals, which are allowed to be empty, but we do not assume that I_j be pairwise disjoint.

For example: $I_j = (-j, j), \ j = 1, 2, 3...$

Let

 $\mathcal{C}_A = \{\{I_j\}_{j=1}^{\infty} \mid I_j \text{ bounded open intervals such that } A \subset \cup_{j=1}^{\infty} I_j\}$

 $C_A \neq \emptyset$ by our example so for each $\{I_j\} \in C_A$, I can consider

$$\sum_{j=1}^{\infty} \ell(I_j) \in \mathbb{R}_{\geq 0} \cup \{+\infty\} \qquad (\ell \text{ denotes length})$$

Definition 3.1 (Outer Measure).

$$m^{\star}(A) \coloneqq \inf_{\{I_j\} \in \mathcal{C}_{\mathcal{A}}} \sum_{j=1}^{\infty} \ell(I_j) \in \mathbb{R}_{\geq 0} \cup \{+\infty\}$$

This defines a map $m^* : \mathcal{P}(\mathbb{R}) \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$

Simple Properties:

- Monotonicity: If $A \subseteq B$ then $m^*(A) \leq m^*(B)$. Indeed by definition $\mathcal{C}_B \subseteq \mathcal{C}_A$ hence the infimum over \mathcal{C}_B is \geq than the infimum over \mathcal{C}_A .
- Empty Set: $m^*(\emptyset) = 0$. Given any $1 > \epsilon > 0$, let $I_j = (-\epsilon^j, \epsilon^j)$, $j = 1, 2, \dots \{I_j\} \in \mathcal{C}_{\emptyset}$ and $\sum_{j=1}^{\infty} \ell(I_j) = 2 \sum_{j=1}^{\infty} \epsilon^j = \frac{2\epsilon}{1-\epsilon}$ from the geometric series going to zero so $m^*(\emptyset) \leq \frac{2\epsilon}{1-\epsilon} \forall 0 < \epsilon < 1$

• If $A \in \mathbb{R}$ is finite or countable infinite then $m^*(A) = 0$. Indeed enumerate all elements of A by $\{a_j\}_{j=1}^{\infty}$. (If A is finite say |A| = n let $a_j = a_n$ for all j > n). For any $0 < \epsilon < 1$, let $I_j = (-\epsilon^j + a_j, a_j + \epsilon^j)$ so $A \subseteq \bigcup_{j=1}^{\infty} I_j$ and $\sum_{j=1}^{\infty} \ell(I_j) = \frac{2\epsilon}{1-\epsilon}$ hence as before, $m^*(A) = 0$. For example $m^*(\mathbb{Q}) = 0$

We will now prove that the Lebesgue outer measure satisfies 1, 2, and 3w of the measure requirements.

Proof of Property 1: i.e
$$m^{\star}(I) = \ell(I)$$
 for any interval $I \subseteq \mathbb{R}$

Assume that I = [a, b], a < b are finite numbers. Assume that I is a bounded closed interval. Our goal is to show that $m^*(I) = b - a$. One direction of inequality is easy to prove, the other is quite tedious and will be left out.

For any $\epsilon > 0$ let $I_1 = (a - \epsilon, b + \epsilon) > I$, let $I_j = \emptyset, j \ge 2$ so $\{I_j\} \in \mathcal{C}_I \Rightarrow m^*(I) \le \sum_{j=1}^{\infty} \ell(I_j) = b - a + 2\epsilon$. Let $\epsilon \to 0$ and we obtain $m^*(I) \le b - a$.

Proof of Property 2: i.e $\forall A \subset \mathbb{R}, \forall x \in \mathbb{R}, m^{\star}(A + x) = m^{\star}(A)$

 \mathcal{C}_A and \mathcal{C}_{A+x} are naturally in bijection via $\{I_j\} \leftrightarrow \{I_j + x\}$. Furthermore $\ell(I_j + x) = \ell(I_j)$

$$m^{\star}(A+x) = \inf_{\{I_j+x\}\in \mathcal{C}_{A+x}} \sum_{j=1}^{\infty} \ell(I_j+x)$$
$$= \inf_{\{I_j\}\in \mathcal{C}_A} \sum_{j=1}^{\infty} \ell(I_j) = m^{\star}(A)$$

 $\frac{\text{Proof of Property 3w: i.e If } \{E_j\}_{j=1}^n \text{ is a finite collection of pairwise disjoint}}{E_j \subset \mathbb{R} \text{ then } m^\star \left(\cup_{j=1}^n E_j \right) = \sum_{j=1}^n m^\star \left(E_j \right)}$

If $m^{\star}(E_j) = +\infty$ for some j, then the property holds. We may assume that $m^{\star}(E_j) < +\infty \forall j$. Let $\epsilon > 0$. By the definition of infimum, for each $j \ge 0$, there is

$${I_{j,k}}_{k=1}^{\infty} \in \mathcal{C}_{E_j}$$
 such that $\sum_{k=1}^{\infty} \ell(I_{j,k}) < m^{\star}(E_j) + \epsilon 2^{-j}$

Thus $\{I_{j,k}\}_{k=1}^{\infty}$ is still countable and it covers $\bigcup_{j=1}^{\infty} E_j$ meaning it belongs to $\mathcal{C}_{\bigcup_{j=1}^{\infty}} E_j$, so by definition

$$m^{\star}\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \ell(I_{j,k}) < \sum_{j=1}^{\infty} (m^{\star}(E_{j}) + \epsilon 2^{-j}) = \sum_{j=1}^{\infty} m^{\star}(E_{j}) + \epsilon$$

Then let $\epsilon \to 0$. Clearly, by taking all $E_j = \emptyset$ except finitely many, we have the same subadditivity 3w for finite collections.

Corollary 3.2.1. $m^{\star}([0,1] \cap (\mathbb{R} \setminus \mathbb{Q})) = 1 = \ell([0,1])$

Proof.

$$m^{\star} \left([0,1] \cap (\mathbb{R} \setminus \mathbb{Q}) \right) \leq m^{\star} \left([0,1] \right) = 1$$

$$\leq m^{\star} \left([0,1] \cap (\mathbb{Q}) \right) + m^{\star} \left([0,1] \cap (\mathbb{R} \setminus \mathbb{Q}) \right)$$

$$\leq 0+1$$

Corollary 3.2.2. $\mathbb{R} \setminus \mathbb{Q}$ is uncountable

Proof. If not, then

$$m^{\star}(\mathbb{R} \setminus \mathbb{Q}) = 0 \ge m^{\star}([0,1] \cap (\mathbb{R} \setminus \mathbb{Q})) = 1 \qquad \Box$$

4 The σ -Algebra Of Lebesgue Measurable Sets

 m^* does not satisfy the third measurability requirement without the weak 3w condition. We can construct some examples to prove this. $A, B \subset \mathbb{R}, A \cap B = \emptyset$, such that $m^*(A \cup B) < m^*(A) + m^*(B)$ later in the class.

The idea to avoid this problem is to look at "reasonable" subsets of \mathbb{R} for which this paradox disappears.

Definition 4.1 (Carathéodory). $E \subseteq R$ is called (Lebesgue) measurable if $\forall A \subset \mathbb{R}$

$$m^{\star}(A) = m^{\star}(A \cap E) + m^{\star}(A \cap E^{c})$$

Remark. This is equivalent to Lebesgue's definition: E is measurable if and only if

$$\exists U \subset \mathbb{R} \text{ such that } E \subset U \text{ and } m^{\star}(u \setminus E) < \epsilon$$

But we will discuss this later.

Suppose that A is measurable and $B \subset \mathbb{R}$ is any set such that $A \cap B = \emptyset$ then

$$m^{\star}(A \cup B) = m^{\star}\left(\underbrace{(A \cup B) \cap A}_{=A}\right) + m^{\star}\left(\underbrace{(A \cup B) \cap A^{c}}_{=B}\right)$$

Going back to our counter example for m^* and measurability requirement 3, A or B would have to be unmeasurable.

Here's another observation: For $E,A\subset \mathbb{R}$ arbitrary sets we have

 $A = (A \cap E) \cup (A \cap E^c)$

So by 3w $m^{\star}(A) \leq m^{\star}(A \cap E) + m^{\star}(A \cap E^{c})$, so E is measurable $\iff \forall A \subset \mathbb{R}$

$$m^{\star}(A) \ge m^{\star}(A \cap E) + m^{\star}(A \cap E^{c})$$

This holds trivially for $m^{\star}(A) = \infty$

Example 1: \emptyset is measurable. $\forall A \subset \mathbb{R}$

$$m^{\star}(A) = \underline{m}^{\star}(A \cap \mathbb{R}) + m^{\star}(A \cap \mathbb{R})$$

Example 2: \mathbb{R} is measurable. $\forall A \subset \mathbb{R}$

$$m^{\star}(A) = m^{\star}(A \cap \mathbb{R}) + m^{\star}(A \cap E^{c})$$

Proposition. $E \subset \mathbb{R}$ with $m^{\star}(E) = 0$, then E is measurable.

Corollary. Every countable set is measurable. \mathbb{Q} measurable $\rightarrow \mathbb{R} \setminus \mathbb{Q}$ are measurable

Proof. Let $A \subset \mathbb{R}$ be any set

$$A \cap E \subset E \Rightarrow m^{\star} (A \cap E) \le m^{\star} (E) = 0$$

$$A \cap E^{c} \subset A \Rightarrow m^{\star} (A \cap E^{c}) \le m^{\star} (A)$$

So $m^{\star} (A) \ge m^{\star} (A \cap E^{c}) + m^{\star} (A \cap E)$

Our goal is to show that Lebesgue measurable sets $\mathcal{L} = \{E \subset \mathbb{R} \mid E \text{ is measurable}\}$ is a σ -algebra on \mathbb{R} . We just need to show that if $\{E_j\}_{j=1}^{\infty}$ with $E_j \in \mathcal{L}, \forall j$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{L}$

Proposition. If $\{E_j\}_{j=1}^n \subset \mathcal{L}$ then $\cup_{j=1}^n E_i \in \mathcal{L}$

Proof. We use mathematical induction. n = 1 is trivial so we set the base case as n = 2. E_1, E_2 are measurable, Let $A \subset \mathbb{R}$ be any set

$$m^{\star}(A) = m^{\star}(E_{1} \cap A) + m^{\star}(A \cap E_{1}^{c})$$

= $m^{\star}(A \cap E_{1}) + m^{\star}((A \cap E_{1}^{c}) \cap E_{2}) + m^{\star}((A \cap E_{1}^{c}) \cap E_{2}^{c})$
= $m^{\star}(A \cap E_{1}) + m^{\star}((A \cap E_{1}^{c}) \cap E_{2}) + m^{\star}(A \cap (E_{1}^{c} \cap E_{2}^{c}))$
= $m^{\star}(A \cap E_{1}) + m^{\star}((A \cap E_{1}^{c}) \cap E_{2}) + m^{\star}(A \cap (E_{1} \cup E_{2})^{c})$
 $\geq m^{\star}(A \cap (E_{1} \cup E_{2})) + m^{\star}(A \cap (E_{1} \cup E_{2})^{c})$ (3w)

So $E_1 \cup E_2 \in \mathcal{L}$.

Induction step $n \ge 2$

$$\bigcup_{j=1}^{\infty} E_j = \left(\bigcup_{j=1}^{n-1} E_j\right) \cup E_n \in \mathcal{L} \text{ by the } n = 2 \text{ case} \qquad \Box$$

To prove that this also applies to countable sets, we use

Proposition (Analog of measurability requirement 3 for $m^* \mid \mathcal{L}$). Suppose $A \subset \mathbb{R}$ is any set and $\{E_j\}_{j=1}^n$ is a finite disjoint collection of sets $E_j \in \mathcal{L}$, then

$$m^{\star}\left(A \cap \bigcup_{j=1}^{n} E_{j}\right) = \sum_{j=1}^{n} m^{\star} \left(A \cap E_{j}\right)$$

In particular take $A = \mathbb{R}$ to get $m^{\star} \left(\bigcup_{j=1}^{n} E_{j} \right) = \sum m^{\star} (E_{j})$

Proposition. If $\{E_j\}_{j=1}^{\infty}$ is a countable family with $E_i \in \mathcal{L} \forall j$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{L}$. In particular, \mathcal{L} is a σ -algebra.

We would like to have the Borel sets be measurable, i.e $\mathcal{B} \subset \mathcal{L}$. Recall that $\mathcal{B} = \hat{\mathcal{F}}$, where $\mathcal{F} = \{U \subset \mathbb{R} \mid U \text{ is open }\}$ and $\hat{}$ denotes the σ -algebra.

This results follows from the measurability of intervals combined with the measurability of the union of measurable sets.

Proposition. If $I \subseteq \mathbb{R}$ is any interval, then I is measurable.

Theorem 4.1. $\mathcal{L} = Lebesgue Measurable subsets of <math>\mathbb{R}$ form a σ -algebra that contains the Borel σ -algebra \mathcal{B}

Proof. We already know that \mathcal{L} is a σ -algebra. If we can show that \mathcal{L} contains all open sets $U \subset \mathbb{R}$, then \mathcal{L} (being a σ -algebra) must contain \mathcal{B} which is the σ -algebra generated by open sets. Now if $U \subset \mathbb{R}$ is any (non empty) open set then by definition $\forall x \in U, \exists I_x \ni x$ where I_x is an open interval and $I_x \subset U$.

We want to choose I_x to be the "maximal" such. So by assigning

$$a_x \coloneqq \inf\{z \in \mathbb{R} \mid (z, x) \subset U\}$$
 satisfies $a_x < x$

and

$$b_x \coloneqq \sup\{y \in \mathbb{R} \mid (x, y) \subset U\}$$
 satisfies $x < b_x$

so $I_x := (a_x, b_x)$ is an open interval that contains x and by construction $I_x \in U$. It is the largest such, in the sense that if $a_x > -\infty$ then $a_x \notin U$ and symmetrically if $b_x < \infty$ then $b_x \notin U$.

For any $y \in I_x$, we have $y < b_x$, so there is z > y such that $(x, z) \subset U$ so $y \in U$. Indeed, if $a_x \in U$ then since U open, $\exists r > 0$ such that $(a_x - r, a_x + r) \subset U$ contradicting the definition of a_x .

So $U = \bigcup_{x \in U} I_x$. It is a huge union, however if $x, x' \in U, x \neq x'$, then either $I_x \cap I_{x'} = \emptyset$, or if not then necessarily $I_x = I_{x'}$, since $I_x \cup I_{x'}$ is then another open interval that contains x & x' and is a subset of U, so by maximality it must equal $I_x \& I_{x'}$. So, throwing away all repeated I_x , we can write $U = \bigcup_{i \in I} I_x$ for some I where the intervals I_{x_i} are pairwise disjoint. By density of $\mathbb{Q} \subset \mathbb{R}$, each such interval contains a different rational number $r_i \in I_{x_i}$. Since \mathbb{Q} is countable, I is at worst countable.

So every U open is an at most countable disjoint union of open intervals. Since such intervals belong of \mathcal{L} , and \mathcal{L} is a σ -algebra, it follows that every U open is in \mathcal{L} as desired. **Proposition** (The σ -algebra \mathcal{L} is also translation invariant). If $E \subset \mathcal{L}$ and $x \in \mathbb{R}$ then $E + x \in \mathcal{L}$

Proof. Given any $A \subset \mathbb{R}$,

$$m^{\star}(A) = m^{\star}(A - x)$$

= $m^{\star}((A - x) \cap E) + m^{\star}((A - x) \cap E^{c})$
= $m^{\star}(A \cap E + x) + m^{\star}(A \cap (E + x)^{c})$ (m^{*} translation invariant)

Remark. If $A \in \mathcal{L}$ with $m^{\star}(A) < \infty$, and $B \subset \mathbb{R}$ is any set with $A \subset B$, then

$$m^{\star}(B \setminus A) = m^{\star}(B) - m^{\star}(A)$$

5 Outer and Inner Approximation of Lebesgue Measurable Sets

Definition 5.1 (Gebiet-Durchshnitt). A subset $A \subset \mathbb{R}$ is called a G_{δ} if $A = \bigcap_{i=1}^{\infty} A_i$ where A_i are all open (possibly empty).

Definition 5.2 (Fermé-Somme). A subset $A \subset \mathbb{R}$ is called a F_{σ} if $A = \bigcup_{i=1}^{\infty} A_i$ where A_i are all closed (possibly empty).

Clearly, A is $G_{\delta} \iff A^c$ is F_{δ} . Also clearly, all G_{δ} and F_{σ} sets are Borel. Of course not all G_{δ} are open, e.g $[0,1] = \bigcap_{i=1}^{\infty} \left(-\frac{1}{i}, 1+\frac{1}{i}\right)$ and not all F_{σ} are closed. e.g. $(0,1) = \bigcup_{i=1}^{\infty} \left[\frac{1}{i}, 1-\frac{1}{i}\right]$

 \mathbb{Q} is clearly F_{σ} , so $\mathbb{R} \setminus \mathbb{Q}$ is G_{δ} . With this, we can give several equivalent formulations of measurability.

Theorem 5.1. Let $E \subset \mathbb{R}$ be any set, then the following are equivalent:

1. $E \in \mathcal{L}$ 2. $\forall \epsilon > 0, \exists U \supset E, U \text{ open, } m^{\star}(U \setminus E) < \epsilon$

- 3. $\exists G \subset \mathbb{R} \ a \ G_{\delta} \ set, \ G \supset E, \ with \ m^{\star}(G \setminus E) = 0$
- 4. $\forall \epsilon > 0, \exists F \subset E, F \text{ closed, } m^{\star}(E \setminus F) < \epsilon$
- 5. $\exists F \subset \mathbb{R} \ a \ F_{\sigma} \ set, \ F \subset E \ with \ m^{\star}(E \setminus F) = 0$

Proposition. For an $E \in \mathcal{L}$ with $m^{\star}(E) < \infty$. Then $\forall \epsilon > 0$, $\exists \{I_j\}_{j=1}^n$ a finite disjoint family of open intervals so that if we let $U = \bigcup_{j=1}^n I_j$ (open) then $m^{\star}(E\Delta U) < \epsilon$.

6 Lebesgue Measure

We can now take m^* and restrict it to \mathcal{L} . $m^* \mid_{\mathcal{L}}$.

Definition 6.1 (Lebesgue Measure). This Lebesgue Measure is a function

$$m \coloneqq m^{\star} \mid_{\mathcal{L}} : \mathcal{L} \to \mathbb{R}_{\geq 0} \cup \{+\infty\}$$

This means that for $E \in \mathcal{L}$ we define $m(E) = m^{\star}(E)$. Clearly, m satisfies the measurability requirements 1, 2, & 3 as we have proved earlier. It also satisfies requirement 4 which was requirement 3 for countably infinite sets.

Proposition. If $\{E_j\}_{j=1}^{\infty}$ is a countably infinite collection of pairwise disjoint sets $E_j \in \mathcal{L}$ (possibly empty), then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{L}$ and

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) = \sum_{j=1}^{\infty} m(E_j)$$

Proof. We proved earlier that $\bigcup_{j=1}^{\infty} E_j \in \mathcal{L}$ and that

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) \le \sum_{j=1}^{\infty} m(E_j)$$

For the opposite inequality, for each n we proved earlier that

,

$$m\left(\bigcup_{j=1}^{n} E_j\right) = \sum_{j=1}^{n} m(E_j)$$

But $\cup_{j=1}^{n} E_j \subset \cup_{j=1}^{\infty} E_j$, hence

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) \ge m\left(\bigcup_{j=1}^{n} E_j\right) = \sum_{j=1}^{n} m(E_j) \ \forall n$$

Take the limit as $n \to \infty$ to get

$$m\left(\bigcup_{j=1}^{\infty} E_j\right) \ge \sum_{j=1}^{\infty} m(E_j)$$

As desired. This argument shows that measurability requirement 3 and 3w together imply 4. $\hfill \Box$

7 Non-Measurable Sets

We saw earlier that if $E \subset \mathbb{R}$ satisfies $m^{\star}(E) = 0$ then $E \in \mathcal{L}$. In particular, $\forall F \subset E, m^{\star}(F) \leq m^{\star}(E) = 0$, so $F \in \mathcal{L}$ too. This however totally fails when $m^{\star}(E) > 0$.

Theorem 7.1 (Vitali). For any $E \subset \mathbb{R}$ with $m^*(E) > 0$, there is an $F \subset E$ which is NOT measurable. The construction uses the axiom of choice (and it is really needed).

The proof of this theorem and construction of a Vitali set are currently omitted due to length.