Introduction

Definition 0.1 (Riemann 1854). Let [a, b] be a closed bounded interval, $f : [a, b] \to \mathbb{R}$ bounded function. We say f is *Riemann integrable* if

$$\underbrace{\int_{a}^{b} f := \sup\{\sum_{i=1}^{n} \inf_{[x_{i-1}, x_i]} f(x_i - x_{i-1}) : a = x_0 < x_1 < \dots < x_n = b\}}_{i=1} = \overline{\int_{a}^{b}} f := \inf\{\sum_{i=1}^{n} \sup_{[x_{i-1}, x_i]} f(x_i - x_{i-1}) : a = x_0 < x_1 < \dots < x_n = b\}$$

We then denote $\int_a^b f = \int_a^b f(x) dx := \underline{\int_a^b} f = \overline{\int_a^b} f$.

Theorem 0.1. Every continuous function $f : [a, b] \to \mathbb{R}$ is Riemann integrable

Remark. $f: x \in [0,1] \mapsto \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$ is not Riemann integrable.

1 Measure Theory

- **Definition 1.1.** 1. Let rectangle R be $(a_1, b_1) \times \cdots \times (a_d, b_d) \subseteq R \subseteq [a_1, b_1] \times \cdots \times [a_d, b_d]$, where $-\infty < a_i \leq b_i < \infty \forall 1 \leq i \leq d$. We call volume of R and denote vol(R) the number vol $(R) := \prod_{i=1}^d (b_i - a_i)$. We say that R is a cube if $b_1 - a_1 = \cdots = b_d - a_d$.
 - 2. For every set $A \subseteq \mathbb{R}^d$ we call the *exterior measure* of A and denote $m_*(A)$ the number

$$m_*(A) = \inf\left\{\sum_{k=1}^{\infty} \operatorname{vol}(Q_k) : Q_k \text{ closed cubes}, A \subseteq \bigcup_{k=1}^{\infty} Q_k\right\} \in [0,\infty]$$

Remark.

$$\left\{\sum_{k=1}^{\infty} \operatorname{vol}(Q_k) : Q_k \text{ closed cubes}, A \subseteq \bigcup_{k=1}^{\infty} Q_k\right\} \neq \emptyset \because A \subseteq \bigcup_{n=1}^{\infty} [-n, n]^d = \mathbb{R}^d$$

Remark.

$$m_*(A) = \inf\left\{\sum_{k=1}^{\infty} \operatorname{vol}(Q_k) : Q_k \text{ open cubes}, A \subseteq \bigcup_{k=1}^{\infty} Q_k\right\}$$
$$= \inf\left\{\sum_{k=1}^{\infty} \operatorname{vol}(Q_k) : Q_k \text{ rectangles}, A \subseteq \bigcup_{k=1}^{\infty} Q_k\right\}$$

Proposition 1.1. If $A \subseteq \mathbb{R}^d$ is countable then $m_*(A) = 0$

Proposition 1.2 (monotonicity). If $A \subseteq B \subseteq \mathbb{R}^d$ then $m_*(A) \leq m_*(B)$

Proposition 1.3. If $O \subseteq \mathbb{R}^d$ is open then it can be written as $O = \bigcup_{k=1}^{\infty} \overline{Q}_k$ where Q_k are disjoint, open cubes (\overline{Q}_k) is the closure of Q_k).

Proposition 1.4. If $R \subseteq \mathbb{R}^d$ is a rectangle then $m_*(R) = \operatorname{vol}(R)$.

Proposition 1.5. If $A \subseteq \mathbb{R}^d$ then $m_*(A) = \inf\{m_*(O) : O \text{ open set}, A \subseteq O\}$.

Proposition 1.6. Let $(A_k)_{k \in \mathbb{N}}$ be a sequence of sets in \mathbb{R}^d (not necessarily disjoint). Then $m_*(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} m_*(A_k)$.

Proposition 1.7. Let $A_1, A_2 \subseteq \mathbb{R}^d$ be such that $d(A_1, A_2) > 0$ i.e. $\inf\{|x - y| : x \in A_1, y \in A_2\} > 0$. Then $m_*(A_1 \cup A_2) = m_*(A_1) + m_*(A_2)$

Definition 1.2. A set $A \subseteq \mathbb{R}^d$ is said to be *(Lebesgue)-measurable* if for every $\epsilon > 0$, there exists O_{ϵ} open such that $A \subseteq O_{\epsilon}$ and $m_*(O_{\epsilon} \setminus A) < \epsilon$. We then denote $m(A) = m_*(A)$ the *(Lebesgue)-measure* of A.

Proposition 1.8. 1. If $m_*(A) = 0$ then A is measurable.

- 2. A countable union of measurable sets is measurable.
- 3. Open sets and closed sets are measurable.
- 4. If A is measurable then $R^d \setminus A =: A^c$ is measurable.
- 5. A countable intersection of measurable sets is measurable.

Theorem 1.9 (countable additivity). Let $(A_k)_{k\in\mathbb{N}}$ be measurable and disjoint. Then

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} m(A_k)$$

Remark. In particular, if $A \subseteq B \subseteq \mathbb{R}^d$ are measurable then $m(B) = m(A) + m(B \setminus A)$.

Proposition 1.10 (continuity of measure). Let $(A_k)_{k \in \mathbb{N}}$ be measurable.

- 1. If $A_k \subseteq A_{k+1} \forall k \in \mathbb{N}$ then $m(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} m(A_k)$.
- 2. If $A_k \supseteq A_{k+1} \forall k \in \mathbb{N}$ and $m(A_1) < \infty$ then $m(\bigcap_{k=1}^{\infty} A_k) = \lim_{k \to \infty} m(A_k)$.

Remark. $m(A_1) < \infty$ is necessary: $m(\bigcap_{k=1}^{\infty}[k,\infty)) = m(\emptyset) = 0$ while $m([k,\infty)) = \infty \forall k \in \mathbb{N}$.

Theorem 1.11 (outer and inner approximations of measurable sets). Let $A \subseteq \mathbb{R}^d$. Then the following are equivalent:

- 1. A is measurable;
- 2. There exists a G_{δ} set G (a G_{δ} set is a countable intersection of open sets) and a set N of measure 0 such that $A = G \setminus N$;
- 3. For every $\epsilon > 0$, there exists F_{ϵ} closed such that $F_{\epsilon} \subseteq A$ and $m_*(A \setminus F_{\epsilon}) < \epsilon$;
- 4. There exists an F_{σ} set F (an F_{σ} set is a countable union of closed sets) and a set N of measure 0 such that $A = F \cup N$.

Counterexamples

Are all subsets of R^d measurable?

Theorem 1.12. If $A \subseteq \mathbb{R}^d$ is such that $m_*(A) > 0$ then there exists $B \subseteq A$ non-measurable.

Are all subsets of measure 0 in R countable?

Definition 1.3. We call *Cantor set* the set $C := \bigcap_{k=1}^{\infty} C_k$ where $C_1 := [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ and $\forall k \geq 2, C_k := \bigcup_{j=1}^{2^k} I_{j,k}$ where $\forall j \in \{1, \ldots, 2^{k-1}\}, I_{2j-1,k}, I_{2j,k}$ are the first and last thirds of $I_{j,k-1}$.

Theorem 1.13. C is closed and uncountable. m(C) = 0.

Are all measurable sets Borel?

Definition 1.4. A collection Ω of subsets of \mathbb{R}^d is called a σ -algebra if the following conditions are satisfied:

- 1. $\mathbb{R}^d \in \Omega;$
- 2. $\forall A, B \in \Omega : A \setminus B \in \Omega;$
- 3. $\forall (A_k)_{k \in \mathbb{N}} \subseteq \Omega : \bigcup_{k=1}^{\infty} A_k \in \Omega.$

Proposition 1.14. Any intersection of σ -algebras is a σ -algebra.

Definition 1.5. The intersection of all the σ -algebras containing the open sets is called the *Borel* σ -algebra and its elements the *Borel sets*.

Remark. In particular, Borel sets are measurable.

Proposition 1.15. There exists a subset of the Cantor set which is measurable but not Borel.

Definition 1.6. We call *Cantor-Lebesgue function* (or *Cantor staircase function*) the function

 $\begin{aligned} \varphi &: [0,1] \to [0,1], \\ \varphi(x) &= \frac{i}{2^k} \text{ if } x \in J_{k,i} \text{ where } J_{k,i} \text{ is the } i\text{-th interval of } [0,1] \setminus C_k, k \ge 1, i \in \{1,\ldots,2^k-1\}, \\ \varphi(0) &= 0, \varphi(x) = \sup\{\varphi(y) : y \in [0,x) \setminus C\} \text{ if } x \in (0,1] \cap C \end{aligned}$

Remark. $\varphi(1) = 1$.

Proposition 1.16. $\varphi : [0,1] \to [0,1]$ is increasing, continuous and surjective.

Proposition 1.17. If $D \subseteq \mathbb{R}$ is not Borel, then $D \times \{0\}^{d-1} \subseteq \mathbb{R}^d$ is not Borel.

2 Lebesgue Measurable Function

Remark. We denote $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$

Proposition 2.1. Let $A \subseteq \mathbb{R}^d$ be measurable, $f : A \to \overline{\mathbb{R}}$. Then the following are equivalent:

1. $\forall c \in \mathbb{R} : f^{-1}((c, +\infty))$ is measurable

- 2. $\forall c \in \mathbb{R} : f^{-1}([c, +\infty])$ is measurable
- 3. $\forall c \in \mathbb{R} : f^{-1}([-\infty, c])$ is measurable
- 4. $\forall c \in \mathbb{R} : f^{-1}([-\infty, c])$ is measurable

Definition 2.1. When these are satisfied, we say f is (Lebesgue) measurable.

Proposition 2.2. Let $A \subseteq \mathbb{R}^d$ and $(A_k)_{k \in \mathbb{N}} \subseteq \mathbb{R}^d$ be measurable sets such that the sets $(A_k)_{k \in \mathbb{N}}$ are disjoint and $\bigsqcup_{k=1}^{\infty} A_k = A$. Let $f : A \to \overline{\mathbb{R}}$ be a function. If $f|_{A_k}$ is measurable for all $k \in \mathbb{N}$ then f is measurable.

Proposition 2.3. Let $A \subseteq \mathbb{R}^d$ measurable.

- 1. $\forall B \subseteq A$ measurable, $\forall f : A \to \overline{\mathbb{R}}$ measurable, $f|_B$ is measurable;
- 2. $\forall B \subseteq \mathbb{R}$ Borel, $\forall f : B \to \mathbb{R}$ continuous, $\forall g : A \to B$ measurable, then $f \circ g$ is measurable;
- 3. $\forall f : A \to \overline{\mathbb{R}}, \forall g : A \to \mathbb{R}$ both measurable, f + g is measurable;
- 4. $\forall f : A \to [0, \infty]$ measurable, $\forall k \in \mathbb{N}$, f^k is measurable;
- 5. $\forall f, g : A \to \mathbb{R}$ measurable, $f \cdot g$ is measurable;
- 6. $\forall f, g : A \to \mathbb{R}$ measurable, $\max(f, g), \min(f, g)$ is measurable.

Proposition 2.4. Let $A \subseteq \mathbb{R}^d$ be measurable, let $f : A \to \overline{\mathbb{R}}$ measurable. Then for every Borel set $B \subseteq \mathbb{R}$, $f^{-1}(B)$ is measurable.

Remark. $\exists D \subseteq \mathbb{R}$ measurable, f measurable (even continuous) such that $f^{-1}(D)$ is not measurable.

Proposition 2.5. Let $A \subseteq \mathbb{R}^d$ measurable, $f : A \to \mathbb{R}$ continuous, then f is measurable.

Definition 2.2. Let $A \subseteq \mathbb{R}^d$, P(x) a statement depending on $x \in A$. We say P(x) is true for almost every $x \in A$ (or a.e. $x \in A$) if $m_*(\{x \in A : P(x) \text{ is false}\}) = 0$.

Proposition 2.6. If $(P_k(x))_{k \in \mathbb{N}}$ is a countable collection of statements depending on $x \in A$, then

 $[\forall k \in \mathbb{N} : \text{ for a.e. } x \in A, P_k(x) \text{ is true}] \Leftrightarrow [\text{for a.e. } x \in A, \forall k \in \mathbb{N} : P_k(x) \text{ is true}]$

Proposition 2.7. Let $f, g : A \to \mathbb{R}$ be such that f = g a.e. in A. Then f measurable if and only if g measurable.

Proposition 2.8. Let $A \subseteq \mathbb{R}^d$ and $(A_k)_{k \in \mathbb{N}} \subseteq \mathbb{R}^d$ be measurable sets such that the sets $(A_k)_{k \in \mathbb{N}}$ disjoint and $\bigcup_{k=1}^{\infty} A_k = A$. Let $f : A \to \overline{\mathbb{R}}$ be a function. If $f|_{A_k}$ is measurable for all $k \in \mathbb{N}$, then f is measurable.

Proposition 2.9. Let $A \subseteq \mathbb{R}^d$ be measurable

- 1. $\forall B \subseteq A$ measurable, $\forall f : A \to \overline{\mathbb{R}}$ measurable, $f|_B$ is measurable.
- 2. $\forall B \subseteq \mathbb{R} \text{ Borel}, \forall f : B \to \mathbb{R} \text{ continuous}, \forall g : A \to B \text{ measurable}, f \circ g \text{ is measurable}.$
- 3. $\forall f: A \to \overline{\mathbb{R}}$ measurable, $\forall g: A \to \mathbb{R}$ measurable, f + g is measurable.
- 4. $\forall f : A \to \overline{\mathbb{R}}$ measurable, $\forall k \in \mathbb{N}$, f^k is measurable.
- 5. $\forall f, g : A \to \mathbb{R}, f \cdot g$ is measurable.

Remark. $\exists f, g$ measurable such that $f \circ g$ is not measurable.

Proposition 2.10. Let $(f_n)_{n \in \mathbb{N}}, f_n : A \to \overline{\mathbb{R}}$ be measurable functions converging pointwise a.e. in A to a function $f : A \to \overline{\mathbb{R}}$ i.e. $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. $x \in A$. Then f is measurable.

Proposition 2.11. Let $(f_n)_{n \in \mathbb{N}}, f_n : A \to \overline{\mathbb{R}}$ be measurable functions. Then

$$x \mapsto \inf_{n \in \mathbb{N}} f_n(x), x \mapsto \sup_{n \in \mathbb{N}} f_n(x), x \mapsto \liminf_{n \to \infty} f_n(x), x \mapsto \limsup_{n \to \infty} f_n(x)$$

are all measurable.

Definition 2.3. We call simple function a measurable function $\varphi : A \to \mathbb{R}$ such that $\varphi(A)$ is finite and φ has finite support i.e. $m(\{x \in A : \varphi(x) \neq 0\}) < \infty$.

Remark. In particular, any simple function φ can be written as

$$\varphi = \sum_{i=1}^{n} c_i \chi_{A_i}$$

where $n \geq 0, c_1, \ldots, c_n \in \mathbb{R} \setminus \{0\}$ distinct (such that $\varphi(A) \setminus \{0\} = \{c_1, \ldots, c_n\}$) and $A_1, \ldots, A_n \subseteq A$ measurable, disjoint and with finite measure $(A_i = \varphi^{-1}(\{c_i\}))$.

Definition 2.4. We say that $\sum_{i=1}^{n} c_i \chi_{A_i}$ is the *canonical form* of the simple function φ . We say that $\sum_{i=1}^{n} c_i \chi_{A_i}$ is a *step function* if the A_i are rectangles.

Theorem 2.12 (Simple Approximation Lemma). Let $f : A \to \mathbb{R}, m(A) < \infty$ be measurable and bounded i.e. $\exists M > 0 \forall x \in A : |f(x)| < M$. Then $\forall \epsilon > 0 \exists \varphi_{\epsilon}, \psi : A \to \mathbb{R}$ simple functions such that

$$\varphi_{\epsilon} \le f \le \psi_{\epsilon} < \varphi_{\epsilon} + \epsilon$$

Theorem 2.13 (Simple Approximation Theorem). Let $f : A \to \overline{\mathbb{R}}$ be measurable. Then $\exists (\varphi_n)_{n \in \mathbb{N}}$ simple functions such that

1. $(\varphi_n)_{n\in\mathbb{N}}$ converges pointwise to f on A i.e. $\lim_{n\to\infty}\varphi_n(x) = f(x) \forall x \in A$, and

2. $|\varphi_n| \leq |\varphi_{n+1}| \leq |f|$ on $A \ \forall n \in \mathbb{N}$.

If $f \ge 0$ then we have moreover that $\varphi_n \ge 0$ and increasing in n.

Theorem 2.14 (Egorov). Let $A \subseteq \mathbb{R}^d$ be measurable, $m(A) < \infty$, $(f_n)_{n \in \mathbb{N}}, f_n : A \to \mathbb{R}$ measurable converging pointwise to $f : A \to \mathbb{R}$. Then $\forall \epsilon > 0 \exists F_{\epsilon} \subseteq A$ closed such that $(f_n)_{n \in \mathbb{N}}$ converges to f uniformly in F_{ϵ} i.e.

$$\sup_{F_{\epsilon}} |f_n - f| \xrightarrow{n \to \infty} 0$$

and $m(A \setminus F_{\epsilon}) < \epsilon$

Remark. This result does not hold in general when $m(A) = \infty$, e.g. $f_n(x) = \frac{x}{n}$ on $A = \mathbb{R}$.

Theorem 2.15 (Lusin). Let $f : A \to \mathbb{R}$ be measurable. Then $\forall \epsilon > 0 \exists F_{\epsilon} \subseteq A$ closed such that $f|_{F_{\epsilon}}$ is continuous on F_{ϵ} and $m(A \setminus F_{\epsilon}) < \epsilon$.

Remark. Recall that " $f|_F$ continuous on F" \neq "f continuous on F": $\chi_{\mathbb{Q}}$ is not continuous at any point in \mathbb{R} but $\chi_{\mathbb{Q}}|_{\mathbb{R}\setminus\mathbb{Q}} = 0$ is continuous on $\mathbb{R}\setminus\mathbb{Q}$.

3 Lebesgue Integration

Case of a simple function

Definition 3.1. Let $\varphi : A \to \mathbb{R}$ be a simple function and $\varphi = \sum_{k=1}^{n} c_k \chi_{A_k}$ be its canonical form. We define the *(Lebesgue) integral* of φ over A by

$$\int_{A} \varphi = \int_{A} \varphi(x) dx = \sum_{k=1}^{n} c_k m(A_k)$$

For any $B \subseteq A$ measurable, we define $\int_B f = \int_A f \chi_B$.

Proposition 3.1 (independence of the representation). Let $n \in \mathbb{N}$, $c_1, \ldots, c_n \in \mathbb{R}$ and $A_1, \ldots, A_n \subseteq A$ be measurable, disjoint, $m(A_k) < \infty$. Then

$$\int_A \sum_{k=1}^n c_k \chi_{A_k} = \sum_{k=1}^n c_k m(A_k)$$

Proposition 3.2. Let $\varphi, \psi : A \to \mathbb{R}$ be simple. Then

- 1. $\forall \alpha, \beta \in \mathbb{R}, \ \alpha \varphi + \beta \psi \ simple \ and \ \int_A (\alpha \varphi + \beta \psi) = \alpha \int_A \varphi + \beta \int_A \psi.$
- 2. $\forall B_1, B_2 \subseteq A$ measurable disjoint, $\int_{B_1 \cup B_2} \varphi = \int_{B_1} \varphi + \int_{B_2} \varphi$.
- 3. If $\varphi \leq \psi$ on A then $\int_A \varphi \leq \int_A \psi$.
- 4. $|\varphi|$ is simple and $|\int_A \varphi| \leq \int_A |\varphi|$.

Case of a bounded measurable function with finite support

Definition 3.2. We denote $\operatorname{supp}(f)$ and call *support* of a measurable function $f : A \to \overline{R}$ the set

$$\operatorname{supp}(f) = \{x \in A : f(x) \neq 0\}$$

If $\operatorname{supp}(f) \subseteq E \subseteq A$, then we say f is supported in E. If $m(\operatorname{supp}(f)) < \infty$, we say that f has finite support.

Proposition 3.3. Let $f : A \to \mathbb{R}$ be bounded, measurable and with finite support. Let $(\varphi_n)_{n \in \mathbb{N}}$ be simple functions in A such that

- 1. $\exists E \subseteq A$ measurable such that $m(E) < \infty$ and $supp(\phi_n) \subseteq E$ for all $n \in \mathbb{N}$,
- 2. $\exists M > 0$ such that $\forall n \in \mathbb{N}, |\varphi_n| \leq M$ in A, and
- 3. $\lim_{n\to\infty} \varphi_n(x) = f(x)$ for a.e. $x \in A$ (a.e. pointwise convergence).

Then $\lim_{n\to\infty}\int_A \varphi_n$ exists and does not depend on the choice of $(\varphi_n)_{n\in\mathbb{N}}$ satisfying the above.

Remark. Such (φ_n) exists by the Simple Approximation Lemma.

Definition 3.3. Given the above proposition, we then call *integral of* f over A the number $\int_A f = \lim_{n \to \infty} \int_A \varphi_n$. For every $B \subseteq A$ measurable, we define $\int_B f = \int_A f \chi_B$.

Remark. If f = 0 a.e. in A then $\int_A f = 0$.

Proposition 3.4. Let $f, g : A \to \mathbb{R}$ be bounded, measurable and with finite support. Then

- 1. $\forall \alpha, \beta \in \mathbb{R}, \ \alpha f + \beta g \text{ is bounded, measurable and with finite support and } \int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g.$
- 2. $\forall B_1, B_2 \subseteq A$ measurable disjoint, $\int_{B_1 \cup B_2} f = \int_{B_1} f + \int_{B_2} f$.
- 3. If $f \leq g$ on A then $\int_A f \leq \int_A g$.
- 4. |f| is bounded, measurable and with finite support and $|\int_A f| \leq \int_A |f|$.

Theorem 3.5 (Bounded Convergence Theorem). Let $(f_n)_{n \in \mathbb{N}}, f_n : A \to \mathbb{R}$ be a sequence of measurable function such that

- 1. $\exists E \subseteq A$ measurable such that $m(E) < \infty$ and $supp(f_n) \subseteq E$ for all $n \in \mathbb{N}$,
- 2. $\exists M > 0$ such that $\forall n \in \mathbb{N}, |f_n| \leq M$ in A, and
- 3. $\exists f : A \to \mathbb{R}$ such that $\lim_{n \to \infty} f_n(x) = f(x)$ for a.e. $x \in A$.

Then f is bounded, measurable, with finite support and $\lim_{n\to\infty} \int_A f_n = \int_A f$.

Remark. $\int_0^1 n\chi_{[0,\frac{1}{n}]}(x)dx = 1$ but $n\chi_{[0,\frac{1}{n}]}(x) \xrightarrow{n \to \infty} 0 \forall x \in (0,1]$ i.e. for a.e. $x \in [0,1]$.

Theorem 3.6. If $A = [a, b], a < b \in \mathbb{R}$ then every bounded function $f : A \to \mathbb{R}$ that is Riemann integrable is measurable and its Riemann $\int_A f$ is equal to its Lebesgue integral $\int_A f$.

Case of a nonnegative measurable function

Definition 3.4. Let $f : A \to [0, \infty]$ be measurable. Then we define the *integral of* f over A as

$$\int_{A} f = \sup\left\{\int_{A} h : h : A \to [0, \infty) \text{ bounded, measurable, with finite support, } h \le f \text{ on } A\right\}$$

For every $B \subseteq A$, we define $\int_B f = \int_A \tilde{f}$ where $\tilde{f}(x) = \begin{cases} f(x) & x \in B \\ 0 & x \notin B \end{cases}$ $(\tilde{f} = \chi_B f \text{ if } f < \infty).$ We say that f is *integral over* B if $\int_B f < \infty$.

Proposition 3.7. Let $f, g : A \to [0, \infty]$ be measurable. Then

- 1. $\forall \alpha, \beta \ge 0, \ \alpha f + \beta g \text{ is nonnegative measurable and } \int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g dx$
- 2. $\forall B_1, B_2 \subseteq A$ measurable disjoint, $\int_{B_1 \cup B_2} f = \int_{B_1} f + \int_{B_2} f$.
- 3. If $f \leq g$ on A then $\int_A f \leq \int_A g$. Moreover, if f = g a.e. on A then $\int_A f = \int_A g$. In particular, if f = 0 a.e. on A then $\int_A f = 0$.

Remark. For every $A \subseteq \mathbb{R}^d$ measurable, $\int_{\mathbb{R}^d} \chi_A = m(A)$.

Theorem 3.8 (Chebyshev's Inequality). Let $f : A \to [0, \infty]$ be measurable. Then

$$\forall c > 0 : m(f^{-1}([0, +\infty])) \le \frac{1}{c} \int_A f$$

Corollary 3.9. Let $f: A \to [0, \infty]$ be measurable. Then $\int_A f = 0 \Leftrightarrow f = 0$ a.e. in A.

Corollary 3.10. Let $f : A \to [0, \infty]$ be measurable. If f is integrable then $f < \infty$ a.e. in A.

Theorem 3.11 (Fatou's Lemma). Let $(f_n)_{n \in \mathbb{N}}$ be measurable nonnegative on $A \subseteq \mathbb{R}^d$. Then

$$\int_{A} \liminf_{n \to \infty} f_n \le \liminf_{n \to \infty} \int_{A} f_n$$

Remark. There is not equality since

$$\int_{\mathbb{R}} n\chi_{(0,\frac{1}{n})} = 1 > \int_{\mathbb{R}} \lim_{n \to \infty} (n\chi_{(0,\frac{1}{n})}) = \int_{\mathbb{R}} 0 = 0$$

Theorem 3.12 (Monotone Convergence Theorem). Let $(f_n)_{n \in \mathbb{N}}$ be measurable, nonnegative functions increasing in n (i.e. $f_{n+1} \ge f_n$ on A). Then $\lim_{n\to\infty} \int_A f_n = \int_A \lim_{n\to\infty} f_n$.

Corollary 3.13. Let $(u_n)_{n \in \mathbb{N}}$ be measurable, nonnegative function. Then $\sum_{n=1}^{\infty} \int_A u_n = \int_A \sum_{n=1}^{\infty} u_n$.

Case of a sign-changing function

Definition 3.5. Let $f : A \to \overline{\mathbb{R}}$ be measurable. We say that f is *integrable* if $f_+ = \max(f, 0)$ and $f_- = \max(-f, 0)$ are integrable. We then call *integral* of f over A the number $\int_A f = \int_A f_+ - \int_A f_-$. For every $B \subseteq A$, we denote $\int_B f = \int_B f_+ - \int_B f_-$.

Proposition 3.14. f integrable \Leftrightarrow |f| integrable.

Remark. If $f, g : A \to \overline{\mathbb{R}}$ then

$$\begin{cases} f+g \text{ is not defined on } N = \{x \in A : f(x) = -g(x) = \pm \infty\} \\ fg \text{ is not defined on } N = \{x \in A : |f(x)| = \infty, g(x) = 0 \lor |g(x)| = \infty, f(x) = 0\} \end{cases}$$

However, if f, g integrable then $|f| < \infty$ and $|g| < \infty$ a.e. in A, in which case we say f + g, fg integrable and we denote $\int_A (f + g) = \int_{A \setminus N} (f + g)$ and $\int_A fg = \int_{A \setminus N} fg$.

Proposition 3.15. Let $f, g : A \to \overline{\mathbb{R}}$ be integrable. Then

- 1. $\forall \alpha, \beta \in \mathbb{R}, \ \alpha f + \beta g \text{ is integrable and } \int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g.$
- 2. $\forall B_1, B_2 \subseteq A$ measurable disjoint, $\int_{B_1 \cup B_2} f = \int_{B_1} f + \int_{B_2} f$.
- 3. $f \leq g \text{ on } A \Rightarrow \int_A f \leq \int_A g. f = g \text{ a.e. on } A \Rightarrow \int_A f = \int_A g.$

4.
$$|\int_{A} f| \leq \int_{A} |f|.$$

Theorem 3.16 (Dominated Convergence Theorem). Let $(f_n)_{n \in \mathbb{N}}$ be measurable functions on A such that

- 1. $\exists f: A \to \overline{\mathbb{R}}$ measurable such that $\lim_{n\to\infty} f_n(x) = f(x)$ for a.e. $x \in A$, and
- 2. $\exists g: A \to \overline{\mathbb{R}}$ integrable such that $|f_n(x)| \leq g(x)$ for a.e. $x \in A$ and $\forall n \in \mathbb{N}$.

Then f_n and f are integrable and $\lim_{n\to\infty} \int_A f_n = \int_A f$.

Corollary 3.17 (continuity of the integral). Let f be integrable over $A \subseteq \mathbb{R}^d$. Then

1. If $(A_n)_{n \in \mathbb{N}}$ is a sequence of measurable subsets of A such that $A_n \subseteq A_{n+1}$ then

$$\int_{\bigcup_{n=1}^{\infty} A_n} f = \lim_{n \to \infty} \int_{A_n} f$$

2. If $(A_n)_{n\in\mathbb{N}}$ is a sequence of measurable subsets of A such that $A_n \supseteq A_{n+1}$ then

$$\int_{\bigcap_{n=1}^{\infty}} A_n f = \lim_{n \to \infty} \int_{A_n} f$$

4 Fubini and Tonelli's Theorems

Definition 4.1. Let $d_1, d_2 \in \mathbb{N}$ be such that $d = d_1 + d_2$. We denote $(x, y) \in \mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. For every $E \subseteq \mathbb{R}^d$, we denote $E_x = \{y \in \mathbb{R}^{d_2} : (x, y) \in E\}$ and $E_y = \{x \in \mathbb{R}^{d_1} : (x, y) \in E\}$. $\forall f : E \to \overline{\mathbb{R}}, f_x : E_x \to \overline{\mathbb{R}}, y \mapsto f(x, y) \text{ and } f_y : E_y \to \overline{\mathbb{R}}, x \mapsto f(x, y)$

Remark. E_x and E_y are not necessarily measurable when E is measurable.

Remark. It is not always true that $\int_A (\int_B f(x, y) dy) dx = \int_B (\int_A f(x, y) dx) dy$ even when the integrals are well-defined.

Theorem 4.1 (Fubini). Let $f : \mathbb{R}^d \to \overline{R}$ be integrable. Then

- 1. For a.e. $y \in \mathbb{R}^{d_2}$, f_y is integrable on \mathbb{R}^{d_1} ,
- 2. $y \mapsto \int_{\mathbb{R}^{d_1}} f_y = \int_{\mathbb{R}^{d_1}} f(x, y) dx$ is integrable on \mathbb{R}^{d_2} , and
- 3. $\int_{\mathbb{R}^{d_2}} (\int_{\mathbb{R}^{d_1}} f(x, y) dx) dy = \int_{\mathbb{R}^d} f.$

Remark. The roles of x and y can be interchanged so that $\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^{d_1}} (\int_{\mathbb{R}^{d_2}} f(x, y) dy) dx$.

Theorem 4.2 (Tonelli). Let f be nonnegative measurable on \mathbb{R}^d . Then

- 1. For a.e. $y \in \mathbb{R}^{d_2}$, f_y is measurable in \mathbb{R}^{d_1} ,
- 2. $y \mapsto \int_{\mathbb{R}^{d_1}} f_y$ is measurable in \mathbb{R}^{d_2} , and
- 3. $\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f_y \right) = \int_{\mathbb{R}^d} f.$

Corollary 4.4 (Tonelli for $A \subseteq \mathbb{R}^d$). Let $f : A \to \overline{\mathbb{R}}$ be nonnegative measurable. Then

- 1. For a.e. $y \in \mathbb{R}^{d_2}$, f_y is measurable in \mathbb{R}^{d_1} ,
- 2. $y \mapsto \int_{\mathbb{R}^{d_1}} f_y$ is measurable in \mathbb{R}^{d_2} , and
- 3. $\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f_y \right) = \int_{\mathbb{R}^d} f.$

Corollary 4.5 (Fubini for $A \subseteq \mathbb{R}^d$). Let $f : A \to \overline{\mathbb{R}}$ be integrable over A. Then

- 1. For a.e. $y \in \mathbb{R}^{d_2}$, f_y is integrable on \mathbb{R}^{d_1} ,
- 2. $y \mapsto \int_{\mathbb{R}^{d_1}} f_y = \int_{\mathbb{R}^{d_1}} f(x, y) dx$ is integrable on \mathbb{R}^{d_2} , and
- 3. $\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^d} f.$

Lemma 4.6. $\forall E_1 \subseteq \mathbb{R}^{d_1}, E_2 \subseteq \mathbb{R}^{d_2},$

$$m_*(E_1 \times E_2) \le \begin{cases} m_*(E_1)m_*(E_2) & m_*(E_1) \neq 0 \land m_*(E_2) \neq 0 \\ 0 & otherwise \end{cases}$$

Theorem 4.7. Let $E_1 \subseteq \mathbb{R}^{d_1}$ and $E_2 \subseteq \mathbb{R}^{d_2}$ be measurable. Then $E_1 \times E_2$ is measurable and

$$m_*(E_1 \times E_2) = \begin{cases} m_*(E_1)m_*(E_2) & m_*(E_1) \neq 0 \land m_*(E_2) \neq 0\\ 0 & otherwise \end{cases}$$

Corollary 4.8. Let $E_1 \subseteq \mathbb{R}^{d_1}$ and $E_2 \subseteq \mathbb{R}^{d_2}$ be measurable and f be a measurable function on E_1 . Then $\tilde{f}: E_1 \times E_2 \to \overline{\mathbb{R}}, (x, y) \mapsto f(x)$ is measurable on $E_1 \times E_2$.

Proposition 4.9. Let $d_1 = d - 1$, $A \subseteq \mathbb{R}^{d_1}$ be measurable and $f : A \to [0, \infty]$. Then f is measurable if and only if $E = \{(x, y) \in A \times \mathbb{R} : 0 \le y \le f(x)\}$ is measurable. Furthermore, if f is measurable, then $m(E) = \int_A f(x) dx$.

Proposition 4.10. Let f be measurable on \mathbb{R}^d . Then $g : \mathbb{R}^{2d} \to \overline{\mathbb{R}}, (x, y) \mapsto f(x - y)$ is measurable.

Remark. This is useful when defining convolution $f * g : x \mapsto \int_{\mathbb{R}^d} f(x-y)g(y)dy$.

5 Differentiation

Theorem 5.1. A monotone function $f : [a, b] \to \mathbb{R}$ is differentiable almost everywhere in (a, b). Furthermore, f' is integrable and

$$\int_{a}^{b} f' \begin{cases} \leq f(b) - f(a) & f \text{ increasing} \\ \geq f(b) - f(a) & f \text{ decreasing} \end{cases}$$

Remark. The Cantor-Lebesgue function is monotone, differentiable in [0, 1], with $\varphi' = 0$ a.e. in [0, 1] but $\int_0^1 \varphi' = 0 < \varphi(1) - \varphi(0) = 1$.

Theorem 5.2. Let F be a collection of bounded intervals in $[a, b] \subseteq \mathbb{R}$ of positive length. Then there exists a countable collection $F' \subseteq F$ of disjoint intervals such that $\bigcup_{I \in F} I \subseteq \bigcup_{I \in F'} 5I$, where $5I = \{x \in \mathbb{R} : x_I + \frac{1}{5}(x - x_I) \in I\}$ (x_I middle point of I).

Remark. It is possible to replace 5 by a number x > 3 but no less: consider $F = \{[-1, 0], [0, 1]\}$.

Proposition 5.3. A monotone function $f : [a, b] \to \mathbb{R}$ has at most countably many discontinuities.

Functions of bounded variation

Definition 5.1. Let $f : [a, b] \to \mathbb{R}$ be a function. We call *total variation* of f on [a, b] the number

$$T_f(a,b) = \sup\left\{\sum_{i=1}^k |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < \dots < x_k = b\right\}$$

If $T_f(a, b) < \infty$, then we say that f is of bounded variation on [a, b].

Remark. Monotone and Lipschitz continuous functions are of bounded variation.

Remark.

$$f(x) = \begin{cases} x \cos(\frac{1}{x}) & 0 < x \le 1\\ 0 & x = 0 \end{cases}$$

is not of bounded variation.

Theorem 5.4. A function $f : [a,b] \to \mathbb{R}$ is of bounded variation if and only if it can be written as the difference between two increasing functions. In particular, if f is of bounded variation then f is differentiable a.e. and f' is integrable over [a,b].

Absolutely continuous functions

Definition 5.2. We say that a function $f : [a, b] \to \mathbb{R}$ is absolutely continuous on [a, b]if $\forall \epsilon > 0 \exists \delta > 0$ such that for every finite collection of disjoint open bounded intervals $(a_k, b_k) \subseteq [a, b], 1 \leq k \leq n$, if $\sum_{k=1}^n (b_k - a_k) < \delta$ then $\sum_{k=1}^n |f(b_k) - f(a_k)| < \epsilon$.

Remark. f absolutely continuous \Rightarrow f uniformly continuous by taking n = 1.

Remark. The Cantor-Lebesgue function φ is not absolutely continuous on [0, 1].

Proposition 5.5. If $f : [a, b] \to \mathbb{R}$ is Lipschitz continuous then f is absolutely continuous on [a, b].

Theorem 5.6. If $f : [a,b] \to \mathbb{R}$ is absolutely continuous on [a,b] then f can be written as the difference between two increasing absolutely continuous functions. In particular, f is of bounded variation on [a,b].

Theorem 5.7. Let $f : [a, b] \to \mathbb{R}$.

1. If f is absolutely continuous on [a, b] then

$$\forall x \in [a,b] : \int_{[a,x]} f' = f(x) - f(a)$$

2. Conversely, for every integrable function g over [a,b], the function $x \mapsto \int_a^x g$ is absolutely continuous on [a,b] with derivative equal to g a.e. in [a,b].

Lemma 5.8. Let h be integrable over [a,b]. Then h = 0 a.e. in $[a,b] \Leftrightarrow \int_a^x h = 0$ for all $x \in (a,b)$.

Corollary 5.9. If $f : [a,b] \to \mathbb{R}$ is monotone, then f is absolutely continuous in $[a,b] \Leftrightarrow \int_a^b f' = f(b) - f(a)$.

Corollary 5.10 (Lebesgue decomposition). Every function $f : [a, b] \to \mathbb{R}$ of bounded variations can be written as $f = f_{abs} + f_{sing}$, where $f_{abs} = \int_a^x f'$ is absolutely continuous in [a, b]and $f_{sing} = f - f_{abs}$ is such that $f'_{sing} = 0$ a.e. in [a, b].