Introduction

Definition 0.1 (Riemann 1854). Let \([a, b]\) be a closed bounded interval, \(f : [a, b] \to \mathbb{R}\) bounded function. We say \(f\) is **Riemann integrable** if

\[
\int_a^b f := \sup \left\{ \sum_{i=1}^{n} \inf_{[x_{i-1}, x_i]} f(x_i - x_{i-1}) : a = x_0 < x_1 < \cdots < x_n = b \right\}
\]

\[
= \int_a^b f := \inf \left\{ \sum_{i=1}^{n} \sup_{[x_{i-1}, x_i]} f(x_i - x_{i-1}) : a = x_0 < x_1 < \cdots < x_n = b \right\}
\]

We then denote \(\int_a^b f = \int_a^b f(x) \, dx := \int_a^b f = \int_a^b f\).

Theorem 0.1. Every continuous function \(f : [a, b] \to \mathbb{R}\) is Riemann integrable.

Remark. \(f : x \in [0, 1] \mapsto \begin{cases}
1 & x \in \mathbb{Q} \\
0 & x \notin \mathbb{Q}
\end{cases}\) is not Riemann integrable.

1 Measure Theory

Definition 1.1. 1. Let rectangle \(R\) be \((a_1, b_1) \times \cdots \times (a_d, b_d) \subseteq R \subseteq [a_1, b_1] \times \cdots \times [a_d, b_d]\), where \(-\infty < a_i \leq b_i < \infty \forall 1 \leq i \leq d\). We call **volume** of \(R\) and denote \(\text{vol}(R)\) the number \(\text{vol}(R) := \prod_{i=1}^{d} (b_i - a_i)\). We say that \(R\) is a **cube** if \(b_1 - a_1 = \cdots = b_d - a_d\).

2. For every set \(A \subseteq \mathbb{R}^d\) we call the **exterior measure** of \(A\) and denote \(m_*(A)\) the number

\[
m_* (A) = \inf \left\{ \sum_{k=1}^{\infty} \text{vol}(Q_k) : Q_k \text{ closed cubes}, A \subseteq \bigcup_{k=1}^{\infty} Q_k \right\} \in [0, \infty]
\]

Remark.

\[
\left\{ \sum_{k=1}^{\infty} \text{vol}(Q_k) : Q_k \text{ closed cubes}, A \subseteq \bigcup_{k=1}^{\infty} Q_k \right\} \neq \emptyset \implies A \subseteq \bigcup_{n=1}^{\infty} [-n, n]^d = \mathbb{R}^d
\]
Remark.

\[m_*(A) = \inf \left\{ \sum_{k=1}^{\infty} \text{vol}(Q_k) : Q_k \text{ open cubes, } A \subseteq \bigcup_{k=1}^{\infty} Q_k \right\} \]

\[= \inf \left\{ \sum_{k=1}^{\infty} \text{vol}(Q_k) : Q_k \text{ rectangles, } A \subseteq \bigcup_{k=1}^{\infty} Q_k \right\} \]

Proposition 1.1. If \(A \subseteq \mathbb{R}^d \) is countable then \(m_*(A) = 0 \)

Proposition 1.2 (monotonicity). If \(A \subseteq B \subseteq \mathbb{R}^d \) then \(m_*(A) \leq m_*(B) \)

Proposition 1.3. If \(O \subseteq \mathbb{R}^d \) is open then it can be written as \(O = \bigcup_{k=1}^{\infty} \overline{Q}_k \) where \(Q_k \) are disjoint, open cubes (\(\overline{Q}_k \) is the closure of \(Q_k \)).

Proposition 1.4. If \(R \subseteq \mathbb{R}^d \) is a rectangle then \(m_*(R) = \text{vol}(R) \).

Proposition 1.5. If \(A \subseteq \mathbb{R}^d \) then \(m_*(A) = \inf \{ m_*(O) : O \text{ open set, } A \subseteq O \} \).

Proposition 1.6. Let \((A_k)_{k \in \mathbb{N}}\) be a sequence of sets in \(\mathbb{R}^d \) (not necessarily disjoint). Then \(m_*(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} m_*(A_k) \).

Proposition 1.7. Let \(A_1, A_2 \subseteq \mathbb{R}^d \) be such that \(d(A_1, A_2) > 0 \) i.e. \(\inf \{|x-y| : x \in A_1, y \in A_2\} > 0 \). Then \(m_*(A_1 \cup A_2) = m_*(A_1) + m_*(A_2) \)

Definition 1.2. A set \(A \subseteq \mathbb{R}^d \) is said to be (Lebesgue)-measurable if for every \(\epsilon > 0 \), there exists \(O_\epsilon \) open such that \(A \subseteq O_\epsilon \) and \(m_*(O_\epsilon \setminus A) < \epsilon \). We then denote \(m(A) = m_*(A) \) the (Lebesgue)-measure of \(A \).

Proposition 1.8.
1. If \(m_*(A) = 0 \) then \(A \) is measurable.

2. A countable union of measurable sets is measurable.

3. Open sets and closed sets are measurable.

4. If \(A \) is measurable then \(\mathbb{R}^d \setminus A =: A^c \) is measurable.

5. A countable intersection of measurable sets is measurable.
Theorem 1.9 (countable additivity). Let \((A_k)_{k \in \mathbb{N}}\) be measurable and disjoint. Then

\[
m \left(\bigcup_{k=1}^{\infty} A_k \right) = \sum_{k=1}^{\infty} m(A_k)\]

Remark. In particular, if \(A \subseteq B \subseteq \mathbb{R}^d\) are measurable then \(m(B) = m(A) + m(B \setminus A)\).

Proposition 1.10 (continuity of measure). Let \((A_k)_{k \in \mathbb{N}}\) be measurable.

1. If \(A_k \subseteq A_{k+1} \forall k \in \mathbb{N}\) then \(m(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} m(A_k)\).

2. If \(A_k \supseteq A_{k+1} \forall k \in \mathbb{N}\) and \(m(A_1) < \infty\) then \(m(\bigcap_{k=1}^{\infty} A_k) = \lim_{k \to \infty} m(A_k)\).

Remark. \(m(A_1) < \infty\) is necessary: \(m(\bigcap_{k=1}^{\infty} [k, \infty)) = m(\emptyset) = 0\) while \(m([k, \infty)) = \infty \forall k \in \mathbb{N}\).

Theorem 1.11 (outer and inner approximations of measurable sets). Let \(A \subseteq \mathbb{R}^d\). Then the following are equivalent:

1. \(A\) is measurable;

2. There exists a \(G_\delta\) set \(G\) (a \(G_\delta\) set is a countable intersection of open sets) and a set \(N\) of measure 0 such that \(A = G \setminus N\);

3. For every \(\varepsilon > 0\), there exists \(F_\varepsilon\) closed such that \(F_\varepsilon \subseteq A\) and \(m_*(A \setminus F_\varepsilon) < \varepsilon\);

4. There exists an \(F_\sigma\) set \(F\) (an \(F_\sigma\) set is a countable union of closed sets) and a set \(N\) of measure 0 such that \(A = F \cup N\).

Counterexamples

Are all subsets of \(R^d\) measurable?

Theorem 1.12. If \(A \subseteq \mathbb{R}^d\) is such that \(m_*(A) > 0\) then there exists \(B \subseteq A\) non-measurable.

Are all subsets of measure 0 in \(R\) countable?

Definition 1.3. We call Cantor set the set \(C := \bigcap_{k=1}^{\infty} C_k\) where \(C_1 := [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]\) and \(\forall k \geq 2, C_k := \bigcup_{j=1}^{2^k} I_{j,k}\) where \(\forall j \in \{1, \ldots, 2^{k-1}\}, I_{2j-1,k}, I_{2j,k}\) are the first and last thirds of \(I_{j,k-1}\).

Theorem 1.13. \(C\) is closed and uncountable. \(m(C) = 0\).
Are all measurable sets Borel?

Definition 1.4. A collection Ω of subsets of \mathbb{R}^d is called a σ-algebra if the following conditions are satisfied:

1. $\mathbb{R}^d \in \Omega$;
2. $\forall A, B \in \Omega : A \setminus B \in \Omega$;
3. $\forall (A_k)_{k \in \mathbb{N}} \subseteq \Omega : \bigcup_{k=1}^{\infty} A_k \in \Omega$.

Proposition 1.14. Any intersection of σ-algebras is a σ-algebra.

Definition 1.5. The intersection of all the σ-algebras containing the open sets is called the **Borel σ-algebra** and its elements the **Borel sets**.

Remark. In particular, Borel sets are measurable.

Proposition 1.15. There exists a subset of the Cantor set which is measurable but not Borel.

Definition 1.6. We call **Cantor-Lebesgue function** (or **Cantor staircase function**) the function

$$
\varphi : [0, 1] \to [0, 1],
\varphi(x) = \frac{i}{2^k} \text{ if } x \in J_{k,i} \text{ where } J_{k,i} \text{ is the } i\text{-th interval of } [0, 1] \setminus C_k, k \geq 1, i \in \{1, \ldots, 2^k - 1\},
\varphi(0) = 0, \varphi(x) = \sup\{\varphi(y) : y \in [0, x) \setminus C\} \text{ if } x \in (0, 1] \cap C
$$

Remark. $\varphi(1) = 1$.

Proposition 1.16. $\varphi : [0, 1] \to [0, 1]$ is increasing, continuous and surjective.

Proposition 1.17. If $D \subseteq \mathbb{R}$ is not Borel, then $D \times \{0\}^{d-1} \subseteq \mathbb{R}^d$ is not Borel.

2 Lebesgue Measurable Function

Remark. We denote $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$

Proposition 2.1. Let $A \subseteq \mathbb{R}^d$ be measurable, $f : A \to \bar{\mathbb{R}}$. Then the following are equivalent:

1. $\forall c \in \mathbb{R} : f^{-1}((c, +\infty])$ is measurable
2. \(\forall c \in \mathbb{R} : f^{-1}([c, +\infty)) \) is measurable

3. \(\forall c \in \mathbb{R} : f^{-1}([-\infty, c)) \) is measurable

4. \(\forall c \in \mathbb{R} : f^{-1}([-\infty, c]) \) is measurable

Definition 2.1. When these are satisfied, we say \(f \) is (Lebesgue) measurable.

Proposition 2.2. Let \(A \subseteq \mathbb{R}^d \) and \((A_k)_{k \in \mathbb{N}} \subseteq \mathbb{R}^d \) be measurable sets such that the sets \((A_k)_{k \in \mathbb{N}} \) are disjoint and \(\bigcup_{k=1}^{\infty} A_k = A \). Let \(f : A \to \mathbb{R} \) be a function. If \(f|_{A_k} \) is measurable for all \(k \in \mathbb{N} \) then \(f \) is measurable.

Proposition 2.3. Let \(A \subseteq \mathbb{R}^d \) measurable.

1. \(\forall B \subseteq A \) measurable, \(\forall f : A \to \mathbb{R} \) measurable, \(f|_{B} \) is measurable;

2. \(\forall B \subseteq \mathbb{R} \) Borel, \(\forall f : B \to \mathbb{R} \) continuous, \(\forall g : A \to B \) measurable, then \(f \circ g \) is measurable;

3. \(\forall f : A \to \mathbb{R}, \forall g : A \to \mathbb{R} \) both measurable, \(f + g \) is measurable;

4. \(\forall f : A \to [0, \infty] \) measurable, \(\forall k \in \mathbb{N}, f^k \) is measurable;

5. \(\forall f, g : A \to \mathbb{R} \) measurable, \(f \cdot g \) is measurable;

6. \(\forall f, g : A \to \mathbb{R} \) measurable, \(\max(f, g), \min(f, g) \) is measurable.

Proposition 2.4. Let \(A \subseteq \mathbb{R}^d \) be measurable, let \(f : A \to \mathbb{R} \) measurable. Then for every Borel set \(B \subseteq \mathbb{R} \), \(f^{-1}(B) \) is measurable.

Remark. \(\exists D \subseteq \mathbb{R} \) measurable, \(f \) measurable (even continuous) such that \(f^{-1}(D) \) is not measurable.

Proposition 2.5. Let \(A \subseteq \mathbb{R}^d \) measurable, \(f : A \to \mathbb{R} \) continuous, then \(f \) is measurable.

Definition 2.2. Let \(A \subseteq \mathbb{R}^d \), \(P(x) \) a statement depending on \(x \in A \). We say \(P(x) \) is true for almost every \(x \in A \) (or a.e. \(x \in A \)) if \(m_a(\{x \in A : P(x) \text{ is false}\}) = 0 \).

Proposition 2.6. If \((P_k(x))_{k \in \mathbb{N}} \) is a countable collection of statements depending on \(x \in A \), then

\[
[\forall k \in \mathbb{N} : \text{for a.e. } x \in A, P_k(x) \text{ is true}] \Leftrightarrow [\text{for a.e. } x \in A, \forall k \in \mathbb{N} : P_k(x) \text{ is true}]
\]
Proposition 2.7. Let $f, g : A \to \mathbb{R}$ be such that $f = g$ a.e. in A. Then f measurable if and only if g measurable.

Proposition 2.8. Let $A \subseteq \mathbb{R}^d$ and $(A_k)_{k \in \mathbb{N}} \subseteq \mathbb{R}^d$ be measurable sets such that the sets $(A_k)_{k \in \mathbb{N}}$ disjoint and $\bigcup_{k=1}^{\infty} A_k = A$. Let $f : A \to \mathbb{R}$ be a function. If $f|_{A_k}$ is measurable for all $k \in \mathbb{N}$, then f is measurable.

Proposition 2.9. Let $A \subseteq \mathbb{R}^d$ be measurable

1. $\forall B \subseteq A$ measurable, $\forall f : A \to \mathbb{R}$ measurable, $f|_B$ is measurable.

2. $\forall B \subseteq \mathbb{R}$ Borel, $\forall f : B \to \mathbb{R}$ continuous, $\forall g : A \to B$ measurable, $f \circ g$ is measurable.

3. $\forall f : A \to \mathbb{R}$ measurable, $\forall g : A \to \mathbb{R}$ measurable, $f + g$ is measurable.

4. $\forall f : A \to \mathbb{R}$ measurable, $\forall k \in \mathbb{N}$, f^k is measurable.

5. $\forall f, g : A \to \mathbb{R}$, $f \cdot g$ is measurable.

Remark. $\exists f, g$ measurable such that $f \circ g$ is not measurable.

Proposition 2.10. Let $(f_n)_{n \in \mathbb{N}}, f_n : A \to \mathbb{R}$ be measurable functions converging pointwise a.e. in A to a function $f : A \to \mathbb{R}$ i.e. $\lim_{n \to \infty} f_n(x) = f(x)$ for a.e. $x \in A$. Then f is measurable.

Proposition 2.11. Let $(f_n)_{n \in \mathbb{N}}, f_n : A \to \mathbb{R}$ be measurable functions. Then

$$x \mapsto \inf_{n \in \mathbb{N}} f_n(x), x \mapsto \sup_{n \in \mathbb{N}} f_n(x), x \mapsto \liminf_{n \to \infty} f_n(x), x \mapsto \limsup_{n \to \infty} f_n(x)$$

are all measurable.

Definition 2.3. We call simple function a measurable function $\varphi : A \to \mathbb{R}$ such that $\varphi(A)$ is finite and φ has finite support i.e. $m(\{x \in A : \varphi(x) \neq 0\}) < \infty$.

Remark. In particular, any simple function φ can be written as

$$\varphi = \sum_{i=1}^{n} c_i \chi_{A_i}$$

where $n \geq 0$, $c_1, \ldots, c_n \in \mathbb{R} \setminus \{0\}$ distinct (such that $\varphi(A) \setminus \{0\} = \{c_1, \ldots, c_n\}$) and $A_1, \ldots, A_n \subseteq A$ measurable, disjoint and with finite measure ($A_i = \varphi^{-1}(\{c_i\})$).
Definition 2.4. We say that $\sum_{i=1}^{n} c_i \chi_{A_i}$ is the \textit{canonical form} of the simple function φ. We say that $\sum_{i=1}^{n} c_i \chi_{A_i}$ is a \textit{step function} if the A_i are rectangles.

Theorem 2.12 (Simple Approximation Lemma). Let $f : A \to \mathbb{R}, m(A) < \infty$ be measurable and bounded i.e. $\exists M > 0 \forall x \in A : |f(x)| < M$. Then $\forall \varepsilon > 0 \exists \varphi_{\varepsilon}, \psi : A \to \mathbb{R}$ simple functions such that

$$\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon} < \varphi_{\varepsilon} + \varepsilon$$

Theorem 2.13 (Simple Approximation Theorem). Let $f : A \to \mathbb{R}$ be measurable. Then there exist $(\varphi_n)_{n \in \mathbb{N}}$ simple functions such that

1. $(\varphi_n)_{n \in \mathbb{N}}$ converges pointwise to f on A i.e. $\lim_{n \to \infty} \varphi_n(x) = f(x) \forall x \in A$, and
2. $|\varphi_n| \leq |\varphi_{n+1}| \leq |f|$ on $A \forall n \in \mathbb{N}$.

If $f \geq 0$ then we have moreover that $\varphi_n \geq 0$ and increasing in n.

Theorem 2.14 (Egorov). Let $A \subseteq \mathbb{R}^d$ be measurable, $m(A) < \infty$, $(f_n)_{n \in \mathbb{N}}, f_n : A \to \mathbb{R}$ measurable converging pointwise to $f : A \to \mathbb{R}$. Then $\forall \varepsilon > 0 \exists F_\varepsilon \subseteq A$ closed such that $(f_n)_{n \in \mathbb{N}}$ converges to f uniformly in F_ε i.e.

$$\sup_{F_\varepsilon} |f_n - f| \xrightarrow{n \to \infty} 0$$

and $m(A \setminus F_\varepsilon) < \varepsilon$

Remark. This result does not hold in general when $m(A) = \infty$, e.g. $f_n(x) = \frac{x}{n}$ on $A = \mathbb{R}$.

Theorem 2.15 (Lusin). Let $f : A \to \mathbb{R}$ be measurable. Then $\forall \varepsilon > 0 \exists F_\varepsilon \subseteq A$ closed such that $f|_{F_\varepsilon}$ is continuous on F_ε and $m(A \setminus F_\varepsilon) < \varepsilon$.

Remark. Recall that “$f|_F$ continuous on F” \neq “f continuous on F”: $\chi_{\mathbb{Q}}$ is not continuous at any point in \mathbb{R} but $\chi_{\mathbb{Q}}|_{\mathbb{R} \setminus \mathbb{Q}} = 0$ is continuous on $\mathbb{R} \setminus \mathbb{Q}$.
3 Lebesgue Integration

Case of a simple function

Definition 3.1. Let \(\varphi : A \to \mathbb{R} \) be a simple function and \(\varphi = \sum_{k=1}^{n} c_k \chi_{A_k} \) be its canonical form. We define the (Lebesgue) integral of \(\varphi \) over \(A \) by

\[
\int_{A} \varphi = \int_{A} \varphi(x) \, dx = \sum_{k=1}^{n} c_k m(A_k)
\]

For any \(B \subseteq A \) measurable, we define \(\int_{B} f = \int_{A} f \chi_{B} \).

Proposition 3.1 (independence of the representation). Let \(n \in \mathbb{N} \), \(c_1, \ldots, c_n \in \mathbb{R} \) and \(A_1, \ldots, A_n \subseteq A \) be measurable, disjoint, \(m(A_k) < \infty \). Then

\[
\int_{A} \sum_{k=1}^{n} c_k \chi_{A_k} = \sum_{k=1}^{n} c_k m(A_k)
\]

Proposition 3.2. Let \(\varphi, \psi : A \to \mathbb{R} \) be simple. Then

1. \(\forall \alpha, \beta \in \mathbb{R} \), \(\alpha \varphi + \beta \psi \) simple and \(\int_{A} (\alpha \varphi + \beta \psi) = \alpha \int_{A} \varphi + \beta \int_{A} \psi \).

2. \(\forall B_1, B_2 \subseteq A \) measurable disjoint, \(\int_{B_1 \cup B_2} \varphi = \int_{B_1} \varphi + \int_{B_2} \varphi \).

3. If \(\varphi \leq \psi \) on \(A \) then \(\int_{A} \varphi \leq \int_{A} \psi \).

4. \(|\varphi| \) is simple and \(|\int_{A} \varphi| \leq \int_{A} |\varphi| \).

Case of a bounded measurable function with finite support

Definition 3.2. We denote \(\text{supp}(f) \) and call support of a measurable function \(f : A \to \mathbb{R} \) the set

\[
\text{supp}(f) = \{ x \in A : f(x) \neq 0 \}
\]

If \(\text{supp}(f) \subseteq E \subseteq A \), then we say \(f \) is supported in \(E \). If \(m(\text{supp}(f)) < \infty \), we say that \(f \) has finite support.

Proposition 3.3. Let \(f : A \to \mathbb{R} \) be bounded, measurable and with finite support. Let \((\varphi_n)_{n \in \mathbb{N}} \) be simple functions in \(A \) such that
1. \(\exists E \subseteq A \) measurable such that \(m(E) < \infty \) and \(\text{supp}(\varphi_n) \subseteq E \) for all \(n \in \mathbb{N} \),

2. \(\exists M > 0 \) such that \(\forall n \in \mathbb{N}, |\varphi_n| \leq M \) in \(A \), and

3. \(\lim_{n \to \infty} \varphi_n(x) = f(x) \) for a.e. \(x \in A \) (a.e. pointwise convergence).

Then \(\lim_{n \to \infty} \int_A \varphi_n \) exists and does not depend on the choice of \((\varphi_n)_{n \in \mathbb{N}} \) satisfying the above.

Remark. Such \((\varphi_n) \) exists by the Simple Approximation Lemma.

Definition 3.3. Given the above proposition, we then call integral of \(f \) over \(A \) the number \(\int_A f = \lim_{n \to \infty} \int_A \varphi_n \). For every \(B \subseteq A \) measurable, we define \(\int_B f = \int_A f \chi_B \).

Remark. If \(f = 0 \) a.e. in \(A \) then \(\int_A f = 0 \).

Proposition 3.4. Let \(f, g : A \to \mathbb{R} \) be bounded, measurable and with finite support. Then

1. \(\forall \alpha, \beta \in \mathbb{R}, \alpha f + \beta g \) is bounded, measurable and with finite support and \(\int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g \).

2. \(\forall B_1, B_2 \subseteq A \) measurable disjoint, \(\int_{B_1 \cup B_2} f = \int_{B_1} f + \int_{B_2} f \).

3. If \(f \leq g \) on \(A \) then \(\int_A f \leq \int_A g \).

4. \(|f| \) is bounded, measurable and with finite support and \(|\int_A f| \leq \int_A |f| \).

Theorem 3.5 (Bounded Convergence Theorem). Let \((f_n)_{n \in \mathbb{N}}, f : A \to \mathbb{R} \) be a sequence of measurable function such that

1. \(\exists E \subseteq A \) measurable such that \(m(E) < \infty \) and \(\text{supp}(f_n) \subseteq E \) for all \(n \in \mathbb{N} \),

2. \(\exists M > 0 \) such that \(\forall n \in \mathbb{N}, |f_n| \leq M \) in \(A \), and

3. \(\exists f : A \to \mathbb{R} \) such that \(\lim_{n \to \infty} f_n(x) = f(x) \) for a.e. \(x \in A \).

Then \(f \) is bounded, measurable, with finite support and \(\lim_{n \to \infty} \int_A f_n = \int_A f \).

Remark. \(\int_0^1 n\chi_{[0, \frac{1}{n}]}(x) \, dx = 1 \) but \(n\chi_{[0, \frac{1}{n}]}(x) \xrightarrow{n \to \infty} 0 \forall x \in (0, 1] \) i.e. for a.e. \(x \in [0, 1] \).

Theorem 3.6. If \(A = [a,b], a < b \in \mathbb{R} \) then every bounded function \(f : A \to \mathbb{R} \) that is Riemann integrable is measurable and its Riemann \(\int_A f \) is equal to its Lebesgue integral \(\int_A f \).
Case of a nonnegative measurable function

Definition 3.4. Let \(f : A \to [0, \infty] \) be measurable. Then we define the integral of \(f \) over \(A \) as

\[
\int_A f = \sup \left\{ \int_A h : h : A \to [0, \infty) \text{ bounded, measurable, with finite support, } h \leq f \text{ on } A \right\}
\]

For every \(B \subseteq A \), we define \(\int_B f = \int_A \tilde{f} \) where \(\tilde{f}(x) = \begin{cases} f(x) & x \in B \\ 0 & x \notin B \end{cases} \) \((\tilde{f} = \chi_B f \text{ if } f < \infty) \).

We say that \(f \) is integral over \(B \) if \(\int_B f < \infty \).

Proposition 3.7. Let \(f, g : A \to [0, \infty] \) be measurable. Then

1. \(\forall \alpha, \beta \geq 0, \alpha f + \beta g \) is nonnegative measurable and \(\int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g \).

2. \(\forall B_1, B_2 \subseteq A \) measurable disjoint, \(\int_{B_1 \cup B_2} f = \int_{B_1} f + \int_{B_2} f \).

3. If \(f \leq g \) on \(A \) then \(\int_A f \leq \int_A g \). Moreover, if \(f = g \) a.e. on \(A \) then \(\int_A f = \int_A g \). In particular, if \(f = 0 \) a.e. on \(A \) then \(\int_A f = 0 \).

Remark. For every \(A \subseteq \mathbb{R}^d \) measurable, \(\int_{\mathbb{R}^d} \chi_A = m(A) \).

Theorem 3.8 (Chebyshev’s Inequality). Let \(f : A \to [0, \infty] \) be measurable. Then

\[
\forall c > 0 : m(f^{-1}([0, +\infty])) \leq \frac{1}{c} \int_A f
\]

Corollary 3.9. Let \(f : A \to [0, \infty] \) be measurable. Then \(\int_A f = 0 \Leftrightarrow f = 0 \text{ a.e. in } A \).

Corollary 3.10. Let \(f : A \to [0, \infty] \) be measurable. If \(f \) is integrable then \(f < \infty \) a.e. in \(A \).

Theorem 3.11 (Fatou’s Lemma). Let \((f_n)_{n \in \mathbb{N}} \) be measurable nonnegative on \(A \subseteq \mathbb{R}^d \). Then

\[
\int_A \liminf_{n \to \infty} f_n \leq \liminf_{n \to \infty} \int_A f_n
\]

Remark. There is not equality since

\[
\int_\mathbb{R} n \chi_{(0, \frac{1}{n})} = 1 > \int_\mathbb{R} \lim_{n \to \infty} (n \chi_{(0, \frac{1}{n})}) = \int_\mathbb{R} 0 = 0
\]
Theorem 3.12 (Monotone Convergence Theorem). Let \((f_n)_{n \in \mathbb{N}}\) be measurable, nonnegative functions increasing in \(n\) (i.e. \(f_{n+1} \geq f_n\) on \(A\)). Then \(\lim_{n \to \infty} \int_A f_n = \int_A \lim_{n \to \infty} f_n\).

Corollary 3.13. Let \((u_n)_{n \in \mathbb{N}}\) be measurable, nonnegative function. Then \(\sum_{n=1}^{\infty} \int_A u_n = \int_A \sum_{n=1}^{\infty} u_n\).

Case of a sign-changing function

Definition 3.5. Let \(f : A \to \mathbb{R}\) be measurable. We say that \(f\) is integrable if \(f_+ = \max(f, 0)\) and \(f_- = \max(-f, 0)\) are integrable. We then call integral of \(f\) over \(A\) the number \(\int_A f = \int_A f_+ - \int_A f_-\). For every \(B \subseteq A\), we denote \(\int_B f = \int_B f_+ - \int_B f_-\).

Proposition 3.14. \(f\) integrable \(\Leftrightarrow |f|\) integrable.

Remark. If \(f, g : A \to \mathbb{R}\) then

\[
\begin{cases}
 f + g \text{ is not defined on } N = \{x \in A : f(x) = -g(x) = \pm \infty\} \\
 fg \text{ is not defined on } N = \{x \in A : |f(x)| = \infty, g(x) = 0 \lor |g(x)| = \infty, f(x) = 0\}
\end{cases}
\]

However, if \(f, g\) integrable then \(|f| < \infty\) and \(|g| < \infty\) a.e. in \(A\), in which case we say \(f + g, fg\) integrable and we denote \(\int_A (f + g) = \int_{A \setminus N} (f + g)\) and \(\int_A fg = \int_{A \setminus N} fg\).

Proposition 3.15. Let \(f, g : A \to \mathbb{R}\) be integrable. Then

1. \(\forall \alpha, \beta \in \mathbb{R}, \alpha f + \beta g\) is integrable and \(\int_A (\alpha f + \beta g) = \alpha \int_A f + \beta \int_A g\).

2. \(\forall B_1, B_2 \subseteq A\) measurable disjoint, \(\int_{B_1 \cup B_2} f = \int_{B_1} f + \int_{B_2} f\).

3. \(f \leq g\) on \(A\) \(\Rightarrow \int_A f \leq \int_A g\). \(f = g\) a.e. on \(A\) \(\Rightarrow \int_A f = \int_A g\).

4. \(\int_A f \leq \int_A |f|\).

Theorem 3.16 (Dominated Convergence Theorem). Let \((f_n)_{n \in \mathbb{N}}\) be measurable functions on \(A\) such that

1. \(\exists f : A \to \mathbb{R}\) measurable such that \(\lim_{n \to \infty} f_n(x) = f(x)\) for a.e. \(x \in A\), and

2. \(\exists g : A \to \mathbb{R}\) integrable such that \(|f_n(x)| \leq g(x)\) for a.e. \(x \in A\) and \(\forall n \in \mathbb{N}\).

Then \(f_n\) and \(f\) are integrable and \(\lim_{n \to \infty} \int_A f_n = \int_A f\).
Corollary 3.17 (continuity of the integral). Let \(f \) be integrable over \(A \subseteq \mathbb{R}^d \). Then

1. If \((A_n)_{n \in \mathbb{N}}\) is a sequence of measurable subsets of \(A \) such that \(A_n \subseteq A_{n+1} \) then
 \[
 \int_{\bigcup_{n=1}^{\infty} A_n} f = \lim_{n \to \infty} \int_{A_n} f
 \]

2. If \((A_n)_{n \in \mathbb{N}}\) is a sequence of measurable subsets of \(A \) such that \(A_n \supseteq A_{n+1} \) then
 \[
 \int_{\bigcap_{n=1}^{\infty} A_n} f = \lim_{n \to \infty} \int_{A_n} f
 \]

4 Fubini and Tonelli’s Theorems

Definition 4.1. Let \(d_1, d_2 \in \mathbb{N} \) be such that \(d = d_1 + d_2 \). We denote \((x, y) \in \mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \). For every \(E \subseteq \mathbb{R}^d \), we denote \(E_x = \{y \in \mathbb{R}^{d_2} : (x, y) \in E\} \) and \(E_y = \{x \in \mathbb{R}^{d_1} : (x, y) \in E\} \).

\(\forall f : E \to \mathbb{R}, f_x : E_x \to \mathbb{R}, y \mapsto f(x, y) \) and \(f_y : E_y \to \mathbb{R}, x \mapsto f(x, y) \)

Remark. \(E_x \) and \(E_y \) are not necessarily measurable when \(E \) is measurable.

Remark. It is not always true that \(\int_A (\int_B f(x, y)dy)dx = \int_B (\int_A f(x, y)dx)dy \) even when the integrals are well-defined.

Theorem 4.1 (Fubini). Let \(f : \mathbb{R}^d \to \mathbb{R} \) be integrable. Then

1. For a.e. \(y \in \mathbb{R}^{d_2}, f_y \) is integrable on \(\mathbb{R}^{d_1} \),

2. \(y \mapsto \int_{\mathbb{R}^{d_1}} f_y = \int_{\mathbb{R}^{d_1}} f(x, y)dx \) is integrable on \(\mathbb{R}^{d_2} \), and

3. \(\int_{\mathbb{R}^{d_2}} (\int_{\mathbb{R}^{d_1}} f(x, y)dx)dy = \int_{\mathbb{R}^d} f \).

Remark. The roles of \(x \) and \(y \) can be interchanged so that \(\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^{d_1}} (\int_{\mathbb{R}^{d_2}} f(x, y)dy)dx \).

Theorem 4.2 (Tonelli). Let \(f \) be nonnegative measurable on \(\mathbb{R}^d \). Then

1. For a.e. \(y \in \mathbb{R}^{d_2}, f_y \) is measurable in \(\mathbb{R}^{d_1} \),

2. \(y \mapsto \int_{\mathbb{R}^{d_1}} f_y = \int_{\mathbb{R}^{d_1}} f(x, y)dx \) is measurable in \(\mathbb{R}^{d_2} \), and

3. \(\int_{\mathbb{R}^{d_2}} (\int_{\mathbb{R}^{d_1}} f_y) = \int_{\mathbb{R}^d} f \).
Corollary 4.3. If $A \subseteq \mathbb{R}^d$ is measurable then for a.e. $y \in \mathbb{R}^d$, A_y is measurable and moreover, $y \mapsto m(A_y)$ is measurable and $m(A) = \int_{\mathbb{R}^d} m(A_y) dy$.

Corollary 4.4 (Tonelli for $A \subseteq \mathbb{R}^d$). Let $f : A \rightarrow \mathbb{R}$ be nonnegative measurable. Then

1. For a.e. $y \in \mathbb{R}^d$, f_y is measurable in \mathbb{R}^d,
2. $y \mapsto \int_{\mathbb{R}^d} f_y$ is measurable in \mathbb{R}^1, and
3. $\int_{\mathbb{R}^d} (\int_{\mathbb{R}^d} f_y) dy = \int_{\mathbb{R}^d} f$.

Corollary 4.5 (Fubini for $A \subseteq \mathbb{R}^d$). Let $f : A \rightarrow \mathbb{R}$ be integrable over A. Then

1. For a.e. $y \in \mathbb{R}^d$, f_y is integrable on \mathbb{R}^d,
2. $y \mapsto \int_{\mathbb{R}^d} f_y(x,y) dx$ is integrable on \mathbb{R}^d, and
3. $\int_{\mathbb{R}^d} (\int_{\mathbb{R}^d} f(x,y) dx) dy = \int_{\mathbb{R}^d} f$.

Lemma 4.6. $\forall E_1 \subseteq \mathbb{R}^d, E_2 \subseteq \mathbb{R}^d$,

$$m_*(E_1 \times E_2) \leq \begin{cases} m_*(E_1)m_*(E_2) & m_*(E_1) \neq 0 \land m_*(E_2) \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

Theorem 4.7. Let $E_1 \subseteq \mathbb{R}^d_1$ and $E_2 \subseteq \mathbb{R}^d_2$ be measurable. Then $E_1 \times E_2$ is measurable and

$$m_*(E_1 \times E_2) = \begin{cases} m_*(E_1)m_*(E_2) & m_*(E_1) \neq 0 \land m_*(E_2) \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

Corollary 4.8. Let $E_1 \subseteq \mathbb{R}^d_1$ and $E_2 \subseteq \mathbb{R}^d_2$ be measurable and f be a measurable function on E_1. Then $\tilde{f} : E_1 \times E_2 \rightarrow \overline{\mathbb{R}}, (x,y) \mapsto f(x)$ is measurable on $E_1 \times E_2$.

Proposition 4.9. Let $d_1 = d - 1$, $A \subseteq \mathbb{R}^{d_1}$ be measurable and $f : A \rightarrow [0, \infty]$. Then f is measurable if and only if $E = \{(x,y) \in A \times \mathbb{R} : 0 \leq y \leq f(x)\}$ is measurable. Furthermore, if f is measurable, then $m(E) = \int_A f(x) dx$.

Proposition 4.10. Let f be measurable on \mathbb{R}^d. Then $g : \mathbb{R}^{2d} \rightarrow \overline{\mathbb{R}}, (x,y) \mapsto f(x-y)$ is measurable.

Remark. This is useful when defining convolution $f * g : x \mapsto \int_{\mathbb{R}^d} f(x-y)g(y)dy$.

13
5 Differentiation

Theorem 5.1. A monotone function \(f : [a, b] \to \mathbb{R} \) is differentiable almost everywhere in \((a, b)\). Furthermore, \(f' \) is integrable and

\[
\int_a^b f' \begin{cases}
\leq f(b) - f(a) & f \text{ increasing} \\
g \geq f(b) - f(a) & f \text{ decreasing}
\end{cases}
\]

Remark. The Cantor-Lebesgue function is monotone, differentiable in \([0, 1]\), with \(\varphi' = 0 \) a.e. in \([0, 1]\) but \(\int_0^1 \varphi' = 0 < \varphi(1) - \varphi(0) = 1 \).

Theorem 5.2. Let \(F \) be a collection of bounded intervals in \([a, b] \subseteq \mathbb{R}\) of positive length. Then there exists a countable collection \(F' \subseteq F \) of disjoint intervals such that \(\bigcup_{I \in F} I \subseteq \bigcup_{I \in F'} 5I \), where \(5I = \{x \in \mathbb{R} : x_I + \frac{1}{5}(x - x_I) \in I\} \) (\(x_I \) middle point of \(I \)).

Remark. It is possible to replace 5 by a number \(x > 3 \) but no less: consider \(F = \{[-1, 0], [0, 1]\} \).

Proposition 5.3. A monotone function \(f : [a, b] \to \mathbb{R} \) has at most countably many discontinuities.

Functions of bounded variation

Definition 5.1. Let \(f : [a, b] \to \mathbb{R} \) be a function. We call total variation of \(f \) on \([a, b]\) the number

\[
T_f(a, b) = \sup \left\{ \sum_{i=1}^k |f(x_i) - f(x_{i-1})| : a = x_0 < x_1 < \cdots < x_k = b \right\}
\]

If \(T_f(a, b) < \infty \), then we say that \(f \) is of bounded variation on \([a, b]\).

Remark. Monotone and Lipschitz continuous functions are of bounded variation.

Remark.

\[
f(x) = \begin{cases}
x \cos \left(\frac{1}{x} \right) & 0 < x \leq 1 \\
0 & x = 0
\end{cases}
\]

is not of bounded variation.
Theorem 5.4. A function \(f : [a, b] \rightarrow \mathbb{R} \) is of bounded variation if and only if it can be written as the difference between two increasing functions. In particular, if \(f \) is of bounded variation then \(f \) is differentiable a.e. and \(f' \) is integrable over \([a, b]\).

Absolutely continuous functions

Definition 5.2. We say that a function \(f : [a, b] \rightarrow \mathbb{R} \) is absolutely continuous on \([a, b]\) if for every \(\epsilon > 0 \) there exists a \(\delta > 0 \) such that for every finite collection of disjoint open bounded intervals \((a_k, b_k) \subseteq [a, b], 1 \leq k \leq n\), if \(\sum_{k=1}^{n} (b_k - a_k) < \delta \) then \(\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \epsilon \).

Remark. \(f \) absolutely continuous \(\Rightarrow \) \(f \) uniformly continuous by taking \(n = 1 \).

Remark. The Cantor-Lebesgue function \(\varphi \) is not absolutely continuous on \([0, 1]\).

Proposition 5.5. If \(f : [a, b] \rightarrow \mathbb{R} \) is Lipschitz continuous then \(f \) is absolutely continuous on \([a, b]\).

Theorem 5.6. If \(f : [a, b] \rightarrow \mathbb{R} \) is absolutely continuous on \([a, b]\) then \(f \) can be written as the difference between two increasing absolutely continuous functions. In particular, \(f \) is of bounded variation on \([a, b]\).

Theorem 5.7. Let \(f : [a, b] \rightarrow \mathbb{R} \).

1. If \(f \) is absolutely continuous on \([a, b]\) then

 \[
 \forall x \in [a, b] : \int_{[a, x]} f' = f(x) - f(a)
 \]

2. Conversely, for every integrable function \(g \) over \([a, b]\), the function \(x \mapsto \int_{a}^{x} g \) is absolutely continuous on \([a, b]\) with derivative equal to \(g \) a.e. in \([a, b]\).

Lemma 5.8. Let \(h \) be integrable over \([a, b]\). Then \(h = 0 \) a.e. in \([a, b]\) \(\iff \int_{a}^{b} h = 0 \) for all \(x \in (a, b) \).

Corollary 5.9. If \(f : [a, b] \rightarrow \mathbb{R} \) is monotone, then \(f \) is absolutely continuous in \([a, b]\) \(\iff \int_{a}^{b} f' = f(b) - f(a) \).

Corollary 5.10 (Lebesgue decomposition). Every function \(f : [a, b] \rightarrow \mathbb{R} \) of bounded variations can be written as \(f = f_{\text{abs}} + f_{\text{sing}} \), where \(f_{\text{abs}} = \int_{a}^{x} f' \) is absolutely continuous in \([a, b]\) and \(f_{\text{sing}} = f - f_{\text{abs}} \) is such that \(f'_{\text{sing}} = 0 \) a.e. in \([a, b]\).