
Dao Chen Yuan MATH 454 Class Notes December 28, 2020

Introduction

Definition 0.1 (Riemann 1854). Let [a, b] be a closed bounded interval, f : [a, b] → R
bounded function. We say f is Riemann integrable if∫ b

a

f := sup{
n∑

i=1

inf
[xi−1,xi]

f(xi − xi−1) : a = x0 < x1 < · · · < xn = b}

=

∫ b

a

f := inf{
n∑

i=1

sup
[xi−1,xi]

f(xi − xi−1) : a = x0 < x1 < · · · < xn = b}

We then denote
∫ b

a
f =

∫ b

a
f(x)dx :=

∫ b

a
f =

∫ b

a
f .

Theorem 0.1. Every continuous function f : [a, b] → R is Riemann integrable

Remark. f : x ∈ [0, 1] 7→

1 x ∈ Q

0 x /∈ Q
is not Riemann integrable.

1 Measure Theory

Definition 1.1. 1. Let rectangle R be (a1, b1)×· · ·×(ad, bd) ⊆ R ⊆ [a1, b1]×· · ·× [ad, bd],

where −∞ < ai ≤ bi < ∞∀1 ≤ i ≤ d. We call volume of R and denote vol(R) the

number vol(R) :=
∏d

i=1(bi − ai). We say that R is a cube if b1 − a1 = · · · = bd − ad.

2. For every set A ⊆ Rd we call the exterior measure of A and denote m∗(A) the number

m∗(A) = inf


∞∑
k=1

vol(Qk) : Qk closed cubes, A ⊆
∞∪
k=1

Qk

 ∈ [0,∞]

Remark.
∞∑
k=1

vol(Qk) : Qk closed cubes, A ⊆
∞∪
k=1

Qk

 6= ∅ ∵ A ⊆
∞∪
n=1

[−n, n]d = Rd
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Remark.

m∗(A) = inf


∞∑
k=1

vol(Qk) : Qk open cubes, A ⊆
∞∪
k=1

Qk


= inf


∞∑
k=1

vol(Qk) : Qk rectangles, A ⊆
∞∪
k=1

Qk


Proposition 1.1. If A ⊆ Rd is countable then m∗(A) = 0

Proposition 1.2 (monotonicity). If A ⊆ B ⊆ Rd then m∗(A) ≤ m∗(B)

Proposition 1.3. If O ⊆ Rd is open then it can be written as O =
∪∞

k=1Qk where Qk are

disjoint, open cubes (Qk is the closure of Qk).

Proposition 1.4. If R ⊆ Rd is a rectangle then m∗(R) = vol(R).

Proposition 1.5. If A ⊆ Rd then m∗(A) = inf{m∗(O) : O open set, A ⊆ O}.

Proposition 1.6. Let (Ak)k∈N be a sequence of sets in Rd (not necessarily disjoint). Then

m∗(
∪∞

k=1Ak) ≤
∑∞

k=1m∗(Ak).

Proposition 1.7. Let A1, A2 ⊆ Rd be such that d(A1, A2) > 0 i.e. inf{|x− y| : x ∈ A1, y ∈
A2} > 0. Then m∗(A1 ∪ A2) = m∗(A1) +m∗(A2)

Definition 1.2. A set A ⊆ Rd is said to be (Lebesgue)-measurable if for every ϵ > 0, there

exists Oϵ open such that A ⊆ Oϵ and m∗(Oϵ \ A) < ϵ. We then denote m(A) = m∗(A) the

(Lebesgue)-measure of A.

Proposition 1.8. 1. If m∗(A) = 0 then A is measurable.

2. A countable union of measurable sets is measurable.

3. Open sets and closed sets are measurable.

4. If A is measurable then Rd \ A =: Ac is measurable.

5. A countable intersection of measurable sets is measurable.
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Theorem 1.9 (countable additivity). Let (Ak)k∈N be measurable and disjoint. Then

m

 ∞∪
k=1

Ak

 =
∞∑
k=1

m(Ak)

Remark. In particular, if A ⊆ B ⊆ Rd are measurable then m(B) = m(A) +m(B \ A).

Proposition 1.10 (continuity of measure). Let (Ak)k∈N be measurable.

1. If Ak ⊆ Ak+1∀k ∈ N then m(
∪∞

k=1Ak) = limk→∞m(Ak).

2. If Ak ⊇ Ak+1∀k ∈ N and m(A1) <∞ then m(
∩∞

k=1Ak) = limk→∞m(Ak).

Remark. m(A1) < ∞ is necessary: m(
∩∞

k=1[k,∞)) = m(∅) = 0 while m([k,∞)) =

∞∀k ∈ N.

Theorem 1.11 (outer and inner approximations of measurable sets). Let A ⊆ Rd. Then the

following are equivalent:

1. A is measurable;

2. There exists a Gδ set G (a Gδ set is a countable intersection of open sets) and a set N

of measure 0 such that A = G \N ;

3. For every ϵ > 0, there exists Fϵ closed such that Fϵ ⊆ A and m∗(A \ Fϵ) < ϵ;

4. There exists an Fσ set F (an Fσ set is a countable union of closed sets) and a set N

of measure 0 such that A = F ∪N .

Counterexamples

Are all subsets of Rd measurable?

Theorem 1.12. If A ⊆ Rd is such that m∗(A) > 0 then there exists B ⊆ A non-measurable.

Are all subsets of measure 0 in R countable?

Definition 1.3. We call Cantor set the set C :=
∩∞

k=1Ck where C1 := [0, 1
3
] ∪ [2

3
, 1] and

∀k ≥ 2, Ck :=
∪2k

j=1 Ij,k where ∀j ∈ {1, . . . , 2k−1}, I2j−1,k, I2j,k are the first and last thirds of

Ij,k−1.

Theorem 1.13. C is closed and uncountable. m(C) = 0.
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Are all measurable sets Borel?

Definition 1.4. A collection Ω of subsets of Rd is called a σ-algebra if the following conditions

are satisfied:

1. Rd ∈ Ω;

2. ∀A,B ∈ Ω : A \B ∈ Ω;

3. ∀(Ak)k∈N ⊆ Ω :
∪∞

k=1Ak ∈ Ω.

Proposition 1.14. Any intersection of σ-algebras is a σ-algebra.

Definition 1.5. The intersection of all the σ-algebras containing the open sets is called the

Borel σ-algebra and its elements the Borel sets.

Remark. In particular, Borel sets are measurable.

Proposition 1.15. There exists a subset of the Cantor set which is measurable but not Borel.

Definition 1.6. We call Cantor-Lebesgue function (or Cantor staircase function) the func-

tion

φ : [0, 1] → [0, 1],

φ(x) =
i

2k
if x ∈ Jk,i where Jk,i is the i-th interval of [0, 1] \ Ck, k ≥ 1, i ∈ {1, . . . , 2k − 1},

φ(0) = 0, φ(x) = sup{φ(y) : y ∈ [0, x) \ C} if x ∈ (0, 1] ∩ C

Remark. φ(1) = 1.

Proposition 1.16. φ : [0, 1] → [0, 1] is increasing, continuous and surjective.

Proposition 1.17. If D ⊆ R is not Borel, then D × {0}d−1 ⊆ Rd is not Borel.

2 Lebesgue Measurable Function

Remark. We denote R = R ∪ {−∞,∞}

Proposition 2.1. Let A ⊆ Rd be measurable, f : A→ R. Then the following are equivalent:

1. ∀c ∈ R : f−1((c,+∞]) is measurable
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2. ∀c ∈ R : f−1([c,+∞]) is measurable

3. ∀c ∈ R : f−1([−∞, c)) is measurable

4. ∀c ∈ R : f−1([−∞, c]) is measurable

Definition 2.1. When these are satisfied, we say f is (Lebesgue) measurable.

Proposition 2.2. Let A ⊆ Rd and (Ak)k∈N ⊆ Rd be measurable sets such that the sets

(Ak)k∈N are disjoint and
⊔∞

k=1Ak = A. Let f : A → R be a function. If f |Ak
is measurable

for all k ∈ N then f is measurable.

Proposition 2.3. Let A ⊆ Rd measurable.

1. ∀B ⊆ A measurable, ∀f : A→ R measurable, f |B is measurable;

2. ∀B ⊆ R Borel, ∀f : B → R continuous, ∀g : A → B measurable, then f ◦ g is

measurable;

3. ∀f : A→ R, ∀g : A→ R both measurable, f + g is measurable;

4. ∀f : A→ [0,∞] measurable, ∀k ∈ N, fk is measurable;

5. ∀f, g : A→ R measurable, f · g is measurable;

6. ∀f, g : A→ R measurable, max(f, g),min(f, g) is measurable.

Proposition 2.4. Let A ⊆ Rd be measurable, let f : A → R measurable. Then for every

Borel set B ⊆ R, f−1(B) is measurable.

Remark. ∃D ⊆ R measurable, f measurable (even continuous) such that f−1(D) is not

measurable.

Proposition 2.5. Let A ⊆ Rd measurable, f : A→ R continuous, then f is measurable.

Definition 2.2. Let A ⊆ Rd, P (x) a statement depending on x ∈ A. We say P (x) is true

for almost every x ∈ A (or a.e. x ∈ A) if m∗({x ∈ A : P (x) is false}) = 0.

Proposition 2.6. If (Pk(x))k∈N is a countable collection of statements depending on x ∈ A,

then

[
∀k ∈ N : for a.e. x ∈ A,Pk(x) is true

]
⇔

[
for a.e. x ∈ A,∀k ∈ N : Pk(x) is true

]
5
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Proposition 2.7. Let f, g : A→ R be such that f = g a.e. in A. Then f measurable if and

only if g measurable.

Proposition 2.8. Let A ⊆ Rd and (Ak)k∈N ⊆ Rd be measurable sets such that the sets

(Ak)k∈N disjoint and
∪∞

k=1Ak = A. Let f : A → R be a function. If f |Ak
is measurable for

all k ∈ N, then f is measurable.

Proposition 2.9. Let A ⊆ Rd be measurable

1. ∀B ⊆ A measurable, ∀f : A→ R measurable, f |B is measurable.

2. ∀B ⊆ R Borel, ∀f : B → R continuous, ∀g : A→ B measurable, f ◦ g is measurable.

3. ∀f : A→ R measurable, ∀g : A→ R measurable, f + g is measurable.

4. ∀f : A→ R measurable, ∀k ∈ N, fk is measurable.

5. ∀f, g : A→ R, f · g is measurable.

Remark. ∃f, g measurable such that f ◦ g is not measurable.

Proposition 2.10. Let (fn)n∈N, fn : A → R be measurable functions converging pointwise

a.e. in A to a function f : A → R i.e. limn→∞ fn(x) = f(x) for a.e. x ∈ A. Then f is

measurable.

Proposition 2.11. Let (fn)n∈N, fn : A→ R be measurable functions. Then

x 7→ inf
n∈N

fn(x), x 7→ sup
n∈N

fn(x), x 7→ lim inf
n→∞

fn(x), x 7→ lim sup
n→∞

fn(x)

are all measurable.

Definition 2.3. We call simple function a measurable function φ : A → R such that φ(A)

is finite and φ has finite support i.e. m({x ∈ A : φ(x) 6= 0}) <∞.

Remark. In particular, any simple function φ can be written as

φ =
n∑

i=1

ciχAi

where n ≥ 0, c1, . . . , cn ∈ R \ {0} distinct (such that φ(A) \ {0} = {c1, . . . , cn}) and

A1, . . . , An ⊆ A measurable, disjoint and with finite measure (Ai = φ−1({ci})).
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Definition 2.4. We say that
∑n

i=1 ciχAi
is the canonical form of the simple function φ. We

say that
∑n

i=1 ciχAi
is a step function if the Ai are rectangles.

Theorem 2.12 (Simple Approximation Lemma). Let f : A → R,m(A) < ∞ be measurable

and bounded i.e. ∃M > 0∀x ∈ A : |f(x)| < M . Then ∀ϵ > 0∃φϵ, ψ : A→ R simple functions

such that

φϵ ≤ f ≤ ψϵ < φϵ + ϵ

Theorem 2.13 (Simple Approximation Theorem). Let f : A → R be measurable. Then

∃(φn)n∈N simple functions such that

1. (φn)n∈N converges pointwise to f on A i.e. limn→∞ φn(x) = f(x)∀x ∈ A, and

2. |φn| ≤ |φn+1| ≤ |f | on A ∀n ∈ N.

If f ≥ 0 then we have moreover that φn ≥ 0 and increasing in n.

Theorem 2.14 (Egorov). Let A ⊆ Rd be measurable, m(A) < ∞, (fn)n∈N, fn : A → R
measurable converging pointwise to f : A → R. Then ∀ϵ > 0∃Fϵ ⊆ A closed such that

(fn)n∈N converges to f uniformly in Fϵ i.e.

sup
Fϵ

|fn − f | n→∞−−−→ 0

and m(A \ Fϵ) < ϵ

Remark. This result does not hold in general when m(A) = ∞, e.g. fn(x) =
x
n
on A = R.

Theorem 2.15 (Lusin). Let f : A → R be measurable. Then ∀ϵ > 0∃Fϵ ⊆ A closed such

that f |Fϵ is continuous on Fϵ and m(A \ Fϵ) < ϵ.

Remark. Recall that “f |F continuoous on F” 6= “f continuous on F”: χQ is not continuous

at any point in R but χQ|R\Q = 0 is continuous on R \Q.

7
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3 Lebesgue Integration

Case of a simple function

Definition 3.1. Let φ : A → R be a simple function and φ =
∑n

k=1 ckχAk
be its canonical

form. We define the (Lebesgue) integral of φ over A by∫
A

φ =

∫
A

φ(x)dx =
n∑

k=1

ckm(Ak)

For any B ⊆ A measurable, we define
∫
B
f =

∫
A
fχB.

Proposition 3.1 (independence of the representation). Let n ∈ N, c1, . . . , cn ∈ R and

A1, . . . , An ⊆ A be measurable, disjoint, m(Ak) <∞. Then∫
A

n∑
k=1

ckχAk
=

n∑
k=1

ckm(Ak)

Proposition 3.2. Let φ, ψ : A→ R be simple. Then

1. ∀α, β ∈ R, αφ+ βψ simple and
∫
A
(αφ+ βψ) = α

∫
A
φ+ β

∫
A
ψ.

2. ∀B1, B2 ⊆ A measurable disjoint,
∫
B1∪B2

φ =
∫
B1
φ+

∫
B2
φ.

3. If φ ≤ ψ on A then
∫
A
φ ≤

∫
A
ψ.

4. |φ| is simple and |
∫
A
φ| ≤

∫
A
|φ|.

Case of a bounded measurable function with finite support

Definition 3.2. We denote supp(f) and call support of a measurable function f : A → R

the set

supp(f) = {x ∈ A : f(x) 6= 0}

If supp(f) ⊆ E ⊆ A, then we say f is supported in E. If m(supp(f)) < ∞, we say that f

has finite support.

Proposition 3.3. Let f : A → R be bounded, measurable and with finite support. Let

(φn)n∈N be simple functions in A such that

8
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1. ∃E ⊆ A measurable such that m(E) <∞ and supp(ϕn) ⊆ E for all n ∈ N,

2. ∃M > 0 such that ∀n ∈ N, |φn| ≤M in A, and

3. limn→∞ φn(x) = f(x) for a.e. x ∈ A (a.e. pointwise convergence).

Then limn→∞
∫
A
φn exists and does not depend on the choice of (φn)n∈N satisfying the above.

Remark. Such (φn) exists by the Simple Approximation Lemma.

Definition 3.3. Given the above proposition, we then call integral of f over A the number∫
A
f = limn→∞

∫
A
φn. For every B ⊆ A measurable, we define

∫
B
f =

∫
A
fχB.

Remark. If f = 0 a.e. in A then
∫
A
f = 0.

Proposition 3.4. Let f, g : A→ R be bounded, measurable and with finite support. Then

1. ∀α, β ∈ R, αf + βg is bounded, measurable and with finite support and
∫
A
(αf + βg) =

α
∫
A
f + β

∫
A
g.

2. ∀B1, B2 ⊆ A measurable disjoint,
∫
B1∪B2

f =
∫
B1
f +

∫
B2
f .

3. If f ≤ g on A then
∫
A
f ≤

∫
A
g.

4. |f | is bounded, measurable and with finite support and |
∫
A
f | ≤

∫
A
|f |.

Theorem 3.5 (Bounded Convergence Theorem). Let (fn)n∈N, fn : A → R be a sequence of

measurable function such that

1. ∃E ⊆ A measurable such that m(E) <∞ and supp(fn) ⊆ E for all n ∈ N,

2. ∃M > 0 such that ∀n ∈ N, |fn| ≤M in A, and

3. ∃f : A→ R such that limn→∞ fn(x) = f(x) for a.e. x ∈ A.

Then f is bounded, measurable, with finite support and limn→∞
∫
A
fn =

∫
A
f .

Remark.
∫ 1

0
nχ[0, 1

n
](x)dx = 1 but nχ[0, 1

n
](x)

n→∞−−−→ 0∀x ∈ (0, 1] i.e. for a.e. x ∈ [0, 1].

Theorem 3.6. If A = [a, b], a < b ∈ R then every bounded function f : A → R that is

Riemann integrable is measurable and its Riemann
∫
A
f is equal to its Lebesgue integral

∫
A
f .

9
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Case of a nonnegative measurable function

Definition 3.4. Let f : A→ [0,∞] be measurable. Then we define the integral of f over A

as∫
A

f = sup

{∫
A

h : h : A→ [0,∞) bounded, measurable, with finite support, h ≤ f on A

}

For every B ⊆ A, we define
∫
B
f =

∫
A
f̃ where f̃(x) =

f(x) x ∈ B

0 x /∈ B
(f̃ = χBf if f < ∞).

We say that f is integral over B if
∫
B
f <∞.

Proposition 3.7. Let f, g : A→ [0,∞] be measurable. Then

1. ∀α, β ≥ 0, αf + βg is nonnegative measurable and
∫
A
(αf + βg) = α

∫
A
f + β

∫
A
g.

2. ∀B1, B2 ⊆ A measurable disjoint,
∫
B1∪B2

f =
∫
B1
f +

∫
B2
f .

3. If f ≤ g on A then
∫
A
f ≤

∫
A
g. Moreover, if f = g a.e. on A then

∫
A
f =

∫
A
g. In

particular, if f = 0 a.e. on A then
∫
A
f = 0.

Remark. For every A ⊆ Rd measurable,
∫
Rd χA = m(A).

Theorem 3.8 (Chebyshev’s Inequality). Let f : A→ [0,∞] be measurable. Then

∀c > 0 : m(f−1([0,+∞])) ≤ 1

c

∫
A

f

Corollary 3.9. Let f : A→ [0,∞] be measurable. Then
∫
A
f = 0 ⇔ f = 0 a.e. in A.

Corollary 3.10. Let f : A→ [0,∞] be measurable. If f is integrable then f <∞ a.e. in A.

Theorem 3.11 (Fatou’s Lemma). Let (fn)n∈N be measurable nonnegative on A ⊆ Rd. Then∫
A

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A

fn

Remark. There is not equality since∫
R
nχ(0, 1

n
) = 1 >

∫
R
lim
n→

(nχ(0, 1
n
)) =

∫
R
0 = 0

10
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Theorem 3.12 (Monotone Convergence Theorem). Let (fn)n∈N be measurable, nonnegative

functions increasing in n (i.e. fn+1 ≥ fn on A). Then limn→∞
∫
A
fn =

∫
A
limn→∞ fn.

Corollary 3.13. Let (un)n∈N be measurable, nonnegative function. Then
∑∞

n=1

∫
A
un =∫

A

∑∞
n=1 un.

Case of a sign-changing function

Definition 3.5. Let f : A→ R be measurable. We say that f is integrable if f+ = max(f, 0)

and f− = max(−f, 0) are integrable. We then call integral of f over A the number
∫
A
f =∫

A
f+ −

∫
A
f−. For every B ⊆ A, we denote

∫
B
f =

∫
B
f+ −

∫
B
f−.

Proposition 3.14. f integrable ⇔ |f | integrable.

Remark. If f, g : A→ R thenf + g is not defined on N = {x ∈ A : f(x) = −g(x) = ±∞}

fg is not defined on N = {x ∈ A : |f(x)| = ∞, g(x) = 0 ∨ |g(x)| = ∞, f(x) = 0}

However, if f, g integrable then |f | <∞ and |g| <∞ a.e. in A, in which case we say f+g, fg

integrable and we denote
∫
A
(f + g) =

∫
A\N(f + g) and

∫
A
fg =

∫
A\N fg.

Proposition 3.15. Let f, g : A→ R be integrable. Then

1. ∀α, β ∈ R, αf + βg is integrable and
∫
A
(αf + βg) = α

∫
A
f + β

∫
A
g.

2. ∀B1, B2 ⊆ A measurable disjoint,
∫
B1∪B2

f =
∫
B1
f +

∫
B2
f .

3. f ≤ g on A ⇒
∫
A
f ≤

∫
A
g. f = g a.e. on A ⇒

∫
A
f =

∫
A
g.

4. |
∫
A
f | ≤

∫
A
|f |.

Theorem 3.16 (Dominated Convergence Theorem). Let (fn)n∈N be measurable functions on

A such that

1. ∃f : A→ R measurable such that limn→∞ fn(x) = f(x) for a.e. x ∈ A, and

2. ∃g : A→ R integrable such that |fn(x)| ≤ g(x) for a.e. x ∈ A and ∀n ∈ N.

Then fn and f are integrable and limn→∞
∫
A
fn =

∫
A
f .

11
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Corollary 3.17 (continuity of the integral). Let f be integrable over A ⊆ Rd. Then

1. If (An)n∈N is a sequence of measurable subsets of A such that An ⊆ An+1 then∫
∪∞

n=1 An

f = lim
n→∞

∫
An

f

2. If (An)n∈N is a sequence of measurable subsets of A such that An ⊇ An+1 then∫
∩∞

n=1

Anf = lim
n→∞

∫
An

f

4 Fubini and Tonelli’s Theorems

Definition 4.1. Let d1, d2 ∈ N be such that d = d1+d2. We denote (x, y) ∈ Rd = Rd1 ×Rd2 .

For every E ⊆ Rd, we denote Ex = {y ∈ Rd2 : (x, y) ∈ E} and Ey = {x ∈ Rd1 : (x, y) ∈ E}.
∀f : E → R, fx : Ex → R, y 7→ f(x, y) and fy : Ey → R, x 7→ f(x, y)

Remark. Ex and Ey are not necessarily measurable when E is measurable.

Remark. It is not always true that
∫
A
(
∫
B
f(x, y)dy)dx =

∫
B
(
∫
A
f(x, y)dx)dy even when the

integrals are well-defined.

Theorem 4.1 (Fubini). Let f : Rd → R be integrable. Then

1. For a.e. y ∈ Rd2, fy is integrable on Rd1,

2. y 7→
∫
Rd1

fy =
∫
Rd1

f(x, y)dx is integrable on Rd2, and

3.
∫
Rd2

(
∫
Rd1

f(x, y)dx)dy =
∫
Rd f .

Remark. The roles of x and y can be interchanged so that
∫
Rd f =

∫
Rd1

(
∫
Rd2

f(x, y)dy)dx.

Theorem 4.2 (Tonelli). Let f be nonnegative measurable on Rd. Then

1. For a.e. y ∈ Rd2, fy is measurable in Rd1,

2. y 7→
∫
Rd1

fy is measurable in Rd2, and

3.
∫
Rd2

(
∫
Rd1

fy) =
∫
Rd f .

12
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Corollary 4.3. If A ⊆ Rd is measurable then for a.e. y ∈ Rd2, Ay is measurable and

moreover, y 7→ m(Ay) is measurable and m(A) =
∫
Rd2

m(Ay)dy.

Corollary 4.4 (Tonelli for A ⊆ Rd). Let f : A→ R be nonnegative measurable. Then

1. For a.e. y ∈ Rd2, fy is measurable in Rd1,

2. y 7→
∫
Rd1

fy is measurable in Rd2, and

3.
∫
Rd2

(
∫
Rd1

fy) =
∫
Rd f .

Corollary 4.5 (Fubini for A ⊆ Rd). Let f : A→ R be integrable over A. Then

1. For a.e. y ∈ Rd2, fy is integrable on Rd1,

2. y 7→
∫
Rd1

fy =
∫
Rd1

f(x, y)dx is integrable on Rd2, and

3.
∫
Rd2

(
∫
Rd1

f(x, y)dx)dy =
∫
Rd f .

Lemma 4.6. ∀E1 ⊆ Rd1 , E2 ⊆ Rd2,

m∗(E1 × E2) ≤

m∗(E1)m∗(E2) m∗(E1) 6= 0 ∧m∗(E2) 6= 0

0 otherwise

Theorem 4.7. Let E1 ⊆ Rd1 and E2 ⊆ Rd2 be measurable. Then E1 ×E2 is measurable and

m∗(E1 × E2) =

m∗(E1)m∗(E2) m∗(E1) 6= 0 ∧m∗(E2) 6= 0

0 otherwise

Corollary 4.8. Let E1 ⊆ Rd1 and E2 ⊆ Rd2 be measurable and f be a measurable function

on E1. Then f̃ : E1 × E2 → R, (x, y) 7→ f(x) is measurable on E1 × E2.

Proposition 4.9. Let d1 = d − 1, A ⊆ Rd1 be measurable and f : A → [0,∞]. Then f is

measurable if and only if E = {(x, y) ∈ A× R : 0 ≤ y ≤ f(x)} is measurable. Furthermore,

if f is measurable, then m(E) =
∫
A
f(x)dx.

Proposition 4.10. Let f be measurable on Rd. Then g : R2d → R, (x, y) 7→ f(x − y) is

measurable.

Remark. This is useful when defining convolution f ∗ g : x 7→
∫
Rd f(x− y)g(y)dy.

13
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5 Differentiation

Theorem 5.1. A monotone function f : [a, b] → R is differentiable almost everywhere in

(a, b). Furthermore, f ′ is integrable and

∫ b

a

f ′

≤ f(b)− f(a) f increasing

≥ f(b)− f(a) f decreasing

Remark. The Cantor-Lebesgue function is monotone, differentiable in [0, 1], with φ′ = 0

a.e. in [0, 1] but
∫ 1

0
φ′ = 0 < φ(1)− φ(0) = 1.

Theorem 5.2. Let F be a collection of bounded intervals in [a, b] ⊆ R of positive length. Then

there exists a countable collection F ′ ⊆ F of disjoint intervals such that
∪

I∈F I ⊆
∪

I∈F ′ 5I,

where 5I = {x ∈ R : xI +
1
5
(x− xI) ∈ I} (xI middle point of I).

Remark. It is possible to replace 5 by a number x > 3 but no less: consider F = {[−1, 0], [0, 1]}.

Proposition 5.3. A monotone function f : [a, b] → R has at most countably many discon-

tinuities.

Functions of bounded variation

Definition 5.1. Let f : [a, b] → R be a function. We call total variation of f on [a, b] the

number

Tf (a, b) = sup


k∑

i=1

|f(xi)− f(xi−1)| : a = x0 < x1 < · · · < xk = b


If Tf (a, b) <∞, then we say that f is of bounded variation on [a, b].

Remark. Monotone and Lipschitz continuous functions are of bounded variation.

Remark.

f(x) =

x cos( 1x) 0 < x ≤ 1

0 x = 0

is not of bounded variation.

14
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Theorem 5.4. A function f : [a, b] → R is of bounded variation if and only if it can be

written as the difference between two increasing functions. In particular, if f is of bounded

variation then f is differentiable a.e. and f ′ is integrable over [a, b].

Absolutely continuous functions

Definition 5.2. We say that a function f : [a, b] → R is absolutely continuous on [a, b]

if ∀ϵ > 0∃δ > 0 such that for every finite collection of disjoint open bounded intervals

(ak, bk) ⊆ [a, b], 1 ≤ k ≤ n, if
∑n

k=1(bk − ak) < δ then
∑n

k=1 |f(bk)− f(ak)| < ϵ.

Remark. f absolutely continuous ⇒ f uniformly continuous by taking n = 1.

Remark. The Cantor-Lebesgue function φ is not absolutely continuous on [0, 1].

Proposition 5.5. If f : [a, b] → R is Lipschitz continuous then f is absolutely continuous

on [a, b].

Theorem 5.6. If f : [a, b] → R is absolutely continuous on [a, b] then f can be written as

the difference between two increasing absolutely continuous functions. In particular, f is of

bounded variation on [a, b].

Theorem 5.7. Let f : [a, b] → R.

1. If f is absolutely continuous on [a, b] then

∀x ∈ [a, b] :

∫
[a,x]

f ′ = f(x)− f(a)

2. Conversely, for every integrable function g over [a, b], the function x 7→
∫ x

a
g is abso-

lutely continuous on [a, b] with derivative equal to g a.e. in [a, b].

Lemma 5.8. Let h be integrable over [a, b]. Then h = 0 a.e. in [a, b] ⇔
∫ x

a
h = 0 for all

x ∈ (a, b).

Corollary 5.9. If f : [a, b] → R is monotone, then f is absolutely continuous in [a, b] ⇔∫ b

a
f ′ = f(b)− f(a).

Corollary 5.10 (Lebesgue decomposition). Every function f : [a, b] → R of bounded varia-

tions can be written as f = fabs + fsing, where fabs =
∫ x

a
f ′ is absolutely continuous in [a, b]

and fsing = f − fabs is such that f ′
sing = 0 a.e. in [a, b].
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