Introduction

Definition 0.1 (Riemann 1854). Let $[a, b]$ be a closed bounded interval, $f:[a, b] \rightarrow \mathbb{R}$ bounded function. We say f is Riemann integrable if

$$
\begin{aligned}
& \underline{\int_{a}^{b}} f:=\sup \left\{\sum_{i=1}^{n} \inf _{\left[x_{i-1}, x_{i}\right]} f\left(x_{i}-x_{i-1}\right): a=x_{0}<x_{1}<\cdots<x_{n}=b\right\} \\
= & \overline{\int_{a}^{b}} f:=\inf \left\{\sum_{i=1}^{n} \sup _{\left[x_{i-1}, x_{i}\right]} f\left(x_{i}-x_{i-1}\right): a=x_{0}<x_{1}<\cdots<x_{n}=b\right\}
\end{aligned}
$$

We then denote $\int_{a}^{b} f=\int_{a}^{b} f(x) d x:=\underline{\int_{a}^{b} f=\overline{\int_{a}^{b}} f . ~}$
Theorem 0.1. Every continuous function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable
Remark. $f: x \in[0,1] \mapsto\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$ is not Riemann integrable.

1 Measure Theory

Definition 1.1. 1. Let rectangle R be $\left(a_{1}, b_{1}\right) \times \cdots \times\left(a_{d}, b_{d}\right) \subseteq R \subseteq\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{d}, b_{d}\right]$, where $-\infty<a_{i} \leq b_{i}<\infty \forall 1 \leq i \leq d$. We call volume of R and denote $\operatorname{vol}(R)$ the number $\operatorname{vol}(R):=\prod_{i=1}^{d}\left(b_{i}-a_{i}\right)$. We say that R is a cube if $b_{1}-a_{1}=\cdots=b_{d}-a_{d}$.
2. For every set $A \subseteq \mathbb{R}^{d}$ we call the exterior measure of A and denote $m_{*}(A)$ the number

$$
m_{*}(A)=\inf \left\{\sum_{k=1}^{\infty} \operatorname{vol}\left(Q_{k}\right): Q_{k} \text { closed cubes, } A \subseteq \bigcup_{k=1}^{\infty} Q_{k}\right\} \in[0, \infty]
$$

Remark.

$$
\left\{\sum_{k=1}^{\infty} \operatorname{vol}\left(Q_{k}\right): Q_{k} \text { closed cubes, } A \subseteq \bigcup_{k=1}^{\infty} Q_{k}\right\} \neq \varnothing \because A \subseteq \bigcup_{n=1}^{\infty}[-n, n]^{d}=\mathbb{R}^{d}
$$

Remark.

$$
\begin{aligned}
m_{*}(A) & =\inf \left\{\sum_{k=1}^{\infty} \operatorname{vol}\left(Q_{k}\right): Q_{k} \text { open cubes, } A \subseteq \bigcup_{k=1}^{\infty} Q_{k}\right\} \\
& =\inf \left\{\sum_{k=1}^{\infty} \operatorname{vol}\left(Q_{k}\right): Q_{k} \text { rectangles, } A \subseteq \bigcup_{k=1}^{\infty} Q_{k}\right\}
\end{aligned}
$$

Proposition 1.1. If $A \subseteq \mathbb{R}^{d}$ is countable then $m_{*}(A)=0$
Proposition 1.2 (monotonicity). If $A \subseteq B \subseteq \mathbb{R}^{d}$ then $m_{*}(A) \leq m_{*}(B)$
Proposition 1.3. If $O \subseteq \mathbb{R}^{d}$ is open then it can be written as $O=\bigcup_{k=1}^{\infty} \bar{Q}_{k}$ where Q_{k} are disjoint, open cubes $\overline{Q_{k}}$ is the closure of $\left.Q_{k}\right)$.

Proposition 1.4. If $R \subseteq \mathbb{R}^{d}$ is a rectangle then $m_{*}(R)=\operatorname{vol}(R)$.
Proposition 1.5. If $A \subseteq \mathbb{R}^{d}$ then $m_{*}(A)=\inf \left\{m_{*}(O): O\right.$ open set, $\left.A \subseteq O\right\}$.
Proposition 1.6. Let $\left(A_{k}\right)_{k \in \mathbb{N}}$ be a sequence of sets in \mathbb{R}^{d} (not necessarily disjoint). Then $m_{*}\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} m_{*}\left(A_{k}\right)$.

Proposition 1.7. Let $A_{1}, A_{2} \subseteq \mathbb{R}^{d}$ be such that $d\left(A_{1}, A_{2}\right)>0$ i.e. $\inf \left\{|x-y|: x \in A_{1}, y \in\right.$ $\left.A_{2}\right\}>0$. Then $m_{*}\left(A_{1} \cup A_{2}\right)=m_{*}\left(A_{1}\right)+m_{*}\left(A_{2}\right)$

Definition 1.2. A set $A \subseteq \mathbb{R}^{d}$ is said to be (Lebesgue)-measurable if for every $\epsilon>0$, there exists O_{ϵ} open such that $A \subseteq O_{\epsilon}$ and $m_{*}\left(O_{\epsilon} \backslash A\right)<\epsilon$. We then denote $m(A)=m_{*}(A)$ the (Lebesgue)-measure of A.

Proposition 1.8. 1. If $m_{*}(A)=0$ then A is measurable.
2. A countable union of measurable sets is measurable.
3. Open sets and closed sets are measurable.
4. If A is measurable then $R^{d} \backslash A=: A^{c}$ is measurable.
5. A countable intersection of measurable sets is measurable.

Theorem 1.9 (countable additivity). Let $\left(A_{k}\right)_{k \in \mathbb{N}}$ be measurable and disjoint. Then

$$
m\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} m\left(A_{k}\right)
$$

Remark. In particular, if $A \subseteq B \subseteq \mathbb{R}^{d}$ are measurable then $m(B)=m(A)+m(B \backslash A)$.
Proposition 1.10 (continuity of measure). Let $\left(A_{k}\right)_{k \in \mathbb{N}}$ be measurable.

1. If $A_{k} \subseteq A_{k+1} \forall k \in \mathbb{N}$ then $m\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\lim _{k \rightarrow \infty} m\left(A_{k}\right)$.
2. If $A_{k} \supseteq A_{k+1} \forall k \in \mathbb{N}$ and $m\left(A_{1}\right)<\infty$ then $m\left(\bigcap_{k=1}^{\infty} A_{k}\right)=\lim _{k \rightarrow \infty} m\left(A_{k}\right)$.

Remark. $m\left(A_{1}\right)<\infty$ is necessary: $m\left(\bigcap_{k=1}^{\infty}[k, \infty)\right)=m(\varnothing)=0$ while $m([k, \infty))=$ $\infty \forall k \in \mathbb{N}$.

Theorem 1.11 (outer and inner approximations of measurable sets). Let $A \subseteq \mathbb{R}^{d}$. Then the following are equivalent:

1. A is measurable;
2. There exists a G_{δ} set $G\left(a G_{\delta}\right.$ set is a countable intersection of open sets) and a set N of measure 0 such that $A=G \backslash N$;
3. For every $\epsilon>0$, there exists F_{ϵ} closed such that $F_{\epsilon} \subseteq A$ and $m_{*}\left(A \backslash F_{\epsilon}\right)<\epsilon$;
4. There exists an F_{σ} set F (an F_{σ} set is a countable union of closed sets) and a set N of measure 0 such that $A=F \cup N$.

Counterexamples

Are all subsets of R^{d} measurable?

Theorem 1.12. If $A \subseteq \mathbb{R}^{d}$ is such that $m_{*}(A)>0$ then there exists $B \subseteq A$ non-measurable.

Are all subsets of measure 0 in R countable?

Definition 1.3. We call Cantor set the set $C:=\bigcap_{k=1}^{\infty} C_{k}$ where $C_{1}:=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$ and $\forall k \geq 2, C_{k}:=\bigcup_{j=1}^{2^{k}} I_{j, k}$ where $\forall j \in\left\{1, \ldots, 2^{k-1}\right\}, I_{2 j-1, k}, I_{2 j, k}$ are the first and last thirds of $I_{j, k-1}$.

Theorem 1.13. C is closed and uncountable. $m(C)=0$.

Are all measurable sets Borel?

Definition 1.4. A collection Ω of subsets of \mathbb{R}^{d} is called a σ-algebra if the following conditions are satisfied:

1. $\mathbb{R}^{d} \in \Omega$;
2. $\forall A, B \in \Omega: A \backslash B \in \Omega$;
3. $\forall\left(A_{k}\right)_{k \in \mathbb{N}} \subseteq \Omega: \bigcup_{k=1}^{\infty} A_{k} \in \Omega$.

Proposition 1.14. Any intersection of σ-algebras is a σ-algebra.
Definition 1.5. The intersection of all the σ-algebras containing the open sets is called the Borel σ-algebra and its elements the Borel sets.

Remark. In particular, Borel sets are measurable.
Proposition 1.15. There exists a subset of the Cantor set which is measurable but not Borel.
Definition 1.6. We call Cantor-Lebesgue function (or Cantor staircase function) the function

$$
\begin{aligned}
& \varphi:[0,1] \rightarrow[0,1], \\
& \varphi(x)=\frac{i}{2^{k}} \text { if } x \in J_{k, i} \text { where } J_{k, i} \text { is the } i \text {-th interval of }[0,1] \backslash C_{k}, k \geq 1, i \in\left\{1, \ldots, 2^{k}-1\right\}, \\
& \varphi(0)=0, \varphi(x)=\sup \{\varphi(y): y \in[0, x) \backslash C\} \text { if } x \in(0,1] \cap C
\end{aligned}
$$

Remark. $\varphi(1)=1$.
Proposition 1.16. $\varphi:[0,1] \rightarrow[0,1]$ is increasing, continuous and surjective.
Proposition 1.17. If $D \subseteq \mathbb{R}$ is not Borel, then $D \times\{0\}^{d-1} \subseteq \mathbb{R}^{d}$ is not Borel.

2 Lebesgue Measurable Function

Remark. We denote $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$
Proposition 2.1. Let $A \subseteq \mathbb{R}^{d}$ be measurable, $f: A \rightarrow \overline{\mathbb{R}}$. Then the following are equivalent:

1. $\forall c \in \mathbb{R}: f^{-1}((c,+\infty])$ is measurable
2. $\forall c \in \mathbb{R}: f^{-1}([c,+\infty])$ is measurable
3. $\forall c \in \mathbb{R}: f^{-1}([-\infty, c))$ is measurable
4. $\forall c \in \mathbb{R}: f^{-1}([-\infty, c])$ is measurable

Definition 2.1. When these are satisfied, we say f is (Lebesgue) measurable.
Proposition 2.2. Let $A \subseteq \mathbb{R}^{d}$ and $\left(A_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}^{d}$ be measurable sets such that the sets $\left(A_{k}\right)_{k \in \mathbb{N}}$ are disjoint and $\bigsqcup_{k=1}^{\infty} A_{k}=A$. Let $f: A \rightarrow \overline{\mathbb{R}}$ be a function. If $\left.f\right|_{A_{k}}$ is measurable for all $k \in \mathbb{N}$ then f is measurable.

Proposition 2.3. Let $A \subseteq \mathbb{R}^{d}$ measurable.

1. $\forall B \subseteq A$ measurable, $\forall f: A \rightarrow \overline{\mathbb{R}}$ measurable, $\left.f\right|_{B}$ is measurable;
2. $\forall B \subseteq \mathbb{R}$ Borel, $\forall f: B \rightarrow \mathbb{R}$ continuous, $\forall g: A \rightarrow B$ measurable, then $f \circ g$ is measurable;
3. $\forall f: A \rightarrow \overline{\mathbb{R}}, \forall g: A \rightarrow \mathbb{R}$ both measurable, $f+g$ is measurable;
4. $\forall f: A \rightarrow[0, \infty]$ measurable, $\forall k \in \mathbb{N}$, f^{k} is measurable;
5. $\forall f, g: A \rightarrow \mathbb{R}$ measurable, $f \cdot g$ is measurable;
6. $\forall f, g: A \rightarrow \mathbb{R}$ measurable, $\max (f, g), \min (f, g)$ is measurable.

Proposition 2.4. Let $A \subseteq \mathbb{R}^{d}$ be measurable, let $f: A \rightarrow \overline{\mathbb{R}}$ measurable. Then for every Borel set $B \subseteq \mathbb{R}, f^{-1}(B)$ is measurable.

Remark. $\exists D \subseteq \mathbb{R}$ measurable, f measurable (even continuous) such that $f^{-1}(D)$ is not measurable.

Proposition 2.5. Let $A \subseteq \mathbb{R}^{d}$ measurable, $f: A \rightarrow \mathbb{R}$ continuous, then f is measurable.
Definition 2.2. Let $A \subseteq \mathbb{R}^{d}, P(x)$ a statement depending on $x \in A$. We say $P(x)$ is true for almost every $x \in A$ (or a.e. $x \in A$) if $m_{*}(\{x \in A: P(x)$ is false $\})=0$.

Proposition 2.6. If $\left(P_{k}(x)\right)_{k \in \mathbb{N}}$ is a countable collection of statements depending on $x \in A$, then

$$
\left[\forall k \in \mathbb{N}: \text { for a.e. } x \in A, P_{k}(x) \text { is true }\right] \Leftrightarrow\left[\text { for a.e. } x \in A, \forall k \in \mathbb{N}: P_{k}(x) \text { is true }\right]
$$

Proposition 2.7. Let $f, g: A \rightarrow \overline{\mathbb{R}}$ be such that $f=g$ a.e. in A. Then f measurable if and only if g measurable.

Proposition 2.8. Let $A \subseteq \mathbb{R}^{d}$ and $\left(A_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}^{d}$ be measurable sets such that the sets $\left(A_{k}\right)_{k \in \mathbb{N}}$ disjoint and $\bigcup_{k=1}^{\infty} A_{k}=A$. Let $f: A \rightarrow \overline{\mathbb{R}}$ be a function. If $\left.f\right|_{A_{k}}$ is measurable for all $k \in \mathbb{N}$, then f is measurable.

Proposition 2.9. Let $A \subseteq \mathbb{R}^{d}$ be measurable

1. $\forall B \subseteq A$ measurable, $\forall f: A \rightarrow \overline{\mathbb{R}}$ measurable, $\left.f\right|_{B}$ is measurable.
2. $\forall B \subseteq \mathbb{R}$ Borel, $\forall f: B \rightarrow \mathbb{R}$ continuous, $\forall g: A \rightarrow B$ measurable, $f \circ g$ is measurable.
3. $\forall f: A \rightarrow \overline{\mathbb{R}}$ measurable, $\forall g: A \rightarrow \mathbb{R}$ measurable, $f+g$ is measurable.
4. $\forall f: A \rightarrow \overline{\mathbb{R}}$ measurable, $\forall k \in \mathbb{N}$, f^{k} is measurable.
5. $\forall f, g: A \rightarrow \mathbb{R}, f \cdot g$ is measurable.

Remark. $\exists f, g$ measurable such that $f \circ g$ is not measurable.
Proposition 2.10. Let $\left(f_{n}\right)_{n \in \mathbb{N}}, f_{n}: A \rightarrow \overline{\mathbb{R}}$ be measurable functions converging pointwise a.e. in A to a function $f: A \rightarrow \overline{\mathbb{R}}$ i.e. $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for a.e. $x \in A$. Then f is measurable.

Proposition 2.11. Let $\left(f_{n}\right)_{n \in \mathbb{N}}, f_{n}: A \rightarrow \overline{\mathbb{R}}$ be measurable functions. Then

$$
x \mapsto \inf _{n \in \mathbb{N}} f_{n}(x), x \mapsto \sup _{n \in \mathbb{N}} f_{n}(x), x \mapsto \liminf _{n \rightarrow \infty} f_{n}(x), x \mapsto \limsup _{n \rightarrow \infty} f_{n}(x)
$$

are all measurable.
Definition 2.3. We call simple function a measurable function $\varphi: A \rightarrow \mathbb{R}$ such that $\varphi(A)$ is finite and φ has finite support i.e. $m(\{x \in A: \varphi(x) \neq 0\})<\infty$.

Remark. In particular, any simple function φ can be written as

$$
\varphi=\sum_{i=1}^{n} c_{i} \chi_{A_{i}}
$$

where $n \geq 0, c_{1}, \ldots, c_{n} \in \mathbb{R} \backslash\{0\}$ distinct (such that $\varphi(A) \backslash\{0\}=\left\{c_{1}, \ldots, c_{n}\right\}$) and $A_{1}, \ldots, A_{n} \subseteq A$ measurable, disjoint and with finite measure $\left(A_{i}=\varphi^{-1}\left(\left\{c_{i}\right\}\right)\right)$.

Definition 2.4. We say that $\sum_{i=1}^{n} c_{i} \chi_{A_{i}}$ is the canonical form of the simple function φ. We say that $\sum_{i=1}^{n} c_{i} \chi_{A_{i}}$ is a step function if the A_{i} are rectangles.

Theorem 2.12 (Simple Approximation Lemma). Let $f: A \rightarrow \mathbb{R}, m(A)<\infty$ be measurable and bounded i.e. $\exists M>0 \forall x \in A:|f(x)|<M$. Then $\forall \epsilon>0 \exists \varphi_{\epsilon}, \psi: A \rightarrow \mathbb{R}$ simple functions such that

$$
\varphi_{\epsilon} \leq f \leq \psi_{\epsilon}<\varphi_{\epsilon}+\epsilon
$$

Theorem 2.13 (Simple Approximation Theorem). Let $f: A \rightarrow \overline{\mathbb{R}}$ be measurable. Then $\exists\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ simple functions such that

1. $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ converges pointwise to f on A i.e. $\lim _{n \rightarrow \infty} \varphi_{n}(x)=f(x) \forall x \in A$, and
2. $\left|\varphi_{n}\right| \leq\left|\varphi_{n+1}\right| \leq|f|$ on $A \forall n \in \mathbb{N}$.

If $f \geq 0$ then we have moreover that $\varphi_{n} \geq 0$ and increasing in n.
Theorem 2.14 (Egorov). Let $A \subseteq \mathbb{R}^{d}$ be measurable, $m(A)<\infty,\left(f_{n}\right)_{n \in \mathbb{N}}, f_{n}: A \rightarrow \mathbb{R}$ measurable converging pointwise to $f: A \rightarrow \mathbb{R}$. Then $\forall \epsilon>0 \exists F_{\epsilon} \subseteq A$ closed such that $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to f uniformly in F_{ϵ} i.e.

$$
\sup _{F_{\epsilon}}\left|f_{n}-f\right| \xrightarrow{n \rightarrow \infty} 0
$$

and $m\left(A \backslash F_{\epsilon}\right)<\epsilon$
Remark. This result does not hold in general when $m(A)=\infty$, e.g. $f_{n}(x)=\frac{x}{n}$ on $A=\mathbb{R}$.
Theorem 2.15 (Lusin). Let $f: A \rightarrow \mathbb{R}$ be measurable. Then $\forall \epsilon>0 \exists F_{\epsilon} \subseteq A$ closed such that $\left.f\right|_{F_{\epsilon}}$ is continuous on F_{ϵ} and $m\left(A \backslash F_{\epsilon}\right)<\epsilon$.

Remark. Recall that " $\left.f\right|_{F}$ continuoous on $F " \neq " f$ continuous on F ": $\chi_{\mathbb{Q}}$ is not continuous at any point in \mathbb{R} but $\left.\chi_{\mathbb{Q}}\right|_{\mathbb{R} \backslash \mathbb{Q}}=0$ is continuous on $\mathbb{R} \backslash \mathbb{Q}$.

3 Lebesgue Integration

Case of a simple function

Definition 3.1. Let $\varphi: A \rightarrow \mathbb{R}$ be a simple function and $\varphi=\sum_{k=1}^{n} c_{k} \chi_{A_{k}}$ be its canonical form. We define the (Lebesgue) integral of φ over A by

$$
\int_{A} \varphi=\int_{A} \varphi(x) d x=\sum_{k=1}^{n} c_{k} m\left(A_{k}\right)
$$

For any $B \subseteq A$ measurable, we define $\int_{B} f=\int_{A} f \chi_{B}$.
Proposition 3.1 (independence of the representation). Let $n \in \mathbb{N}, c_{1}, \ldots, c_{n} \in \mathbb{R}$ and $A_{1}, \ldots, A_{n} \subseteq A$ be measurable, disjoint, $m\left(A_{k}\right)<\infty$. Then

$$
\int_{A} \sum_{k=1}^{n} c_{k} \chi_{A_{k}}=\sum_{k=1}^{n} c_{k} m\left(A_{k}\right)
$$

Proposition 3.2. Let $\varphi, \psi: A \rightarrow \mathbb{R}$ be simple. Then

1. $\forall \alpha, \beta \in \mathbb{R}, \alpha \varphi+\beta \psi$ simple and $\int_{A}(\alpha \varphi+\beta \psi)=\alpha \int_{A} \varphi+\beta \int_{A} \psi$.
2. $\forall B_{1}, B_{2} \subseteq A$ measurable disjoint, $\int_{B_{1} \cup B_{2}} \varphi=\int_{B_{1}} \varphi+\int_{B_{2}} \varphi$.
3. If $\varphi \leq \psi$ on A then $\int_{A} \varphi \leq \int_{A} \psi$.
4. $|\varphi|$ is simple and $\left|\int_{A} \varphi\right| \leq \int_{A}|\varphi|$.

Case of a bounded measurable function with finite support

Definition 3.2. We denote $\operatorname{supp}(f)$ and call support of a measurable function $f: A \rightarrow \bar{R}$ the set

$$
\operatorname{supp}(f)=\{x \in A: f(x) \neq 0\}
$$

If $\operatorname{supp}(f) \subseteq E \subseteq A$, then we say f is supported in E. If $m(\operatorname{supp}(f))<\infty$, we say that f has finite support.

Proposition 3.3. Let $f: A \rightarrow \mathbb{R}$ be bounded, measurable and with finite support. Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be simple functions in A such that

1. $\exists E \subseteq A$ measurable such that $m(E)<\infty$ and $\operatorname{supp}\left(\phi_{n}\right) \subseteq E$ for all $n \in \mathbb{N}$,
2. $\exists M>0$ such that $\forall n \in \mathbb{N},\left|\varphi_{n}\right| \leq M$ in A, and
3. $\lim _{n \rightarrow \infty} \varphi_{n}(x)=f(x)$ for a.e. $x \in A$ (a.e. pointwise convergence).

Then $\lim _{n \rightarrow \infty} \int_{A} \varphi_{n}$ exists and does not depend on the choice of $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ satisfying the above.
Remark. Such $\left(\varphi_{n}\right)$ exists by the Simple Approximation Lemma.
Definition 3.3. Given the above proposition, we then call integral of f over A the number $\int_{A} f=\lim _{n \rightarrow \infty} \int_{A} \varphi_{n}$. For every $B \subseteq A$ measurable, we define $\int_{B} f=\int_{A} f \chi_{B}$.

Remark. If $f=0$ a.e. in A then $\int_{A} f=0$.
Proposition 3.4. Let $f, g: A \rightarrow \mathbb{R}$ be bounded, measurable and with finite support. Then

1. $\forall \alpha, \beta \in \mathbb{R}, \alpha f+\beta g$ is bounded, measurable and with finite support and $\int_{A}(\alpha f+\beta g)=$ $\alpha \int_{A} f+\beta \int_{A} g$.
2. $\forall B_{1}, B_{2} \subseteq A$ measurable disjoint, $\int_{B_{1} \cup B_{2}} f=\int_{B_{1}} f+\int_{B_{2}} f$.
3. If $f \leq g$ on A then $\int_{A} f \leq \int_{A} g$.
4. $|f|$ is bounded, measurable and with finite support and $\left|\int_{A} f\right| \leq \int_{A}|f|$.

Theorem 3.5 (Bounded Convergence Theorem). Let $\left(f_{n}\right)_{n \in \mathbb{N}}, f_{n}: A \rightarrow \mathbb{R}$ be a sequence of measurable function such that

1. $\exists E \subseteq A$ measurable such that $m(E)<\infty$ and $\operatorname{supp}\left(f_{n}\right) \subseteq E$ for all $n \in \mathbb{N}$,
2. $\exists M>0$ such that $\forall n \in \mathbb{N},\left|f_{n}\right| \leq M$ in A, and
3. $\exists f: A \rightarrow \mathbb{R}$ such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for a.e. $x \in A$.

Then f is bounded, measurable, with finite support and $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f$.
Remark. $\int_{0}^{1} n \chi_{\left[0, \frac{1}{n}\right]}(x) d x=1$ but $n \chi_{\left[0, \frac{1}{n}\right]}(x) \xrightarrow{n \rightarrow \infty} 0 \forall x \in(0,1]$ i.e. for a.e. $x \in[0,1]$.
Theorem 3.6. If $A=[a, b], a<b \in \mathbb{R}$ then every bounded function $f: A \rightarrow \mathbb{R}$ that is Riemann integrable is measurable and its Riemann $\int_{A} f$ is equal to its Lebesgue integral $\int_{A} f$.

Case of a nonnegative measurable function

Definition 3.4. Let $f: A \rightarrow[0, \infty]$ be measurable. Then we define the integral of f over A as

$$
\int_{A} f=\sup \left\{\int_{A} h: h: A \rightarrow[0, \infty) \text { bounded, measurable, with finite support, } h \leq f \text { on } A\right\}
$$

For every $B \subseteq A$, we define $\int_{B} f=\int_{A} \tilde{f}$ where $\tilde{f}(x)=\left\{\begin{array}{ll}f(x) & x \in B \\ 0 & x \notin B\end{array}\left(\tilde{f}=\chi_{B} f\right.\right.$ if $\left.f<\infty\right)$.
We say that f is integral over B if $\int_{B} f<\infty$.
Proposition 3.7. Let $f, g: A \rightarrow[0, \infty]$ be measurable. Then

1. $\forall \alpha, \beta \geq 0, \alpha f+\beta g$ is nonnegative measurable and $\int_{A}(\alpha f+\beta g)=\alpha \int_{A} f+\beta \int_{A} g$.
2. $\forall B_{1}, B_{2} \subseteq A$ measurable disjoint, $\int_{B_{1} \cup B_{2}} f=\int_{B_{1}} f+\int_{B_{2}} f$.
3. If $f \leq g$ on A then $\int_{A} f \leq \int_{A} g$. Moreover, if $f=g$ a.e. on A then $\int_{A} f=\int_{A} g$. In particular, if $f=0$ a.e. on A then $\int_{A} f=0$.

Remark. For every $A \subseteq \mathbb{R}^{d}$ measurable, $\int_{\mathbb{R}^{d}} \chi_{A}=m(A)$.
Theorem 3.8 (Chebyshev's Inequality). Let $f: A \rightarrow[0, \infty]$ be measurable. Then

$$
\forall c>0: m\left(f^{-1}([0,+\infty])\right) \leq \frac{1}{c} \int_{A} f
$$

Corollary 3.9. Let $f: A \rightarrow[0, \infty]$ be measurable. Then $\int_{A} f=0 \Leftrightarrow f=0$ a.e. in A.
Corollary 3.10. Let $f: A \rightarrow[0, \infty]$ be measurable. If f is integrable then $f<\infty$ a.e. in A.
Theorem 3.11 (Fatou's Lemma). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be measurable nonnegative on $A \subseteq \mathbb{R}^{d}$. Then

$$
\int_{A} \liminf _{n \rightarrow \infty} f_{n} \leq \liminf _{n \rightarrow \infty} \int_{A} f_{n}
$$

Remark. There is not equality since

$$
\int_{\mathbb{R}} n \chi_{\left(0, \frac{1}{n}\right)}=1>\int_{\mathbb{R}} \lim _{n \rightarrow}\left(n \chi_{\left(0, \frac{1}{n}\right)}\right)=\int_{\mathbb{R}} 0=0
$$

Theorem 3.12 (Monotone Convergence Theorem). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be measurable, nonnegative functions increasing in n (i.e. $f_{n+1} \geq f_{n}$ on A). Then $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} \lim _{n \rightarrow \infty} f_{n}$.

Corollary 3.13. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be measurable, nonnegative function. Then $\sum_{n=1}^{\infty} \int_{A} u_{n}=$ $\int_{A} \sum_{n=1}^{\infty} u_{n}$.

Case of a sign-changing function

Definition 3.5. Let $f: A \rightarrow \overline{\mathbb{R}}$ be measurable. We say that f is integrable if $f_{+}=\max (f, 0)$ and $f_{-}=\max (-f, 0)$ are integrable. We then call integral of f over A the number $\int_{A} f=$ $\int_{A} f_{+}-\int_{A} f_{-}$. For every $B \subseteq A$, we denote $\int_{B} f=\int_{B} f_{+}-\int_{B} f_{-}$.

Proposition 3.14. f integrable $\Leftrightarrow|f|$ integrable.
Remark. If $f, g: A \rightarrow \overline{\mathbb{R}}$ then

$$
\left\{\begin{array}{l}
f+g \text { is not defined on } N=\{x \in A: f(x)=-g(x)= \pm \infty\} \\
f g \text { is not defined on } N=\{x \in A:|f(x)|=\infty, g(x)=0 \vee|g(x)|=\infty, f(x)=0\}
\end{array}\right.
$$

However, if f, g integrable then $|f|<\infty$ and $|g|<\infty$ a.e. in A, in which case we say $f+g, f g$ integrable and we denote $\int_{A}(f+g)=\int_{A \backslash N}(f+g)$ and $\int_{A} f g=\int_{A \backslash N} f g$.

Proposition 3.15. Let $f, g: A \rightarrow \overline{\mathbb{R}}$ be integrable. Then

1. $\forall \alpha, \beta \in \mathbb{R}, \alpha f+\beta g$ is integrable and $\int_{A}(\alpha f+\beta g)=\alpha \int_{A} f+\beta \int_{A} g$.
2. $\forall B_{1}, B_{2} \subseteq A$ measurable disjoint, $\int_{B_{1} \cup B_{2}} f=\int_{B_{1}} f+\int_{B_{2}} f$.
3. $f \leq g$ on $A \Rightarrow \int_{A} f \leq \int_{A} g . f=g$ a.e. on $A \Rightarrow \int_{A} f=\int_{A} g$.
4. $\left|\int_{A} f\right| \leq \int_{A}|f|$.

Theorem 3.16 (Dominated Convergence Theorem). Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be measurable functions on A such that

1. $\exists f: A \rightarrow \overline{\mathbb{R}}$ measurable such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for a.e. $x \in A$, and
2. $\exists g: A \rightarrow \overline{\mathbb{R}}$ integrable such that $\left|f_{n}(x)\right| \leq g(x)$ for a.e. $x \in A$ and $\forall n \in \mathbb{N}$.

Then f_{n} and f are integrable and $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f$.

Corollary 3.17 (continuity of the integral). Let f be integrable over $A \subseteq \mathbb{R}^{d}$. Then

1. If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of measurable subsets of A such that $A_{n} \subseteq A_{n+1}$ then

$$
\int_{\bigcup_{n=1}^{\infty} A_{n}} f=\lim _{n \rightarrow \infty} \int_{A_{n}} f
$$

2. If $\left(A_{n}\right)_{n \in \mathbb{N}}$ is a sequence of measurable subsets of A such that $A_{n} \supseteq A_{n+1}$ then

$$
\int_{\bigcap_{n=1}^{\infty}} A_{n} f=\lim _{n \rightarrow \infty} \int_{A_{n}} f
$$

4 Fubini and Tonelli's Theorems

Definition 4.1. Let $d_{1}, d_{2} \in \mathbb{N}$ be such that $d=d_{1}+d_{2}$. We denote $(x, y) \in \mathbb{R}^{d}=\mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}$. For every $E \subseteq \mathbb{R}^{d}$, we denote $E_{x}=\left\{y \in \mathbb{R}^{d_{2}}:(x, y) \in E\right\}$ and $E_{y}=\left\{x \in \mathbb{R}^{d_{1}}:(x, y) \in E\right\}$. $\forall f: E \rightarrow \overline{\mathbb{R}}, f_{x}: E_{x} \rightarrow \overline{\mathbb{R}}, y \mapsto f(x, y)$ and $f_{y}: E_{y} \rightarrow \overline{\mathbb{R}}, x \mapsto f(x, y)$

Remark. E_{x} and E_{y} are not necessarily measurable when E is measurable.
Remark. It is not always true that $\int_{A}\left(\int_{B} f(x, y) d y\right) d x=\int_{B}\left(\int_{A} f(x, y) d x\right) d y$ even when the integrals are well-defined.

Theorem 4.1 (Fubini). Let $f: \mathbb{R}^{d} \rightarrow \bar{R}$ be integrable. Then

1. For a.e. $y \in \mathbb{R}^{d_{2}}, f_{y}$ is integrable on $\mathbb{R}^{d_{1}}$,
2. $y \mapsto \int_{\mathbb{R}^{d_{1}}} f_{y}=\int_{\mathbb{R}^{d_{1}}} f(x, y) d x$ is integrable on $\mathbb{R}^{d_{2}}$, and
3. $\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}} f(x, y) d x\right) d y=\int_{\mathbb{R}^{d}} f$.

Remark. The roles of x and y can be interchanged so that $\int_{\mathbb{R}^{d}} f=\int_{\mathbb{R}^{d_{1}}}\left(\int_{\mathbb{R}^{d_{2}}} f(x, y) d y\right) d x$.
Theorem 4.2 (Tonelli). Let f be nonnegative measurable on \mathbb{R}^{d}. Then

1. For a.e. $y \in \mathbb{R}^{d_{2}}, f_{y}$ is measurable in $\mathbb{R}^{d_{1}}$,
2. $y \mapsto \int_{\mathbb{R}^{d_{1}}} f_{y}$ is measurable in $\mathbb{R}^{d_{2}}$, and
3. $\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}} f_{y}\right)=\int_{\mathbb{R}^{d}} f$.

Corollary 4.3. If $A \subseteq \mathbb{R}^{d}$ is measurable then for a.e. $y \in \mathbb{R}^{d_{2}}$, A_{y} is measurable and moreover, $y \mapsto m\left(A_{y}\right)$ is measurable and $m(A)=\int_{\mathbb{R}^{d_{2}}} m\left(A_{y}\right) d y$.

Corollary 4.4 (Tonelli for $A \subseteq \mathbb{R}^{d}$). Let $f: A \rightarrow \overline{\mathbb{R}}$ be nonnegative measurable. Then

1. For a.e. $y \in \mathbb{R}^{d_{2}}, f_{y}$ is measurable in $\mathbb{R}^{d_{1}}$,
2. $y \mapsto \int_{\mathbb{R}^{d_{1}}} f_{y}$ is measurable in $\mathbb{R}^{d_{2}}$, and
3. $\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}} f_{y}\right)=\int_{\mathbb{R}^{d}} f$.

Corollary 4.5 (Fubini for $A \subseteq \mathbb{R}^{d}$). Let $f: A \rightarrow \overline{\mathbb{R}}$ be integrable over A. Then

1. For a.e. $y \in \mathbb{R}^{d_{2}}, f_{y}$ is integrable on $\mathbb{R}^{d_{1}}$,
2. $y \mapsto \int_{\mathbb{R}^{d_{1}}} f_{y}=\int_{\mathbb{R}^{d_{1}}} f(x, y) d x$ is integrable on $\mathbb{R}^{d_{2}}$, and
3. $\int_{\mathbb{R}^{d_{2}}}\left(\int_{\mathbb{R}^{d_{1}}} f(x, y) d x\right) d y=\int_{\mathbb{R}^{d}} f$.

Lemma 4.6. $\forall E_{1} \subseteq \mathbb{R}^{d_{1}}, E_{2} \subseteq \mathbb{R}^{d_{2}}$,

$$
m_{*}\left(E_{1} \times E_{2}\right) \leq \begin{cases}m_{*}\left(E_{1}\right) m_{*}\left(E_{2}\right) & m_{*}\left(E_{1}\right) \neq 0 \wedge m_{*}\left(E_{2}\right) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 4.7. Let $E_{1} \subseteq \mathbb{R}^{d_{1}}$ and $E_{2} \subseteq \mathbb{R}^{d_{2}}$ be measurable. Then $E_{1} \times E_{2}$ is measurable and

$$
m_{*}\left(E_{1} \times E_{2}\right)= \begin{cases}m_{*}\left(E_{1}\right) m_{*}\left(E_{2}\right) & m_{*}\left(E_{1}\right) \neq 0 \wedge m_{*}\left(E_{2}\right) \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Corollary 4.8. Let $E_{1} \subseteq \mathbb{R}^{d_{1}}$ and $E_{2} \subseteq \mathbb{R}^{d_{2}}$ be measurable and f be a measurable function on E_{1}. Then $\tilde{f}: E_{1} \times E_{2} \rightarrow \overline{\mathbb{R}},(x, y) \mapsto f(x)$ is measurable on $E_{1} \times E_{2}$.

Proposition 4.9. Let $d_{1}=d-1, A \subseteq \mathbb{R}^{d_{1}}$ be measurable and $f: A \rightarrow[0, \infty]$. Then f is measurable if and only if $E=\{(x, y) \in A \times \mathbb{R}: 0 \leq y \leq f(x)\}$ is measurable. Furthermore, if f is measurable, then $m(E)=\int_{A} f(x) d x$.

Proposition 4.10. Let f be measurable on \mathbb{R}^{d}. Then $g: \mathbb{R}^{2 d} \rightarrow \overline{\mathbb{R}},(x, y) \mapsto f(x-y)$ is measurable.

Remark. This is useful when defining convolution $f * g: x \mapsto \int_{\mathbb{R}^{d}} f(x-y) g(y) d y$.

5 Differentiation

Theorem 5.1. A monotone function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable almost everywhere in (a, b). Furthermore, f^{\prime} is integrable and

$$
\int_{a}^{b} f^{\prime} \begin{cases}\leq f(b)-f(a) & f \text { increasing } \\ \geq f(b)-f(a) & f \text { decreasing }\end{cases}
$$

Remark. The Cantor-Lebesgue function is monotone, differentiable in [0, 1], with $\varphi^{\prime}=0$ a.e. in $[0,1]$ but $\int_{0}^{1} \varphi^{\prime}=0<\varphi(1)-\varphi(0)=1$.

Theorem 5.2. Let F be a collection of bounded intervals in $[a, b] \subseteq \mathbb{R}$ of positive length. Then there exists a countable collection $F^{\prime} \subseteq F$ of disjoint intervals such that $\bigcup_{I \in F} I \subseteq \bigcup_{I \in F^{\prime}} 5 I$, where $5 I=\left\{x \in \mathbb{R}: x_{I}+\frac{1}{5}\left(x-x_{I}\right) \in I\right\} \quad\left(x_{I}\right.$ middle point of $\left.I\right)$.

Remark. It is possible to replace 5 by a number $x>3$ but no less: consider $F=\{[-1,0],[0,1]\}$.
Proposition 5.3. A monotone function $f:[a, b] \rightarrow \mathbb{R}$ has at most countably many discontinuities.

Functions of bounded variation

Definition 5.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function. We call total variation of f on $[a, b]$ the number

$$
T_{f}(a, b)=\sup \left\{\sum_{i=1}^{k}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|: a=x_{0}<x_{1}<\cdots<x_{k}=b\right\}
$$

If $T_{f}(a, b)<\infty$, then we say that f is of bounded variation on $[a, b]$.
Remark. Monotone and Lipschitz continuous functions are of bounded variation.
Remark.

$$
f(x)= \begin{cases}x \cos \left(\frac{1}{x}\right) & 0<x \leq 1 \\ 0 & x=0\end{cases}
$$

is not of bounded variation.

Theorem 5.4. A function $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation if and only if it can be written as the difference between two increasing functions. In particular, if f is of bounded variation then f is differentiable a.e. and f^{\prime} is integrable over $[a, b]$.

Absolutely continuous functions

Definition 5.2. We say that a function $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$ if $\forall \epsilon>0 \exists \delta>0$ such that for every finite collection of disjoint open bounded intervals $\left(a_{k}, b_{k}\right) \subseteq[a, b], 1 \leq k \leq n$, if $\sum_{k=1}^{n}\left(b_{k}-a_{k}\right)<\delta$ then $\sum_{k=1}^{n}\left|f\left(b_{k}\right)-f\left(a_{k}\right)\right|<\epsilon$.

Remark. f absolutely continuous $\Rightarrow f$ uniformly continuous by taking $n=1$.
Remark. The Cantor-Lebesgue function φ is not absolutely continuous on $[0,1]$.
Proposition 5.5. If $f:[a, b] \rightarrow \mathbb{R}$ is Lipschitz continuous then f is absolutely continuous on $[a, b]$.

Theorem 5.6. If $f:[a, b] \rightarrow \mathbb{R}$ is absolutely continuous on $[a, b]$ then f can be written as the difference between two increasing absolutely continuous functions. In particular, f is of bounded variation on $[a, b]$.

Theorem 5.7. Let $f:[a, b] \rightarrow \mathbb{R}$.

1. If f is absolutely continuous on $[a, b]$ then

$$
\forall x \in[a, b]: \int_{[a, x]} f^{\prime}=f(x)-f(a)
$$

2. Conversely, for every integrable function g over $[a, b]$, the function $x \mapsto \int_{a}^{x} g$ is absolutely continuous on $[a, b]$ with derivative equal to g a.e. in $[a, b]$.

Lemma 5.8. Let h be integrable over $[a, b]$. Then $h=0$ a.e. in $[a, b] \Leftrightarrow \int_{a}^{x} h=0$ for all $x \in(a, b)$.

Corollary 5.9. If $f:[a, b] \rightarrow \mathbb{R}$ is monotone, then f is absolutely continuous in $[a, b] \Leftrightarrow$ $\int_{a}^{b} f^{\prime}=f(b)-f(a)$.

Corollary 5.10 (Lebesgue decomposition). Every function $f:[a, b] \rightarrow \mathbb{R}$ of bounded variations can be written as $f=f_{\text {abs }}+f_{\text {sing }}$, where $f_{a b s}=\int_{a}^{x} f^{\prime}$ is absolutely continuous in $[a, b]$ and $f_{\text {sing }}=f-f_{\text {abs }}$ is such that $f_{\text {sing }}^{\prime}=0$ a.e. in $[a, b]$.

