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Introduction

Definition 0.1 (Riemann 1854). Let [a,b] be a closed bounded interval, f : [a,0] — R

bounded function. We say f is Riemann integrable if

b
/f—sup{z inf f —ziq)ia=xy<z <<z, =0}

xL 1xb

/f —mf{z sup f(x;—xiq)ta=x9<x; < -+ <xy =0}

i=1 sz 15Ez]

We then denote f(ff = f;f(x)dx = f_abf = f_ff

Theorem 0.1. Every continuous function f : [a,b] — R is Riemann integrable

1 z€Q

Remark. f: 2z €[0,1] — is not Riemann integrable.

0 z¢Q

1 Measure Theory

Definition 1.1. 1. Let rectangle R be (a1,b1) X -+ %X (ag,bs) C R C [ay,b1] X - -+ X [ag, ba),
where —oo < a; < b; < ooVl < i < d. We call volume of R and denote vol(R) the
number vol(R) = H?:l(bi —a;). We say that R is a cube if by —a; = -+ = by — ag.

2. For every set A C R? we call the exterior measure of A and denote m, (A) the number

m.(A) = inf Zvol Q) : Qy closed cubes, A C U Qr ¢ €0, 0]

Remark.

Zvol(Qk) : Q closed cubes, A C U Qrp #9 " AC U [—n,n]? = R?
k=1 k=1 n=1
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Remark.

my(A) =inf Zvol(Qk) : Q. open cubes, A C U Qr

oo
k=1 k=1

=inf ZVOI(Qk) : Q rectangles, A C U Qr
k=1 k=1
Proposition 1.1. If A C R? is countable then m,(A) =0

Proposition 1.2 (monotonicity). If A C B C R? then m,(A) < m,(B)

Proposition 1.3. If O C R? is open then it can be written as O = |-, Q,, where Qy are
disjoint, open cubes (Qy, is the closure of Q).

Proposition 1.4. If R C R? is a rectangle then m,(R) = vol(R).
Proposition 1.5. If A C R? then m.(A) = inf{m.(O) : O open set, A C O}.

Proposition 1.6. Let (Ag)ren be a sequence of sets in RY (not necessarily disjoint). Then

Proposition 1.7. Let Ay, Ay C R? be such that d(Ay, A3) > 0 i.e. inf{|lz —y|:z € Aj,y €
AQ} > 0. Then m*(Al U Ag) = m*(Al) + m*(Az)

Definition 1.2. A set A C R? is said to be (Lebesgue)-measurable if for every € > 0, there
exists O, open such that A C O, and m. (O, \ A) < e. We then denote m(A) = m.(A) the

(Lebesgue)-measure of A.

Proposition 1.8. 1. If m.(A) =0 then A is measurable.
2. A countable union of measurable sets is measurable.
3. Open sets and closed sets are measurable.
4. If A is measurable then R\ A =: A® is measurable.

5. A countable intersection of measurable sets is measurable.
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Theorem 1.9 (countable additivity). Let (Ag)ren be measurable and disjoint. Then

k=1 k=1

Remark. In particular, if A C B C R? are measurable then m(B) = m(A) + m(B\ A).
Proposition 1.10 (continuity of measure). Let (Ag)ren be measurable.

1. If Ay, € ApaVk € N then m(Upe; Ax) = limy_oo m(Ay).

2. If Ay, D Ay Vk € N and m(A;) < oo then m((pe; Ax) = limy_oo m(Ag).

Remark. m(A;) < oo is necessary: m([\,—,[k,00)) = m(&) = 0 while m([k,0)) =
ooVk € N.

Theorem 1.11 (outer and inner approximations of measurable sets). Let A C R%. Then the

following are equivalent:

1. A is measurable;

2. There exists a Gs set G (a Gs set is a countable intersection of open sets) and a set N
of measure 0 such that A= G\ N;

3. For every e > 0, there exists F,. closed such that F, C A and m.(A\ F.) <¢;

4. There exists an F, set F' (an F, set is a countable union of closed sets) and a set N
of measure O such that A= FUN.

Counterexamples
Are all subsets of R? measurable?

Theorem 1.12. If A C R? is such that m.(A) > 0 then there exists B C A non-measurable.

Are all subsets of measure 0 in R countable?

Definition 1.3. We call Cantor set the set C' := (2, C), where Cy := [0,3] U [2,1] and
Vk > 2, C) = U?il I where Vj € {1,...,28 1} I,y 4, I, are the first and last thirds of
Lot

Theorem 1.13. C is closed and uncountable. m(C') = 0.

3
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Are all measurable sets Borel?

Definition 1.4. A collection €2 of subsets of R is called a o-algebra if the following conditions

are satisfied:
1. R4 e
2. VA, BeQ:A\Be
3. Y(Ap)ken € Q:Upe, Ak € Q.
Proposition 1.14. Any intersection of o-algebras is a o-algebra.

Definition 1.5. The intersection of all the o-algebras containing the open sets is called the

Borel o-algebra and its elements the Borel sets.
Remark. In particular, Borel sets are measurable.
Proposition 1.15. There exists a subset of the Cantor set which is measurable but not Borel.

Definition 1.6. We call Cantor-Lebesque function (or Cantor staircase function) the func-

tion
:[0,1] = [0, 1],
o(z) = Lifre Jii where Ji; is the i-th interval of [0,1]\ Cy, k > 1,i € {1,...,2F — 1},

2k:
©(0) =0, (x) = sup{e(y) : y € [0,2) \ C}if x € (0,1] N C

Remark. ¢(1) = 1.

Proposition 1.16. ¢ : [0,1] — [0, 1] is increasing, continuous and surjective.

Proposition 1.17. If D C R is not Borel, then D x {0}¢~1 C R? is not Borel.

2 Lebesgue Measurable Function

Remark. We denote R = R U {—o00, o0}
Proposition 2.1. Let A C R¢ be measurable, f : A — R. Then the following are equivalent:

1. Vee R: f~1((c, +00]) is measurable
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2. Ve e R: f~Y([e, +00]) is measurable
3. YeeR: f~[—o0,c)) is measurable
4. VeeR: f7Y([—o0,(]) is measurable
Definition 2.1. When these are satisfied, we say f is (Lebesque) measurable.

Proposition 2.2. Let A C R? and (Ap)ren € R? be measurable sets such that the sets
(Ap)ren are disjoint and | ;> Ay = A. Let f: A — R be a function. If f|a, is measurable
for all k € N then f is measurable.

Proposition 2.3. Let A C RY measurable.
1. VB C A measurable, Vf : A — R measurable, f|p is measurable;

2. VB C R Borel, Vf : B — R continuous, Vg : A — B measurable, then f o g is

measurable;
3. Vf:A—R,Vg: A— R both measurable, f + g is measurable;
4. Vf : A—[0,00] measurable, Vk € N, f* is measurable;
5. Vf,g: A— R measurable, f - g is measurable;
6. Vf,g: A— R measurable, max(f, g), min(f, g) is measurable.

Proposition 2.4. Let A C R? be measurable, let f : A — R measurable. Then for every
Borel set B C R, f~'(B) is measurable.

Remark. 3D C R measurable, f measurable (even continuous) such that f~!(D) is not

measurable.
Proposition 2.5. Let A C R? measurable, f : A — R continuous, then f is measurable.

Definition 2.2. Let A C R P(z) a statement depending on # € A. We say P(z) is true
for almost every x € A (or a.e. x € A) if m.({x € A: P(x) is false}) = 0.

Proposition 2.6. If (P.(x))ken s a countable collection of statements depending on x € A,
then

Vk € N: for a.e. x € A, Py(x) is true] < [for a.e. x € A,Vk € N : Py(z) is true]

5
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Proposition 2.7. Let f,g: A — R be such that f = g a.e. in A. Then f measurable if and

only if g measurable.

Proposition 2.8. Let A C R? and (Ap)ren € R? be measurable sets such that the sets
(Ap)ren disjoint and e, Ay, = A. Let f : A — R be a function. If f|a, is measurable for
all k € N, then f is measurable.

Proposition 2.9. Let A C R? be measurable
1. VB C A measurable, Vf : A — R measurable, f|p is measurable.
2. VB C R Borel, Vf : B — R continuous, Vg : A — B measurable, f o g is measurable.
3. Vf: A — R measurable, Vg : A — R measurable, f + g is measurable.
4. Vf 1 A = R measurable, Yk € N, f* is measurable.
5. Vf,g: A—=R, f-g is measurable.
Remark. df, g measurable such that f o g is not measurable.

Proposition 2.10. Let (f,)nen, fo : A = R be measurable functions converging pointwise
a.e. in A to a function f: A — R d.e. lim, o fo(z) = f(x) for a.e. x € A. Then f is

measurable.

Proposition 2.11. Let (f,)nen, fn: A = R be measurable functions. Then

x— inf f,(z),z — sup f(x),z — iminf f,(z), z — limsup f,(z)
neN neN n—00 n—00

are all measurable.

Definition 2.3. We call simple function a measurable function ¢ : A — R such that p(A)
is finite and ¢ has finite support i.e. m({z € A : p(z) # 0}) < oc.

Remark. In particular, any simple function ¢ can be written as

Y= Z CiX A;
=1

where n > 0, ¢,...,¢, € R\ {0} distinct (such that ¢(A) \ {0} = {c1,...,¢,}) and
Ay, ..., A, C A measurable, disjoint and with finite measure (4; = ¢! ({c;})).

6
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Definition 2.4. We say that Y . | ¢ixa, is the canonical form of the simple function . We

say that Y " | cixa, is a step function if the A; are rectangles.

Theorem 2.12 (Simple Approximation Lemma). Let f: A — R, m(A) < oo be measurable
and bounded i.e. AM > OVx € A :|f(z)| < M. Then Ve > 03¢, ¢ : A — R simple functions
such that

e < f< W< p.+e

Theorem 2.13 (Simple Approximation Theorem). Let f : A — R be measurable. Then

A(pn)nen simple functions such that
1. (pn)nen converges pointwise to f on A i.e. lim, o pn(z) = f(z)Vx € A, and
2. |enl < |op41| < |f[ on AVn €N

If f > 0 then we have moreover that ¢, > 0 and increasing in n.

Theorem 2.14 (Egorov). Let A C RY be measurable, m(A) < 00, (fu)nen, fn 0 A — R
measurable converging pointwise to f : A — R. Then Ye > 03F, C A closed such that

(fn)nen converges to f uniformly in F, i.e.
sup | fo = f| === 0

and m(A\ F,) < e
Remark. This result does not hold in general when m(A4) = oo, e.g. fu(z) =2 on A=R.

Theorem 2.15 (Lusin). Let f : A — R be measurable. Then Ve > 03F, C A closed such
that f|r. is continuous on F, and m(A\ F) < e.

Remark. Recall that “f|p continuoous on F” # “f continuous on F”: xq is not continuous

at any point in R but xg|r\@ = 0 is continuous on R\ Q.
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3 Lebesgue Integration

Case of a simple function

Definition 3.1. Let ¢ : A — R be a simple function and ¢ = >"}'_, ¢xxa, be its canonical
form. We define the (Lebesgue) integral of ¢ over A by

o= [ elaraa =3 ckm(Ak)

For any B C A measurable, we define fB f= fA fxs.

Proposition 3.1 (independence of the representation). Let n € N, ¢1,...,¢, € R and
Ay, ..., Ay C A be measurable, disjoint, m(Ay) < co. Then

/chXAk Ckm<Ak>
A —

Proposition 3.2. Let p,9 : A — R be simple. Then

1. Yo, € R, ap+ v simple and [, (o + BY) = [, o+ B [0

2. VBy, By C A measurable disjoint, [ p 0= [5 o+ [5 ¢

8. If o<t onAthen [, < [,

4. |p| is simple and |fA ol < fA lo].

Case of a bounded measurable function with finite support

Definition 3.2. We denote supp(f) and call support of a measurable function f : A — R
the set

supp(f) = {z € A: f(x) # 0}

If supp(f) C E C A, then we say [ is supported in E. If m(supp(f)) < oo, we say that f
has finite support.

Proposition 3.3. Let f : A — R be bounded, measurable and with finite support. Let

(pn)nen be simple functions in A such that
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1. 3E C A measurable such that m(FE) < oo and supp(¢n) € E for alln € N,

2. AM > 0 such that Vn € N, |p,| < M in A, and

3. limy, o0 on(x) = f(2) for a.e. x € A (a.e. pointwise convergence).
Then lim,,_,~ fA on ezists and does not depend on the choice of (vn)nen Satisfying the above.
Remark. Such (p,) exists by the Simple Approximation Lemma.

Definition 3.3. Given the above proposition, we then call integral of f over A the number

J4f=1lim, , [, ¢n. For every B C A measurable, we define [, f = [, fxs.
Remark. If f =0 a.e. in A then fA f=0.
Proposition 3.4. Let f,g: A — R be bounded, measurable and with finite support. Then

1. Vo, B € R, af 4+ Bg is bounded, measurable and with finite support and fA(Oéf + Bg) =
af,f+B8[49

2. VBi, By € A measurable disjoint, [, p f= [ [+ [5 [
3. If f<yg onAtheanfngg,
4. |f] is bounded, measurable and with finite support and |fAf| < fA |f].

Theorem 3.5 (Bounded Convergence Theorem). Let (fy)nen, fn : A — R be a sequence of

measurable function such that
1. 3E C A measurable such that m(FE) < oo and supp(f,) C E for alln € N,
2. AM > 0 such that Vn € N, |f,| < M in A, and
3. Af + A —= R such that lim,_, fn(x) = f(x) for a.e. x € A.
Then f is bounded, measurable, with finite support and lim,, fA fn= fA f.
n—o0

Remark. fol nxXp,1)(z)dr =1 but nyp 1,(z) —— 0¥z € (0,1] i.e. for a.e. x € [0,1].

Theorem 3.6. If A = [a,b],a < b € R then every bounded function f : A — R that is

Riemann integrable is measurable and its Riemann fA f 1s equal to its Lebesgue integral fA f.
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Case of a nonnegative measurable function

Definition 3.4. Let f : A — [0, 00] be measurable. Then we define the integral of f over A

as
/ f =sup {/ h:h:A—[0,00) bounded, measurable, with finite support, h < f on A}
A A

. . flx) zeB .
For every B C A, we define [, f = [, f where f(z) = (f =xsfif f <o0).
0 ¢ B
We say that f is integral over B if fB f < oc.
Proposition 3.7. Let f,g: A — [0, 00| be measurable. Then
1. Yo, 3 >0, af + Bg is nonnegative measurable and [,(af +Bg)=oa [, f+8 [, 9.
2. VBy, By C A measurable disjoint, fB1UBQ f= fBl f+ f32 f.

8. If f < gonAthen [, f < [,9. Moreover, if f =g a.e. on A then [, f = [,9. In
particular, if f =0 a.e. on A then fAf = 0.

Remark. For every A C R? measurable, [, x4 = m(A).

Theorem 3.8 (Chebyshev’s Inequality). Let f: A — [0, 00| be measurable. Then

Ves 0 m(f1([0. o)) < 1/Af

c
Corollary 3.9. Let f : A — [0,00] be measurable. Then [, f =0« f =0 a.e. in A.
Corollary 3.10. Let f: A — [0,00] be measurable. If f is integrable then f < 0o a.e. in A.

Theorem 3.11 (Fatou’s Lemma). Let (f,)nen be measurable nonnegative on A C RY. Then

/ liminf f, < liminf / fn
4 M0 n—00 A

Remark. There is not equality since

/nX(o,}L) =1> /EQ(”X(O,;)) = / 0=0
R R R

10
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Theorem 3.12 (Monotone Convergence Theorem). Let (f,)nen be measurable, nonnegative

functions increasing inn (i.e. foy1 > fr on A). Then lim, oo [, fo = [, liMp o0 fo-
Corollary 3.13. Let (un)nen be measurable, nonnegative function. Then Y " [, u, =

fA Ziil Up -

Case of a sign-changing function

Definition 3.5. Let f : A — R be measurable. We say that f is integrable if f, = max(f,0)
and f_ = max(—f,0) are integrable. We then call integral of f over A the number [ A=

Juf+— [, f-. Forevery BC A, we denote [, f= [, fr— [5[-

Proposition 3.14. f integrable < |f| integrable.
Remark. If f,g: A — R then

f+gisnot defined on N ={x € A: f(z) = —g(z) = oo}
fgis not defined on N = {x € A :|f(z)| = 00,9(z) =0V |g(x)| = o0, f(x) =0}

However, if f, g integrable then |f| < oo and |g| < oo a.e. in A, in which case we say f+g¢, fg
integrable and we denote [,(f +g) = fA\N(f +g)and [, fg = fA\N fg.

Proposition 3.15. Let f,g: A — R be integrable. Then
1. Yo, B € R, af + By is integrable and [,(of +Bg)=a [, f+8 [, 9.
2. VBy, B C A measurable disjoint, fBlUB2 f= fBl f+ fB2 f-
8. f<gomA= [,f<[i9 f=gae omA= [, f=],g
YR NWIES N

Theorem 3.16 (Dominated Convergence Theorem). Let (f,,)nen be measurable functions on
A such that

1. 3f : A = R measurable such that lim,_,« f,,(x) = f(x) for a.e. x € A, and
2. 3g : A — R integrable such that | f,(z)| < g(x) for a.e. x € A and ¥n € N,

Then f, and f are integrable and lim,, fA fn= fA f-

11
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Corollary 3.17 (continuity of the integral). Let f be integrable over A C R Then

1. If (Ap)nen is a sequence of measurable subsets of A such that A, C A1 then

/ f = lim f
Uiidn "7 4,

2. If (An)nen is a sequence of measurable subsets of A such that A, 2O Ani1 then

/ A f=Tim [ f
oo n—oo Ap

n=1

4 Fubini and Tonelli’s Theorems

Definition 4.1. Let dy, d> € N be such that d = d; +d,. We denote (z,y) € R = R4 x R%.
For every E C R, we denote E, = {y € R® : (z,y) € E} and E, = {zx € R" : (z,y) € E}.
Vi:E =R, f,: B, - R,y f(r,y) and [y Ey - R,z f(z,y)

Remark. E, and E, are not necessarily measurable when E is measurable.

Remark. It is not always true that [, ([, f(z,y)dy)dz = [,([, f(z,y)dz)dy even when the

integrals are well-defined.
Theorem 4.1 (Fubini). Let f: RY — R be integrable. Then
1. For a.e. y € R%, fy s integrable on R%
2.y foa fy = Jga f(@,y)dx is integrable on R™, and
3. fRdz fRdl z,y)dz)dy = fRd
Remark. The roles of z and y can be interchanged so that [p, f = [pa, (Jpe, f(2,y)dy)dz.
Theorem 4.2 (Tonelli). Let f be nonnegative measurable on R:. Then
1. For a.e. y € R%, fy is measurable in R%

2. y— fth fy is measurable in R% and

J. fRdz <fRd1 fy) = fRd f

12
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Corollary 4.3. If A C R? is measurable then for a.e. y € R%, A, is measurable and
moreover, y — m(Ay) is measurable and m(A) = [Lq, m(A,)dy.

Corollary 4.4 (Tonelli for A C R?). Let f: A — R be nonnegative measurable. Then
1. For a.e. y € R%, f, is measurable in R™,
2.y fRdl fy is measurable in R%, and
J. fRdz(fRdl fy) = fRd f
Corollary 4.5 (Fubini for A C R%). Let f: A — R be integrable over A. Then
1. For a.e. y € R%, f, is integrable on R™,
2.y foa fy = Jpa f(@,y)dx is integrable on R™, and

3. fRdz fRdl z,y)dz)dy = fRd

Lemma 4.6. VE;, C R4 E, C R%,

mu(Br x B) < My (B )ma(Ey)  my(Ey) # 0 Amy(Ey) #0

0 otherwise
Theorem 4.7. Let E; C R and Ey C R% be measurable. Then Ey x Es is measurable and

By x ) = mo(ED)m.(Es)  m.(Ey) #0Am.(Es) #0

0 otherwise

Corollary 4.8. Let £y C R%* and E; C R% be measurable and f be a measurable function
on Ey. Then f : By x By = R, (z,y) — f(z) is measurable on B, x Es.

Proposition 4.9. Let dy = d — 1, A C R% be measurable and f : A — [0,00]. Then f is
measurable if and only if E = {(z,y) € AxR:0 <y < f(x)} is measurable. Furthermore,

if fis measurable, then m(E) = [, f(x)dx

Proposition 4.10. Let f be measurable on R?. Then g : R*? — R, (2,9) — f(z —y) is

measurable.

Remark. This is useful when defining convolution f g : z+— [o. f(z —y)g(y)dy.

13
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5 Differentiation

Theorem 5.1. A monotone function f : [a,b] — R is differentiable almost everywhere in

(a,b). Furthermore, f' is integrable and

/b P < f(b) — f(a) [ increasing
a f —

(b) — f(a) f decreasing

Remark. The Cantor-Lebesgue function is monotone, differentiable in [0, 1], with ¢ = 0
a.e. in [0, 1] but fol o' =0<p(l)—p0)=1.

Theorem 5.2. Let F' be a collection of bounded intervals in [a,b] C R of positive length. Then
there exists a countable collection F' C F' of disjoint intervals such that \J;cp 1 € U;ep 51,
where 5] = {x € R: x; + +(x — a;) € I} (x; middle point of I).

Remark. It is possible to replace 5 by a number x > 3 but no less: consider F' = {[—1, 0], [0, 1]}.
Proposition 5.3. A monotone function f : [a,b] — R has at most countably many discon-

tinuities.

Functions of bounded variation

Definition 5.1. Let f : [a,b] — R be a function. We call total variation of f on [a,b] the

number
k
Ty(a,b) = sup Z|f(xz)—f(xz_1)| a=x9<x;<---<xp=>0
i=1

If Tf(a,b) < oo, then we say that f is of bounded variation on [a, b].
Remark. Monotone and Lipschitz continuous functions are of bounded variation.

Remark.

is not of bounded variation.

14
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Theorem 5.4. A function [ : [a,b] — R is of bounded variation if and only if it can be
written as the difference between two increasing functions. In particular, if f is of bounded

variation then f is differentiable a.e. and f’ is integrable over [a,b].

Absolutely continuous functions

Definition 5.2. We say that a function f : [a,b] — R is absolutely continuous on [a,b]
if Ve > 0340 > 0 such that for every finite collection of disjoint open bounded intervals
(ak,bp) Cla,b],1 <k <mn,if Y7 (by —ay) <0 then Y, |f(be) — flar)] <e.

Remark. f absolutely continuous = f uniformly continuous by taking n = 1.
Remark. The Cantor-Lebesgue function ¢ is not absolutely continuous on [0, 1].

Proposition 5.5. If f : [a,b] — R is Lipschitz continuous then f is absolutely continuous

on |a,b|.

Theorem 5.6. If f : [a,b] — R is absolutely continuous on [a,b] then f can be written as
the difference between two increasing absolutely continuous functions. In particular, f is of

bounded variation on [a,b].
Theorem 5.7. Let f : [a,b] — R.
1. If f is absolutely continuous on [a,b] then

Vz € [a,b] : }f’:f(:c)—f(a)

la,z

2. Conversely, for every integrable function g over [a,b], the function x +— f;g 15 abso-

lutely continuous on |a,b] with derivative equal to g a.e. in |a,b).

Lemma 5.8. Let h be integrable over [a,b]. Then h = 0 a.e. in [a,b] < [Th =0 for all
z € (a,b).
Corollary 5.9. If f : [a,b] — R is monotone, then f is absolutely continuous in |a,b] <

J2f = f(b) — f(a).

Corollary 5.10 (Lebesgue decomposition). Every function f : [a,b] — R of bounded varia-
tions can be written as f = faps + fsing, where fops = fj f' is absolutely continuous in |a, b
and fong = [ — fabs is such that fi,,, =0 a.e. in [a,b].
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