
MATH 454: ANALYSIS 3 – THEORY OF LEBESGUE MEASURE

SHEREEN ELAIDI

1. Introduction

Definition 1 (Riemann Integral). Let [a, b] be a bounded, closed interval and f : [a, b]→ R be a bounded
function. Then, f is Riemann Integrable if ∫ b

a
f =

∫ b

a
f (1)

where ∫ b

a
f := sup

{ n∑
i=1

inf
]xi−1,xi[

f · (xi − xi−1)
∣∣∣∣ a = x0 < · · · < xn = b

}
(2)

∫ b

a
f := inf

{ n∑
i=1

sup
]xi−1,xi[

f · (xi − xi−1)
∣∣∣∣ a = x0 < · · · < xn = b

}
(3)

Theorem 1. Every continuous function f : [a, b]→ R is Riemann Integrable.

Definition 2 (Length). ∀I ⊆ R, I an interval, we call the length of I to be the number:

`(I) :=

{
b− a; I = [a, b], [a, b[, ]a, b], or ]a, b[
∞ I is unbounded

(4)

Definition 3 (Outer Measure). ∀A ⊆ R, the outer measure of A, denoted by m∗(A) is given by:

m∗(A) := inf

{ ∞∑
k=1

`(Ik)

∣∣∣∣ (Ik) open, bounded intervals s.t. A ⊆
∞⋃
k=1

Ik

}
(5)

Proposition 1. A ⊆ R is countable ⇒ m∗(A) = 0

Proposition 2 (Monotonicity of outer measure). If A ⊆ B, then m∗(A) ≤ m∗(B).

Proposition 3. For every interval I ⊆ R, m∗(I) = `(I).

Proposition 4 (Translation invariance of outer measure). ∀A ⊆ R, y ∈ R, define A+y := {x+ y | x ∈ A}.
Then, m∗(A) = m∗(A+ y).

Proposition 5 (Countable Subadditivity of outer measure). ∀(Ak)k∈N subsets of R:

m∗

( ∞⋃
k=1

Ak

)
≤
∞∑
k=1

m∗(Ak) (6)

where the Ak’s are not necessarily disjoint.

Definition 4 (Lebesgue Measure). A set A ⊆ R is measurable if ∀B ⊆ R,
m∗(B) = m∗(B ∩A) +m∗(B \A) (7)

The only non-trival part of the definition to check is m∗(B) ≥ m∗(B ∩ A) +m∗(B \ A), since the other
inequality follows from the subadditivity of outer measure. We can also restrict B to the class of all
finite-outer-measure sets, since the inequality is trivial for infinite-outer-measure sets.

Proposition 6. If m∗(A) = 0, then A is measurable.
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Proposition 7. ∀A ⊆ R, A measurable, ⇒ R \A is measurable.

Theorem 2 (Excision Property). ∀A1, A2 ⊆ R mesurable, A2 ⊆ A1, and m(A2) <∞, then:

m(A1 \A2) = m(A1)−m(A2) (8)

Proposition 8. ∀(Ak)k∈N measurable, we have:
(i)
⋃∞
k=1Ak is measurable and

⋂∞
k=1Ak is measurable.

(ii) (Countable Additivity of Measure). If Ai ∩Aj = ∅ ∀i 6= j, then:

m

( ∞⋃
k=1

Ak

)
=
∞∑
i=1

m(Ak) (9)

Proposition 9 (Continuity of Lebesgue Measure). Let (Ak)k∈N be sequence of measurable sets. Then:
(i) If Ak ⊆ Ak+1∀k (increasing sequence of sets), then:

m

( ∞⋃
k=1

Ak

)
= lim

k→∞
m(Ak) (10)

(ii) If Ak+1 ⊆ Ak∀k (decreasing sequence of sets), and m(A1) <∞, then:

m

( ∞⋂
k=1

Ak

)
= lim

k→∞
m(Ak) (11)

Proposition 10 (Translation Invariance of Measurable Sets). ∀A ⊆ R measurable, and ∀y ∈ R fixed,
A+ y is measurable.

Proposition 11. (i) Every interval in R is Lebesuge measurable.
(ii) Every open set and every closed set is Lebesgue measurable.

Theorem 3 (Characterisation of Measurable Sets). Let A ⊆ R. Then, TFAE:
(i) A is measurable.
(ii) (Outer Approximation of Measurable Sets by Open Sets). ∀ε > 0, ∃ Oε ⊆ R open such

that A ⊆ Oε and m∗(Oε \A) < ε.
(iii) (Approximation by Gδ sets). ∃(On)n∈N open such that A ⊆ G and m∗(G \ A) = 0, where

G :=
⋂
n∈NOn. The countable intersection of open sets is a Gδ-set.

(iv) (Inner Approximation of Measurable Sets by Closed Sets) ∀ε > 0, ∃ Fε ⊆ R closed such
that Fε ⊆ A and m∗(A \ Fε) < ε.

(v) (Approximation by Fσ sets). ∃(Fn)n∈N closed such that F ⊆ A and m∗(A \ F ) = 0, where
F :=

⋃
n∈N Fn. The countable union of closed sets is a Fσ-set.

Theorem 4 (Vitali). ∀A ⊆ R, if m∗(A) < 0, then ∃B ⊆ A that is not measurable.

Definition 5 (Cantor Set). The Cantor Set is recursively defined as:

C :=

∞⋂
k=1

Ck (12)

Where:

C1 :=

[
0,

1

3

]⋃[
2

3
, 1

]
and for k ≥ 2:

Ck :=
2k⋃
j=1

Ik,j ∀j ∈ {1, .., 2k−1}

Where Ik,2j−1 and Ik,2j are the first and second thirds of the interval Ik−1,j .

Theorem 5. C is closed, uncountable, and m∗(C) = 0.
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Definition 6 (σ-algebra). A collection of sets C is called a σ-algebra if the following are true:
(i) R ∈ C.
(ii) ∀C1, C2 ∈ C, C1 \ C2 ∈ C (stable under complementation).
(iii) ∀(Ck)k∈N ∈ C, we have that:

∞⋃
k=1

Ck ∈ C

(stable under countable unions).

Proposition 12. Any intersection of σ−algebras is a σ− algebra.

Definition 7 (Borel Sets). A Borel set is a set that is in the intersection of all the sigma algebras
containing the open sets. The Borel sigma algebra os the smallest sigma algebra containing all the
open sets. (Alternatively, it is the sigma algebra generated by the open sets).

Proposition 13. There exists a subset of the Cantor Set which is not Borel. Thus, the set of measurable
sets is indeed bigger than the smallest sigma algebra.

Definition 8 (Cantor Lebesgue Function). The Cantor-Lebesgue Function is the function ϕ : [0, 1]→
[0, 1] defined as:

ϕ(x) :=
i

2k
(13)

if x ∈ Jk,i, where Jk,i is the i-th interval in [0, 1] \ Ck, ∀i ∈ {1, ..., 2k − 1}, and ∀y ∈ [0, 1] \ C:

ϕ(y) :=

{
ϕ(0) := 0

ϕ(y) := sup {ϕ(x) | x ∈ [0, y[\C}
(14)

Proposition 14. ϕ is an increasing and continuous function.

2. Lebesgue Measurable Functions

Proposition 15 (Lebesgue Measurable Function). Let A ⊆ R be a measurable set and f : A→ R. Then,
TFAE:

(i) ∀c ∈ R, f−1(]c,+∞]) is measurable.
(ii) ∀c ∈ R, f−1([c,+∞]) is measurable.
(iii) ∀c ∈ R, f−1([−∞, c[) is measurable.
(iv) ∀c ∈ R, f−1([−∞, c]) is measurable.

If any of the above conditions are met, then we say that f is measurable.

Proposition 16. Let A ⊆ R be measurable, and let f : A→ R. Then:
(i) f measurable ⇒ ∀B ⊆ R, B a Borel Set, f−1(B) is measurable. (The inverse image of Borel sets

are measurable sets).
(ii) If f is finite-valued, i.e., f(A) ( R, then we get a characterisation of measurable functions: f

measurable ⇐⇒ ∀B ⊆ R, B Borel, f−1(B) is measurable.

Proposition 17. Let A ⊆ R be measurable and f : A→ R be continuous. Then, f is measurable.

Definition 9 (Almost Everywhere). Let x ∈ R be measurable, and let P (x) be a statement depending
on x ∈ A. We say that P (x) is true almost everywhere in A (abbreviated as a.e x ∈ A) if
m({x ∈ A | P (x) is false}) = 0

Proposition 18. Let f : A→ R be a measurable function. Let g : A→ R be such that f = g a.e. in A.
Then, g is measurable.
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Proposition 19. Let (An)n∈N be disjoint, measurable sets and let A =
⋃
n∈N. Let (fn)n∈N, fn : An → R

be measurable. Then, the function:

f :=A→ R
x 7→ fn(x)

is measurable.

Definition 10 (Characteristic Function). ∀B ⊆ A, B measurable, the characteristic function of B is
the function χB : A→ R:

χB :=

{
x 7→ 1; x ∈ B
x 7→ 0; x /∈ B

(15)

Definition 11 (Simple Functions). f : A → R is a simple function if f(A) is a finite set. This means
that f is a sum of characteristic functions; ∃ a1 < a2 < ... < aN ∈ R such that f(A) = {a1, ..., aN}.
Letting Ak := f−1({ak}), we have:

f =
N∑
k=1

akχk

This representation is unique and is called the canonical representation of f .

Proposition 20 (Properties of Measurable Functions). Let A ⊆ R be measurable. Then:
(i) ∀B ⊆ A measurable, f |B is measurable.
(ii) ∀B ⊆ R Borel, if f : B → R is continuous, g : A→ B is measurable, then f ◦ g is measurable.

(i) Note that we need f to be continuous, since we need the inverse image to preserve the Borel
property.

(iii) ∀f : A→ R, g : A→ R, f + g is measurable.
(i) Note that we need g not into R since we need to avoid the ∞−∞ case.

(iv) ∀f, g : A→ R measurable, f · g is measurable. (No R to avoid the ∞ · 0 case).
(v) ∀f1, ..., fn, fn : A→ R measurable,

(i) max{f1, ...fn}
(ii) min{f1, ..., fn}
are measurable.

Definition 12 (Uniform and pointwise convergence). Let {fn}n∈N be a sequence of measurable functions,
fnA :→ R, and f : A→ R. We say that:

(i) {fn}n∈N converges pointwise to f in B ⊆ A if

∀x ∈ B, lim
n→∞

fn(x) = f(x)

(ii) {fn}n∈N converges uniformly to f in B ⊆ A if

lim
n→∞

sup
B
|fn − f | = 0

Proposition 21. Let {fn}n∈N be a sequence of measurable functions, fn : A → R converging pointwise
almost everywhere in A to a function f : A→ R. Then, f : A→ R is measurable.

Proposition 22 (Simple Approximation Lemma). Let f : A→ R be measurable and bounded everywhere
(i.e., ∃ a M > 0 such that |f | < M in A). Then, ∀ε > 0, ∃ ψε, ϕε : A→ R simple functions such that

ϕε ≤ f ≤ ψε < ϕε + ε

in A. In particular, the ϕε and the ψε converge uniformly to f in A.

Theorem 6 (Simple Approximation Theorem). Let f : A → R on a measurable set A. Then, f is
measurable ⇐⇒ there exist simple functions (ϕn)n∈N such that:

(i) (ϕn)n∈N converges pointwise to f .
(ii) |ϕn| ≤ |f | in A ∀n ∈ N.
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Moreover, if f ≥ 0 in A, we can choose ϕn such that ϕn ≥ 0 and ϕn+1 ≥ ϕn ∀n ∈ N.

Theorem 7 (Egoroff’s Theorem). Let A ⊆ R be a measurable set, and assume that m(A) < ∞. Let
(fn)n∈N, fn : A→ R be a sequence of measurable functions converging pointwise to f : A→ R (not R !!).
Then, ∀ε > 0, ∃Fε ⊆ A closed such that:

(i) {fn}n∈N converges uniformly on Fε.
(ii) m(A \ Fε) < ε.

Theorem 8 (Lusin’s Theorem). Let f : A → R be measurable (not into R!). Then, ∀ε > 0, ∃ Fε ⊆ A
closed such that:

(i) f is continuous on Fε.
(ii) m(A \ Fε) < ε.

3. The Lebesgue Integral

Definition 13 (Integral – Case of Simple Functions on a Set of Finite Measure). Let ψ : A → R be a
simple function. Let ψ =

∑N
k=1 akχAk

be its canonical representation. We define the integral of ψ over
A and denote

∫
A ψ and

∫
A ψ(x)dx to be the number:∫

A
ψ :=

N∑
k=1

akm(Ak) (16)

For every B ⊆ A measurable, we denote
∫
B ψ =

∫
B ψ|B. Here, the measure of A must be finite.

Definition 14 (Integral – Case of Measurable, Bounded Functions on a Set of Finite Measure). Let A ⊆ R
be a measurable set such that m(A) < ∞, and let f : A → R be a bounded function. We say that f is
integrable over A if: ∫

A
f =

∫
A
f (17)

where ∫
A
f := sup

{∫
A
ϕ | ϕsimple , ϕ ≤ f on A

}
∫
A
f := inf

{∫
A
ϕ | ϕsimple , f ≤ ϕ on A

}
We then denote

∫
A f =

∫
A f(x)dx =

∫
Af =

∫
Af and we call this number the integral of f over A. For

every B ⊆ A measurable, we denote: ∫
B
f =

∫
B
f |B

Theorem 9. If f : [a, b]→ R is Riemann Integrable, then f is Lebesgue Integrable.

Theorem 10. Let f : A→ R, m(A) <∞, be a measurable and bounded function. Then, f is integrable.

Proposition 23 (Properties of the Integral). Let f, g : A→ R be measurable and bounded. Then:
(i) ∀α, β ∈ R, αf + βg is measurable and bounded, and:∫

A
(αf + βg) = α

∫
A
f + β

∫
A
g

(ii) (Monotonicity): if f ≤ g on A, then: ∫
A
f ≤

∫
A
g

(iii) |
∫
A f | is measurable and bounded, and |

∫
A f | ≤

∫
A |f |.
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(iv) ∀B ⊆ R measurable, f · χB is measurable, bounded, and∫
fχB =

∫
B
f

(v) ∀A1, A2 measurable and disjoint,∫
A1∪A2

f =

∫
A1

f +

∫
A2

f

In particular, if m(A2) = 0, then:∫
A2

f = 0 and so
∫
A1∪A2

f =

∫
A1

f

Lemma 11 (Independence of Representation). Let n ∈ N and let a1, ..., an ∈ R and A1, ..., An ⊆ A, where
m(A) <∞, be measurable and disjoint. Then:∫ n∑

k=1

akχAk
=

n∑
k=1

akm(Ak)

Theorem 12 (Bounded Convergence Theorem). Let A ⊆ R be measurable, m(A) < ∞. Let (fn)n∈N,
fn : A→ R be a sequence of measurable functions on A such that:

(i) (Uniformly bounded) ∃ an M > 0 such that ∀n ∈ N, |fn| ≤M on A.
(ii) (Pointwise Convergence) ∃ f : A→ R such that ∀x ∈ A, limn→∞ fn(x) = f(x)

Then, f is bounded and measurable, and we can interchange the limits as so:

lim
n→∞

∫
A
fn = f

Definition 15 (Integral in the case of a Non-Negative, Measurable Function on a Set of Possibly Infinite
Measure). Let A ⊆ R be measurable, possibly of infinite measure, and let f : A→ [0,∞] be measurable.
We call the integral of f over A and denote

∫
A f =

∫
A f(x)dx the number defined as∫

A
f := sup

{∫
B
h | B ⊆ A, m(B) <∞, h : B → R measurable, bd, 0 ≤ h ≤ f on B

}
(18)

For every B ⊆ A, we denote
∫
B f =

∫
B f |B. If

∫
A f <∞, we say that f is integrable over A.

Proposition 24 (Properties of the Integral). Let f, g : A→ [0,∞] be measurable. Then:
(i) ∀α, β ≥ 0, αf + βg is non-negative and measurable and :∫

(αf + βg) = α

∫
f + β

∫
g

(ii) f ≤ g on A ⇒
∫
A f ≤

∫
A g.

(iii) If |f | <∞, then ∀B ⊆ A measurable, χBf is non-negative, measurable, and∫
A
χBf =

∫
B
f

(iv) ∀A1, A2 ⊆ A disjoint, measurable. Then:∫
A1∪A2

f =

∫
A1

f +

∫
A2

f

If, moreover, m(A2) = 0, then∫
A2

f = 0 and so
∫
A1∪A2

f =

∫
A1

f

Theorem 13 (Chebyshev’s Inequality). Let f be measurable, non-negative. Then, ∀λ > 0, then:

m(f−1([λ,+∞])) ≤ 1

λ

∫
A
f
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Corollary 1. Let f be a non-negative, measurable function on A. Then, f = 0 a.e. in A ⇐⇒
∫
A f = 0.

Corollary 2. Let f be non-negative, measurable on A. If f is integrable over A, then f <∞ a.e. in A.

Lemma 14 (Fatou’s Lemma). Let (fn)n∈N be a sequence of non-negative, measurable functions on A ⊆ R.
Then lim infn→∞ fn is measurable and∫

A
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
A
fn (19)

In particular, if (
∫
A fn)n∈N is bounded byM <∞, then lim infn→∞ fn is integrable and

∫
A lim infn→∞ fn ≤

M .

Theorem 15 (Monotone Convergence Theorem). Let (fn)n∈N be a sequence of non-negative, measurable
functions on A ⊆ R such that ∀n ∈ N, fn ≤ fn+1 (so that the limn→∞ fn(x) exists in [0,∞] ∀x ∈ A and
limn→∞

∫
A fn exists in [0,∞]), then ∫

A
lim
n→∞

fn = lim
n→∞

∫
A
fn (20)

Corollary 3. Let (Un)n∈N be a sequence of non-negative, measurable functions on A ⊆ R. Then:∫
A

∞∑
n=1

Un =

∞∑
n=1

∫
A
Un (21)

Definition 16 (Integral in the case of Possibly Sign-Changing Functions). We say that a measurable
function f : A → R is integrable over A if f+ := max{f, 0} and f− := max{−f, 0} are integrable. We
then denote: ∫

A
f :=

∫
A
f+ −

∫
A
f− (22)

∀B ⊆ A measurable,
∫
B f =

∫
B f |B.

Proposition 25. f is Lebesgue integrable ⇐⇒ |f | is Lebesgue integrable.

Proposition 26. Let f , g be integrable over A ⊆ R. Then:
(i) ∀α, β ≥ 0, αf + βg is non-negative and measurable and :∫

(αf + βg) = α

∫
f + β

∫
g

(ii) f ≤ g on A ⇒
∫
A f ≤

∫
A g.

(iii) ∀B ⊆ A measurable, χBf is non-negative, measurable, and∫
A
χBf =

∫
B
f

(iv) ∀A1, A2 ⊆ A disjoint, measurable. Then:∫
A1∪A2

f =

∫
A1

f +

∫
A2

f

If, moreover, m(A2) = 0, then∫
A2

f = 0 and so
∫
A1∪A2

f =

∫
A1

f

Theorem 16 (Dominated Convergence Theorem). Let (fn)n∈N be a sequence of measurable functions on
A ⊆ R such that

(i) (Uniformly bounded) ∃ a g integrable over A so that ∀n ∈ N |fn| ≤ g.
(ii) (Pointwise convergence) ∃f : A→ R such that fn → f pointwise a.e. in A.

Then, the functions fn and f are integrable and∫
A
f = lim

n→∞

∫
A
fn
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Corollary 4 (Countable Additivity of Lebesgue Integration). Let f be integrable over A ⊆ R and let
(An)n∈N be measurable, disjoint subsets of A. Then:∫

∪∞n=1An

f =

∞∑
n=1

∫
An

f (23)

Corollary 5 (Continuity of Lebesgue Integration). Let (X,F , µ) be a measure space and let f be
integrable over A ⊆ X. Then, if:

(i) If (An)n∈N is an increasing sequence of measurable subsets of A (that is, An ⊆ An+1 ∀n ∈ N),
then: ∫

∪n∈NAn

fdµ = lim
n→∞

∫
An

fdµ

(ii) If (An)n∈N is a decreasing sequence of measurable subsets of A (that is, An+1 ⊆ An ∀n ∈ N), then:∫
∩n∈NAn

fdµ = lim
n→∞

∫
An

fdµ

4. Integration and Differentiation

Definition 17 (Differentiable). A function f is differentiable if D∗(f) = D∗(f) <∞, where

D∗(f) := lim inf
t→0

f(x+ t)− f(x)
t

D∗(f) := lim sup
t→0

f(x+ t)− f(x)
t

Theorem 17 (Monster Theorem). Every monotone function f : [a, b] → R is differentiable a.e. in [a, b].
Furthermore, f ′ is integrable over [a, b] and:

(i) If f is increasing, then
∫ b
a f
′ ≤ f(b)− f(a).

(ii) If f is decreasing, then
∫ b
a f
′ ≥ f(b)− f(a).

Definition 18 (Bounded Variation). We say that a function f : [a, b] → R is of bounded variation if
TV(f) <∞, where:

TV(f) := sup

{
N−1∑
k=0

|f(xk+1)− f(xk)| | a = x0 < x1 < ... < xN = b

}
(24)

TV(f) is called the total variation of f .

Proposition 27. Let f : [a, b]→ R and let c ∈]a, b[. Then:
TV(f) = TV(f |[a,c]) + TV(f |[c,b])

Theorem 18 (Characterisation of Functions of Bounded Variation). A function f : [a, b] → R is of
bounded variation ⇐⇒ it can be written as the difference of two increasing functions. In particular,
every function f : [a, b]→ R is differentiable a.e. in [a, b] and f ′ is integrable over [a, b].

Definition 19 (Absolutely Continuous). We say that a function f : [a, b]→ R is absolutely continuous
if ∀ε > 0, ∃ δε > 0 such that ∀ finite collections of open, bounded intervals that are disjoint ]a1, b1[, ..., ]aN , bN [,
if

N∑
k=1

|bk − ak| < δ ⇒
N∑
k=1

|f(bk)− f(ak)| < ε

Theorem 19. Every absolutely continuous function f : [a, b]→ R can be written as the difference of two
increasing and absolutely continuous functions. In particular, it is of bounded variation.

Theorem 20. Let f : [a, b]→ R. Then:
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(i) If f is absolutely continuous on [a, b] ∀x ∈ [a, b], then∫
[a,x]

f ′ = f(x)− f(a)

(ii) Conversely, if ∃ a g integrable over [a, b] such that ∀x ∈ [a, b],
∫
[a,x] g = f(x) − f(a), then f is

absolutely continuous and f ′ = g a.e. in [a, b].

Lemma 21. Let h be integrable over [a, b]. Then, h = 0 a.e. in [a, b] ⇐⇒ ∀ x < y ∈]a, b[∫
]x,y[

h = 0

Corollary 6. Let f : [a, b]→ R be monotone. Then, f is absolutely continuous on [a, b] ⇐⇒∫
]a,b[

f ′ = f(b)− f(a)

Corollary 7. Every function f : [a, b] ⇒ R of bounded variation can be written as f = fabs + fsing,
where fabs is absolutely continuous and f ′sing = 0 a.e. in ]a, b[.

5. Lebesgue Measure and Integration in Rd, d ≥ 2

Definition 20 (Outer Measure). Let A ⊆ Rd. We define the outer measure of A as:

m∗(A) := inf

{ ∞∑
k=1

Vol(Rk) | Rk =]ak1 , bk1 [× · · ·×]akd , bkd [ open, bd rectangles covering A

}
(25)

where

Vol(Rk) :=
d∏
i=1

(bki − aki)

Proposition 28. Every open set O ⊆ Rd can be written as a countable union of almost disjoint closed
cubes.

For the next family of theorems, we are in the following set-up. Let d1, d2 ∈ N be such that d1+d2 = d.
For every E ⊆ Rd and (x, y) ∈ Rd1 × Rd2 = Rd. We denote

Ex0 :=
{
y ∈ Rd2 | (x0, y) ∈ E

}
Ey0 :=

{
x ∈ Rd1 | (x, y0) ∈ E

}
and ∀ f : E → R

fx0 :=

{
Ex0 → R
y 7→ f(x0, y)

fy0 :=

{
Ey0 → R
x 7→ f(x, y0)

Theorem 22 (Fubini’s Theorem in Rd). Let f : Rd → R be integrable over R. Then:
(i) (Existence of the Integral I) For almost every y ∈ Rd2, fy is integrable over Rd1.
(ii) (Existence of the Integral II) y 7→

∫
Rd1 fy is integrable over Rd2.

(iii) (Fubini’s Theorem) ∫
Rd2

(∫
Rd1

f(x, y)dx

)
dy =

∫
Rd

f (26)
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Theorem 23 (Tonelli’s Theorem; Fubini’s Theorem for non-negative measurable functions). Let f : Rd →
[0,∞] be measurable. Then:

(i) (Existence of the Integral I) For almost every y ∈ Rd2, fy is non-negative and measurable over
Rd1.

(ii) (Existence of the Integral II) y 7→
∫
Rd1 fy is non-negative, measurable over Rd2.

(iii) (Fubini’s Theorem) ∫
Rd2

(∫
Rd1

fydx

)
dy =

∫
Rd

f (27)

Corollary 8. Let E ⊆ Rd be measurable. Then:
(i) For a.e. y ∈ Rd2, Ey is measurable.
(ii) y 7→ m(Ey) is measurable.
(iii) m(E) =

∫
Rd2 m(Ey)dy.

Corollary 9 (General Version of Tonelli’s Theorem). 1 Let E ⊆ Rd be measurable, and let f : E → [0,∞]
be measurable. Then:

(i) For almost every y ∈ Rd2, f is non-negative and measurable on Ey.
(ii) y 7→

∫
Ey
fy is non-negative, measurable, on Rd2.

(iii) ∫
Rd2

∫
Ey

fy =

∫
E
f

Corollary 10 (General Version of Fubini’s Theorem). Let E ⊆ Rd be measurable and let f : E → R be
measurable. Then:

(i) For almost every y ∈ Rd2 , fy is integrable on Ey.
(ii) y 7→

∫
Ey
fy is measurable on Rd2.

(iii) ∫
Rd2

∫
Ey

fy =

∫
E
f

Theorem 24. Let E1 and E2 be measurable sets in Rd1 and Rd2 respectively. Then E1×E2 is measurable
and

m(E1 × E2) =

{
m(E1)×m(E2) if m(E1) 6= 0 ∧m(E2) 6= 0

0 else

Corollary 11. Let E1, E2 be two measurable sets, E1 ⊆ Rd1 and E2 ⊆ Rd2. Let f : E1 → R be
measurable. Then:

f̃ :=

{
E1 × E2 → R
f̃(x, y) = f(x)

is measurable as a function of E1 × E2.

Theorem 25 (Formula for the Integral of a non-negative measurable function in terms of a region in Rd).
Assume that d1 = d− 1 and d2 = 1. Let E1 ⊆ Rd−1 be measurable and consider f : E1 → [0,∞].

(i) f is measurable ⇐⇒ the set A:

A := {(x, y) ∈ E1 × R | 0 < y < f(x)}
is measurable.

(ii) Moreover, if f is measurable, then

m(A) =

∫
E1

f (28)

1The difference between points i and ii here vs. Tonelli’s theorem is that we cannot fix x here.


