
Math 375: Statistics
Winter 2020 Lecture Notes

Shereen Elaidi

Contents

1 Introduction 1

2 Properties of Random Samples 2
2.1 Sampling from the Normal Population . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Standardisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 F-Test Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Limiting Sample Distributions (Asymptotics) . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Order Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Point Estimation 16
3.1 Ways We Can Construct Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Method of moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Method of Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Invariance of the MLE Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Bayesian Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Method of Evaluating Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Best Unbiased Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Geometric Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Sufficiency and Completeness 37
4.1 Proving the Sufficiency of Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Sufficient Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Applications of Sufficiency in Point Estimation . . . . . . . . . . . . . . . . . . . . . 42

5 Hypothesis Testing 45
5.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Likelihood Ratio Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

1 Introduction

Data consists of observations x1, ..., xn. These are regarded as realisations of random phenomena
modelled by the random variables X1, ..., Xn. In this course, the Xi’s will be random variables in
Rd, usually with d = 1.

Definition 1 (Random Sample). The random variables X1, ..., Xn are called a random sample
from a distribution F for i = 1, ..., n (or, if we want, we write X ∼ F ).

In this course, the data will be a realisation of the random sample F . The basic issue is that F
is unknown, so our task is to learn F from the realisations x1, ..., xn. A model for F is F , which
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is a collection of (certain) probability distributions such that F ∈ F . It is always an (artificial)
approximation to reality.

Example 1 (U.S. 2016 Election Poll). . n = 2, 000, and let x1, ..., xn be the realisations ofX1, ..., Xn,
which are iid. Then, assuming there are only two candidates:

F ∈ F = { Bernoulli(p) | p ∈]0, 1[ }

This is an example of a parametric model, since p, which is the probability of success, is an
unknown parameter. We know that for each xi, we have xi ∈ {0, 1}. To estimate p, we have:

p̂ =
1

n

n∑
i=1

xi

i.e., the sample mean. By the Weak Law of Large Numbers, which we can use thanks to the iid
assumption, we can see how good the estimator is by observing that it will p̂ will converge in
probability to p as n→∞:

p̂ =
1

n

n∑
i=1

xi
p→ p (1)

2 Properties of Random Samples

We first remark that the assumption that the X1, ..., XN are iid is also called sampling from an
infinite population. To see why, consider that our population were finite, say {x1, ..., xN}, and
we sample the X1, ..., XN with replacement. Then, the probability of choosing a specific xk would
be:

P [X1 = xk] =
1

N
∀ k ∈ {1, ..., N}

P [X2 = xk | X1 = xj ] =

{
0 if k = j

1
N−1 if k 6= j

Using the law of total probability, we can obtain P [X2 = xk]:

P [X2 = xk] =

N∑
j=1

P [x2 = xk | X1 = xj ]P [X1 = xj ]

=
N∑

j=1,j 6=k

1

N − 1

1

N
=

1

N

These samples are identically distributed but not independent. When N >> n, the dependence
between X1, ..., Xn plays essentially no role. The following example illustrates this:

Example 2. Let N = 2, 000 and n = 10. If we assume that they are not independent:

P [X1 > 2, 000, ..., Xn > 2, 000] =

(
800
10

)(
200
0

)(
1000

0

) ≈ 0.106164

If do assume they are independent:

P [X1 > 2, 000, ..., Xn > 2, 000] = [P [X1 > 200]]10 =

(
800

1000

)10

≈ 0.107374
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Definition 2 (Statistic). Let X1, ..., Xn be a random sample from F , a distribution on Rd. For a
measurable function:

T : Rd × · · · × Rd︸ ︷︷ ︸
n times

→ Rk (2)

the random variable T (X1, ..., Xn) is called a statistic. The distribution of the statistic, T (X1, ..., Xn)
is called a sampling distribution of the statistic T (X1, ..., Xn).

CAUTION: T (X1, ..., Xn) is a function of X1, ..., Xn ONLY. That is, T (X1, ..., Xn) must be a
vector of numbers.

Example 3. Let’s go back to the opinion poll example. The estimator

p̂ =
1

n

n∑
i=1

xi

is a statistic. A realisation is 0.47 = T (X1, ..., Xn). Note that the following is not a statistic:(
1

n

n∑
i=1

xi − p

)2

(3)

since there is a dependence on a parameter p.

Definition 3 (Sample Mean, Sample Variance, Sample Standard Deviation). The average:

X :=
1

n

n∑
i=1

Xi (4)

is called the sample mean. The quantity:

s2 :=
1

(n− 1)

n∑
i=1

(xi − x)2 (5)

is called the sample variation. The statistic s :=
√
s2 is called the sample standard deviation.

When these values are realised, they are denoted x, s2, and s. x and s2 are measures of central
tendency and variability, respectively.

Theorem 1. Suppose that x1, ..., xn ∈ R and let x := 1
n

∑n
i=1 xi. Then:

1.

min
α

n∑
i=1

(xi − α)2 =

∞∑
i=1

(xi − x)2 (6)

2.

(n− 1)s2 =
n∑
i=1

(xi − x)2 =
n∑
i=1

x2
i − nx (7)

Proof. 1.

n∑
i=1

(xi − α)2 =

n∑
i=1

(xi ± x− α)2

=

n∑
i=1

(xi − x)2 + (x− a)n+ 2(x− α)
n∑
i=1

(xi − x)︸ ︷︷ ︸
:=nx−nx=0

≥
n∑
i=1

(xi − x)2
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2. Set α = 0 in the preceding calculation. Then:

n∑
i=1

x2
i =

n∑
i=1

(xi − x)2 + nx2

Lemma 2. Let X1, ..., Xn be iid from F on R, and let g : R → R be measurable, and X ∼ F .
Suppose that Var[g(X)] <∞. Then:

1.

E

[
n∑
i=1

g(Xi)

]
= nE[g(X)] (8)

2.

Var

[
n∑
i=1

g(Xi)

]
= nVar[g(X)] (9)

Theorem 3. Let X1, ..., Xn be a random sample from F , and assume that X ∼ F . Suppose that
Var[X] = σ2 <∞ and let µ := E [X]. Then:

1. E
[
X
]

= µ
2. Var[X] = σ2/n.
3. E

[
s2
]

= σ2.

Remark. The reason why we divided by (n−1) and not n in s2 was because we wanted property
(3) to be true.

Proof. 1. Obvious.
2.

Var[X] = Var

[
1

n

n∑
i=1

xi

]
=

1

n2
Var

[
n∑
i=1

xi

]
=

1

n2
nσ2 = σ2/n

3.

E

[
1

(n− 1)

n∑
i=1

(xi − x2)

]
=︸︷︷︸

Thm 1.2

E

[
1

(n− 1)

[
n∑
i=1

x2
i − nx

]]

=
1

(n− 1)

[
nE
[
X2
]
− nE

[
X
]2]

=
1

(n− 1)

[
n(σ2 + µ2)− n

(
σ2

n
− µ2

)]
= σ2

Example 4 (Simon Newcomb trying to measure the speed of light, 1835-1909). In 1882, he at-
tempted to carry out measurements to determine the speed of light. He collected 66 data points.
Question: given the data, what would be the model for the distribution of the speed of light? How
would you describe the stochastic mechanism?

We have n random variables, X1, ..., Xn, where n = 66. The paramteric statistical model is:

F = { N(µ, σ2), µ ∈ R2, σ2 > 0}
Ti = (24800 +Xi) · 10−9
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We think that a normal distribution is reasonable. That is, Xi ∼ N(µ, σ2). We will write each Xi

as the sum of the mean and an error term, ε:

Xi = µ+ εi

where we assume εi ∼ N(0, σ2). The εi has some distribution function with CDF F0 with E [εi] = 0.
We can express the distribution F in an alternative way in terms of shifts:

F = {F0(· − µ), µ ∈ R, F0 is a CDF with expectation zero }

This gives us something that we call a semi-parametric model. We then obtain the x, sample
mean. We can use this to estimate µ.

Question: How confident are we in the obtained sample mean? In order to answer this question,
we need to know something about the sampling distribution of the statistics. We can estimate the
variance of the sample mean using the previous theorem and the assumption about the errors being
normally distributed as follows. Recall that the sample variance is given by:

1

(n− 1)

n∑
i=1

(xi − x)2

So, the expected value of s2 is:

E
[
s2
]

= Var[X] = σ2 (if the errors are normally distributed)

and,

Var[X] = σ2/n

This means that the uncertainty of X depends on the underlying distribution since the σ2’s are the
variances of the Xi’s.

Theorem 4. Suppose that X1, ..., Xn is a random sample from an underlying distribution F . Let
X ∼ F . Suppose also that X has a moment generating function MX(t) for t ∈ I. Then, the moment
generating function of X is:

MX(t) = {Mx(t/n)}n, t/n ∈ I (10)

Proof. The proof follows from the IID property of the random variables X1, ..., Xn.

MGF = E
[
etX
]

= E
[
et/n(X1+...+Xn)

]
= E

[
n∏
i=1

et/nXi

]

=

n∏
i=1

E
[
et/nXi

]
= {MX(t/n)}n

The next example will give us some concrete examples of applying the previous theorem.

Example 5. 1. Let F = N(µ, σ2). So, we know that X ∼ N(µ, σ2). From Math 356 we know
the moment generating function is:

MX(t) = etµ+ 1
2
σ2t2 t ∈ R
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Invoking the theorem and simplifying:

MX(t) =

(
e
t
n
µ+ 1

2
σ2 t2

n2

)n
t ∈ R

= etµ+ 1
2
σ2 t2

n

since the MGF uniquely determines the underlying distribution, this gives us that:

X ∼ N(µ, σ2/n)

2. If X ∼ Binomial(m, p):

MX(t) = (1− p+ pet)m

MX(t) = (1− p+ pet/n)m·n

a) A modification of the X will be distributed binomially. Namely, n×X will get rid of the
n in the denominator:

Mn×X(t) = E
[
entX

]
= (1− p+ pet)m·n

⇒ n×X ∼ binomial(m · n, p).

3. If X ∼ Gamma(α, β):

Γ(α) =

∫ ∞
0

xα−1e−xdx

MX(t) = (1− tβ)−α, t <
1

β

MX(t) =

(
1− t

n
β

)−αn
, t <

n

β

⇒ X ∼ Gamma

(
α · n, β

n

)
2.1 Sampling from the Normal Population

The setup for this section will be as follows: let X1, ..., Xn be iid from N(µ, σ2).

Theorem 5. Let X1, ..., Xn be iid from N(µ, σ2). Then:

1. X ∼ N(µ, σ2). (Shown using the MGF).
2. X and s2 are independent.

Proof. WLOG for (a), we can assume that µ = 0 and σ2 = 1, since we standardise random variables.
Why? The standardisation of a random variable Xi, denoted by X∗i , is an affine transformation
given by:

X∗i =
Xi − µ
σ

X∗i is still normally distributed, which can be shown using an MGF argument. Thus:

X
∗
i =

X − µ
σ

(X = σX
∗

+ µ). Moreover, for (s∗)2:

(s∗)2 =
1

(n− 1)

n∑
i=1

(X∗i −X
∗
)2 =

1

(n− 1)

n∑
i=1

(Xi −X)2

σ2
=
s2

σ2
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This justifies why we can say WLOG. To show that (b) holds when µ = 0 and σ2 = 1, we will play
with s2:

s2 =
1

(n− 1)

[
n∑
i=2

(Xi −X)2 + (X1 −X)2

]

because we also know that

n∑
i=1

(Xi −X) = 0⇒ (X1 −X) = −
n∑
i=2

(Xi −X)

This implies that we can re-write s2 as:

s2 =
1

(n− 1)

 n∑
i=2

(Xi −X)2 +

(
n∑
i=2

(Xi −X)

)2
 := h(X2 −X, ...,Xn −X)

h is clearly measurable. We now have a function of only n− 1 random variables, which is why we
normalise s2 by (n− 1).

Lemma 6 (Core of the argument). If X1, ..., Xn are iid N(0, 1), then

X ⊥ (X2 −X, ...,Xn −X) (11)

From this lemma 1.14, we can then immediately conclude that X ⊥ s2.

Proof. This is where we use the normality assumption. Define a one-to-one function g : Rn → Rn:

g(x1, ..., xn) 7→ (x, x2 − x, ..., xn − x)

Since g is one-to-one, we can invert it:

g−1(y1, ..., yn) 7→

(
gn −

n∑
i=2

yi, yn + y1, ..., yn + y1

)

Need to calculate the Jacobian of the transformation:

Jac(g) =


1 −1 · · · −1

1 1 · · · 0
...

. . .
. . . 0

1 0 · · · 1


det(Jac(g)) = n. So, by the transformation laws:

fY1,...,Yn(y1, ..., yn) = f(X1,...,Xn(g−1(y1, ..., yn))|Jac(g)|

Here, Y1 = X,Y2 = X2 −X, ..., Yn = Xn −X, and so by the IID of the Xi:

f(X1,...,Xn)(x1, ..., xn) =
n∏
i=1

1√
2π

1

σ
e
−(xi−µ)

2

2σ2

=
n∏
i=1

1√
2π
e−x

2
i /2
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where the second inequality follows by the standard normal assumption.

f(Y1,...,Yn)(y1, ..., yn) =

(
1√
2π

)n
exp

−1

2

(
y1 −

n∑
i=2

yi

)2

+ (y2 + y1)2 + ...+ (yn + y1)2


=

(
1√
2π

)n
exp

{
−ny2

1

2

} n∏
i=2

exp

−1

2

 n∑
i=2

y2
i −

(
n∑
i=2

yi

)2


(the cross terms will drop out). Thus, we have factored the densities of the Y ’s into the product of
two functions with difference dependencies (y1 vs. y2, ..., yn). Thus, Y1 ⊥ (Y2, ..., Yn)

By the following theorem from Chapter 4 of the textbook, we obtain the desired result:

Theorem 7 (Generalisation of Theorem 4.3.2). Let X1, ..., XN be independent random vectors.
Let gi(xi) be only a factor of xi, i = 1, ..., n. Then, the random variables Ui := gi(Xi), i = 1, ..., n
are mutually independent.

Definition 4 (Chi Squared Distribution with v degrees of freedom).

fv(x) :=
1

2v/2γ(v/2)
xv/2−1e−x/2 (12)

x > 0.

Remark: χ2
v is a Gamma(v/2, 2) distribution (special case of the gamma distribution). Recall

from earlier that the MGF of χ2
v is (1− 2t)−v/2 for t < 1/2.

Lemma 8 (Facts about χ2). 1. If X ∼ χ2
v, then E [X] = v and Var[X] = 2v

2. If X1 ∼ χ2
v1 and X2 ∼ χ2

v2 , X1 ⊥ X2, then X1 +X2 ∼ χ2
(v1+v2)

3. If X ∼ N(0, 1) then X2 ∼ χ2
1. (Proof of this one is on assignment 1).

The following theorem is very important since it leads to the chi squared test.

Theorem 9. Let X1, ..., Xn be a random sample from N(µ, σ2). Then:

(n− 1)s2

σ2
∼ χ2

(n−1) (13)

Reality check:

E
[

(n− 1)s2

σ2

]
= (n− 1)

which implies that:

(n− 1)

σ2
E
[
s2
]

= (n− 1)⇒ E
[
s2
]

= σ2

We can elegantly prove this using moment generating functions:

Proof. From the preceding Lemma and the first theorem of the section, we have that we can stan-
dardise:

X − µ
σ/
√
n
∼ N(0, 1)
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Squaring this, we obtain:

n

(
(X − µ)2

σ2

)
∼ χ2

1

So, summing the random variables gives:

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n

Therefore, by adding and subtracting the sample mean and simplifying:

n∑
i=1

(
Xi − µ
σ

)2

=

∑n
i=1(Xi −X)2

σ2
+
n(X − µ)2

σ2

=
(n− 1)s2

σ2
+
n(X − µ)2

σ2︸ ︷︷ ︸
∼χ2

1

From the first theorem of the section, these are independent. We cannot subtract to solve for the
quantity that we are interested in, so we will work with moment generating functions. The MGF
of the left hand side is:

(1− 2t)n/2, t < 1/2

and the MGF of the right hand side is:

M (n−1)s2

σ2

(t) · (1− 2t)−1/2, t < 1/2

equating these, we obtain:

M (n−1)s2

σ2

(t) = (1− 2t)−(n−1)/2, t < 1/2

However, this is the MGF of χ2
(n−1), and since the MGF uniquely determines the distribution, we

obtain that (n−1)s2

σ2 ∼ χ2
(n−1), which is what we wanted to show.

Observe: this proof heavily relies on the normality of the distribution, independence, and the
chi squared.

2.2 Standardisation

Motivation: quality control problem. Let X be the random variable estimating the underlying
mean. Say that we set a quality cutoff, µ0, and we want to answer the question:

does µ = µ0?

What if we try to standardise:

X − µ0

σ/n
∼ N(0, 1)

and then compare the quantities? The problem here is that this is not a statistic. We do not know
what σ is. However, if you don’t know something, estimate it:

√
n
X − µ0√

s2

The problem with this approach is that it is not distributed N(0, 1). Especially when the sample is
not too large. This motivates the following definition:
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Definition 5 (Student-t distribution with v degrees of freedom). has the density:

fv(x) :=
Γ
(
v+1

2

)
√
vπΓ

(
v
2

) (1 +
x2

v

)(v+1)/2

where x ∈ R and v > 0.

Remark: if you set v = 1, you obtain the Cauchy Lorentz distribution. E [X] =∞. Also observe
that the student-t is a heavy-tailed distribution.

Lemma 10. Let X ∼ tv. Then:

1. E [X] = 0, provided that v > 1 (otherwise it does not exist).
2. Var[X] = v/(v − 2) when v > 2 (otherwise, var[X] does not exist).
3. (Assignment): if Z ∼ N(0, 1), V ∼ χ2

v, Z ⊥ V , then:

Z√
v/v
∼ Tv (14)

This is the most important part of the distribution. You can prove it using the transformation
theorem for densities.

Theorem 11. Let X1, ..., Xn be a random sample from N(µ, σ2). Then:

X − µ√
s2/n

∼ t(n−1)

The proof is pretty obvious using the lemma:

Proof. We will express the ratio as a standard normal Z. We already have that:

√
n
X − µ
σ

∼ N(0, 1) ⊥ s2(n− 1)

σ2
∼ χ2

(n−1)

So, taking the ratio in the form of what is given to us in the previous lemma gives:

√
nX−µσ√
s2(n−1)
σ2(n−1)

=

√
n(X − µ)√

s2
∼ t(n−1)

where we obtain the distribution from the previous lemma.

The student-t model forms a nice statistical model for certain types of data.

2.3 F-Test Basis

If we want to compare quality, we need to standardise by variance. The following section helps
answer the question, is the variance between two samples the same?

Definition 6 (The Fischer-Snedecor’s F Distribution with Two Parameters v1 and v2 degrees of
freedom). This distribution is denoted by Fv1,v2 . This is the distribution of the following:

V1/v1

V2/v2

where V1 ∼ χ2
v1 , V2 ∼ χ2

v2 , and V1 ⊥ V2.

This will lead to the F -test.
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Theorem 12. If X1, ..., Xn is a random sample from N(µx, σ
2
x), and Y1, ..., Ym is a random sample

from N(µy, σ
2
y), and the two samples are independent, s2

x and s2
y are the sample variances, then:

s2
x/σ

2
x

s2
y/σ

2
y

∼ Fn−1,m−1

Proof. From the previous result and independence, we have:

(n− 1)s2
x

σ2
x

∼ χ2
(n−1)

(m− 1)s2
y

σ2
y

∼ χ2
(m−1)

are independent. If we divide by the degrees of freedom and invoke the definition of the F distribu-
tion, we obtain the desired result.

s2
x/σ

2
x

s2
y/σ

2
y

∼ F(n−1),(m−1) (15)

This forms the basis of the F-test. If we want them to have the same variances, then s2
y and s2

x

had better be close. The way to assess this is to look at ratios, and then the σ2’s will drop out and
we can then test hypotheses. Moreover, if σ2

x = σ2
y , then:

s2
x

s2
y

∼ F(n−1),(m−1)

we will later use this to construct the so-called F-test.

2.4 Limiting Sample Distributions (Asymptotics)

What happens as n→∞? These questions are answered by Weak Law of Large Numbers
and Convergence in Distribution.

More precisely, let X1, ..., Xn be iid from F. Then, define Tn := T (X1, ..., Xn) be a real-valued
statistic. Then:

Q1: Does Tn converge in probability to an estimator θ ∈ R?

∀ε > 0 P [|Tn − θ| > ε]→ 0 as n→∞ (16)

Q2: What happens to the distribution as n→∞? In other words, if (rn) is a sequence of real
numbers, typically such that rn →∞ ad n→∞, does

rn(Tn − θ)
d−→ T (17)

What the (rn) is doing is that it is “zooming” into Tn → θ. Idea: when n is “large enough”:

rn(Tn → θ)
d−→ Tn

T

rn
+ θ

where the final term is called the location and scale model. This may have a nice distribution.
The distribution of T

rn
− θ is often called the large-sample or (asymptotic) distribution of

Tn or the limiting distribution of Tn. This is fundamental for quantifying uncertainty and for
hypothesis testing.
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2.4.1 Question 1

First we will have a refresher from Math 356. The prime tool for convergence in probability is the
Weak Law of Large Numbers.

Theorem 13 (Weak Law of Large Numbers). Let X1, X2, ... be iid random variables with E [Xi] = µ
and Var[Xi] = σ2 <∞. Define

Xn :=
1

n

n∑
i=1

Xi (18)

then, Xn converges in probability to the expected value of X.

Theorem 14 (Continuous Mapping Theorem). If Tn
P−→ T and g is continuous on the set C such

that P [T ∈ C] = 1, then g(Tn)
P−→ g(T ).

In particular, if Tn
P−→ θ and if g is continuous at θ, then g(Tn)

P−→ g(θ).

Example 6 (Another justification for the sample variance). Let X1, ..., Xn be a random sample

from X (i.e., from F with X ∼ F ), and assume that E
[
X2
]
<∞. Then, by the WLLN, X

P−→ E [X].
For the sample variance:

s2 =
1

(n− 1)

n∑
i=1

(Xi −X)2 =
1

(n− 1)

n∑
i=1

X2
i −

n

(n− 1)
(X)2

Applying the weak law of large numbers to the first term and the continuous mapping theorem to
the second term gives us that the difference will converge in probability to:

E
[
X2
]
− (E [X])2 = Var[X]

since the square root is continuous:

s =
√
s2 P−→

√
Var[X]

Example 7. Let X1, ..., Xn be a random sample from X. Suppose that we are after P [X ∈ A].
This can be estimated by the empirical probability, which counts how many x’s fall into A.
Set Zi := χXi∈A. Then, the Zi are iid Bernoulli random variables. Using the Weak Law of Large
Numbers:

Pn
P−→ P [X ∈ A]

which is the expected value of a Bernoulli random variable. By the Strong Law of Large numbers:

Pn → P [X ∈ A] a.s.

Since F is the CDF of X, we can try to learn it from the data. For x ∈ R, F (x) = P [X ≤ x]. The
empirical distribution function Fn is given by:

Fn(x) :=
1

n

n∑
i=1

χXi≤x (19)

This is a central object in mathematical statistics.
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Given an observed sample x1, ..., xn, a sample empirical CDF is given by:

Fn(x) =
1

n

n∑
i=1

χxi≤x (20)

This is a CDF itself. It is a CDF with a discrete distribution with support {x1, ..., xn} and
P [xi] = 1/n. By the Weak Law of Large Numbers:

Fn(x) =
1

n

n∑
i=1

χXi≤x
P−→ F (x)

for ∀x ∈ R. Actually, by the strong law of large numbers:

Fn(x)→ F (x) a.s.

for any x ∈ R.

Theorem 15 (Glivenlco-Cantelli Theorem). We have uniform convergence:

sup
x∈R
|Fn(x)− F (x)| → 0 as n→∞ (21)

Notice that:

X =
1

n

n∑
i=1

Xi =

∫
xdFn(x) (22)

2.4.2 Question 2

We will need the following tools from probability: the Central Limit Theorem and Slutsky’s theorem.

Theorem 16. Let Z1, ..., Zn be iid with E [Zi] < ∞, E [X1] = µ, var[Z1] < ∞, and var[Zi] = σ2.
Then, the Central Limit Theorem states:

√
n
Z − µ
σ
−−−→
CLT

N(0, 1) (23)

or

√
n(Z − µ) −−−→

CLT
N(0, σ2) (24)

Theorem 17 (Slutsky’s Theorem). Assume that Tn
d−→ T , Yn

p−→ c where c ∈ R. Then:

1. Tn + Yn
d−→ T + c

2. Tn · Yn
d−→ T · c

3. Tn/Yn
d−→ T/c if c 6= 0.

Remarks: If Tn
d−→ c where c ∈ R, then Tn

p−→ c. Moreover, we can say something with the CMT.

If Tn
d−→ T , g is continuous on C with P [T ∈ C] = 1. Then, g(Tn)

d−→ g(T ).

Important remark: if (rn) is a sequence of numbers, rn →∞ as n→∞. Then, if rn(Tn−θ)
d−→

T , then we have:

Tn − θ = rn(Tn − θ)︸ ︷︷ ︸
d−→T

1

rn︸︷︷︸
→0

d−−−−−−→
slutskys’s

0

So, Tn − θ
p−→ 0, or Tn

d−→ θ. This means that the second statement implies the first statement.
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Example 8 (Alternative proof of the CLT). Let X1, ..., XN be iid from F , E [X] = µ, Var[X] =
σ2 <∞ (this assumption is very important!)

√
n
X − µ√

s2
=

√
n(X − µ)

σ︸ ︷︷ ︸
By vanilla CLT, this goes toN(0,1)

· σ√
s2︸︷︷︸
p−→1

(25)

and so by Slutsky’s theorem

d−→ N(0, 1)

Corollary 1. Assume that each Tn ∼ tn (student-t with n degrees of freedom). Then Tn
d−→ N(0, 1).

Example 9. Suppose X1, ..., Xn are iid from Bernoulli(p). Suppose that we want to estimate
var[X1] = p(1− p). Q: could we estimate it by:

X(1−X)
CMT−−−→
P

p(1− p)

More precisely, can we find a sequence (rn) such that

(rn)(X(1−X)− p(1− p)) d−→??

This is not exactly the CMT; this example provides the motivation for developing the delta method.

Suppose that we know that rn(Tn − θ)
d−→ T and we are interested in g(Tn)− g(θ). What could we

do? We could use the Taylor Expansion:

g(Tn)− g(θ) ≈ g′(θ)(Tn − θ)
(rn)(g(Tn)− g(θ)) ≈ g′(θ){rn(Tn − θ)}

By Slutsky’s theorem, rn(Tn − θ) converges in distribution to T · g′(θ).

Theorem 18 (Delta Method). Suppose (rn)(Tn − θ)
d−→ T , where (rn) is a real sequence with

rn → ∞. Let g be a function and Tn takes values in the domain of g, and assume that g is
differentiable at θ. Then:

rn(g(Tn)− g(θ))
d−→ T · g′(θ) (26)

Proof will be postponed. Back to the example. Here:

g(x) = x(1− x)

g′(x) = 1− 2x

By the central limit theorem

(X − p)
√
n

d−→ N(0, p(1− p))

Let
√
n := (rn). Then, by the delta method

√
n(X(1−X)− p(1− p)) d−→ N(0, p(1− p)) · (1− 2p)

= N(0, (1− 2p)2p(1− p))

When p = 1/2, the statement is uninteresting since the derivative is zero. We will have both
convergence in probability and distribution to zero, which doesn’t give us any information really.

We are now ready to prove the delta method.
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Proof. This proof uses several common arguments that you should learn for stats :-). Observe that

by the continuous mapping theorem, Tn
p−→ θ, also g(Tn)

p−→ g(θ). Define the following function:

f : R→ R

h 7→

{
g(θ+h)−g(θ)

h − g′(θ) if h 6= 0

0 if h = 0

Here, the interesting domain is small and is about zero. Observe that f is continuous at zero. Now
we can use the continuous mapping theorem:

f(Tn − θ)
p−→ f(0) = 0

since the first term is equal to

g(Tn)− g(θ)

Tn − θ
− g′(θ)

By Slutsky’s theorem:

rn(g(Tn)− g(θ))− g′(θ)rn[Tn − θ]

= rn[Tn − θ]︸ ︷︷ ︸
d−→T

f(Tn − θ)︸ ︷︷ ︸
p−→θ

d−→ T · 0 = 0

where the last convergence follows from Slutsky’s theorem. Therefore:

rn(g(Tn)− g(θ))− g′(θ)rn[Tn − θ]
p−→ 0

Now:

rn[g(Tn)− g(θ)] = rn[g(Tn)− g(θ)]− g′(θ)rn(Tn − θ)︸ ︷︷ ︸
p−→0

+ g′(θ)(Tn − θ) · rn︸ ︷︷ ︸
d−→g′(θ)T (CMT )

and so by Slutsky’s theorem, we obtain convergence in distribution to g′(θ)T , which completes the
proof.

2.5 Order Statistics

Definition 7 (Order Statistics). The order statistics of a random sample X1, ..., Xn are the
sample values placed in ascending order. They are denoted by X(1), ..., X(n). In other words, they
are random variables that satisfy X(1) ≤ · · · ≤ X(n). In particular:

X(1) = min
1≤i≤n

Xi

X(2) = second smallest Xi

...

X(n) = max
1≤i≤n

Xi

Definition 8 (Sample Range). The sample range is defined as R := X(n) −X(1).

Definition 9 (Sample Median). The sample median, denoted by M , is the number such that
approx one half of the observations are less than M and one half are greater. It can be defined in
terms of the order statistics as:

M :=

{
X(n+1)/2 if n is odd
X(n/2)+X(n/2+1)

2 if n is even
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3 Point Estimation

Let X1, ..., Xn be a random sample from F , and we will assume:

F ∈ F = {Fθ, θ ∈ Θ}

This means that our distribution is known up to a parameter θ. θ is an unknown vector of param-
eters. Θ is called the parameter space, Θ ⊆ Rk. Question: where does Θ come from? This is
the “art” of statistical modelling. The objective in this section is to learn θ from the data.

Notation: Fθ is a CDF. Pθ is the corresponding probability measure. Fθ has a density / proba-
bility mass function, which we will denote by f(x, θ). This notation emphasises the dependence on
θ.

Example 10. Assume that we have the normal model. Then:

F = {N(µ, σ2), µ ∈ R, σ2 > 0}

Here, θ = (µ, σ2) and the parameter space Θ = R×]0,∞[.

Definition 10 (Point Estimator). A point estimator is any statistic T (X1, ..., Xn) (function of

only the data) taking values in Rk that has been constructed with the aim of estimating θ. The
observed value T (x1, ..., xn) is called an estimate of θ, which is a concrete number.

This definition is vague since we do not want to eliminate important estimates a priori. Often,
estimators are denoted with θ̂, θ̃, θn, or θ̂n.

3.1 Ways We Can Construct Estimators

We will explore two of these methods in depth in this class. The third we will briefly mention. The
first two are frequentist methods and the final one is a bayesian method.

1. Method of moments
2. Method of maximum likelihood
3. Bayesian estimation method

3.1.1 Method of moments

This is the oldest method. It was developed in the 19th century by Karl Pearson. It has been what
we heuristically have been doing all along. Suppose that X ∼ Fθ. Then, as an idea we could first
calculate the jth moment µj of X for j = 1, ..., k, that is:

µj = Eθ
[
Xj
]

=

∫
xjdFθ(x) =

∫
xjdPθ =

∫
xjf(x; θ)dx

How would we estimate µj from the data? By the weak law of large numbers, µj can be
estimated by the jth sample moment:

µj =
1

n

n∑
i=1

Xj
i

observe that this µj is a function of θ. Thus, the general idea of the method of moments is:

Compute the jth moment of the parametric model. Then, solve for θ:

1. Calculate the population moments µj , j = 1, ..., k (the first k moments), and observe that µj
is a function of θ.

2. Set µj = mj for j = 1, ..., k and solve for θ. Start with j = 1 and see where it takes us.



Math 357: Statistics Winter 2020 Page 17

Note that sometimes you may need more moments than the first k¡ since some moments may not
actually depend on θ (they could be zero, for example).

Example 11 (Method of moments for the normal distribution). Let F = {N(µ, σ2) | µ ∈ R, σ2 >
0}. Here, since we have two parameters to estimate, we need at least two moments. We have:

E [X] = µ E
[
X2
]

= var[X] + (E [X])2 = σ2 + µ2

Now equate the population moments and solve for θ. That is, we need to solve:

m1 =
1

n

n∑
i=1

Xi = µ

m2 =
1

n

n∑
i=1

X2
i = σ2 + µ2

and this gives us

µ̂ = m1

σ̂2 = m2 − µ̂2

Substituting in what all of this means gives us:

σ̂2 =
1

n

n∑
i=1

X2
i −

(
n∑
i=1

Xi

)2

=
1

n

n∑
i=1

(Xi −X)2 =
(n− 1)

n
s2

Hence, the estimator (method of moments estimator) for (µ, σ2) is:

(µ̂, σ̂2) =

(
X,

(n− 1)

n
s2

)
Q: What are some advantages and disadvantages of the method of moments?
Some advantages include:

1. It is intuitive.
2. Population moments are easy to estimate and we know how they behave asymptotically.

a) Weak law of large numbers and the CLT.

3. Asymptotic properties of θ̂ can often be derived using the CMT and the Delta Method.

Some disadvantages include (“the bitter reality”):

1. There is a systematic bias for n small, which is encoded by the (n− 1)/n term.
2. These estimators are often not optimal.

Example 12 (Method of moments for binomial). Let our model be F = {B(N, p), p ∈ [0, 1], N =
{1, ...}}. There are two cases: N can either be known or known. If N is known, then it is easy. In
this case, θ = p and Θ = [0, 1]. In this case:

µ1 = Np

m1 = Np⇒ p̂ =
m1

N
=

x

N

The not so easy case is when both p and N are unknown. We have the following system of equations:

µ1 = Np

µ2 = Np(1− p) + (Np)2
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We thus have the following system of equations that we need to solve:

m1 = Np

m2 = Np−Np2 +N2p2

Solving for p̂ gives:

p̂ =
m1

N

Substituting this estimation into the second equation and simplifying gives:

m2 = m1 −
m2

1

N2
N(n− 1)

⇒m2 = m1 +
m2

1

N
(N − 1)

⇒Nm2 = Nm1 +m2
1(N − 1)

⇒N(m2 −m1 −m2
1) = −m2

1

What if X1 = ... = Xn = 0? This event has non-zero probability, and so we must account for it. In
that case, there is nothing more we can do. Otherwise, we obtain:

N̂ =

{ −m2
1

m2−m1−m2
1

undefined if X1 = ... = Xn = 0

p̂ =
−m2 −m2 −m2

1

m1
or undefined in the case X1 = ... = Xn = 0

So, our method of moments (MoM) estimator of (p,N) is:(
−m2 +m1 +m2

1

m1
,

m2
1

−m2 +m1 +m2
1

)
=

(
X − 1

n

∑n
i=1(Xi −X)2

X
,

(X)2

X − 1
n

∑n
i=1(Xi −X)2

(∗)

)
Observations from this example:

• Estimating N was not very intuitive.
• There is no guarantee that the second component of (*) is an integer or non-negative. This is

why we chose such a vague definition of an estimator; because we don’t want to exclude this
method.
• Estimating N for the binomial is quite difficult.

Here is an example where θ determines the support of the random variable.

Example 13. Let F = {U(] − θ, θ[), θ ∈]0,∞[}. Since the expected value is zero, we will need
more moments. Recall the following from probability theory: if X ∼ U(]a, b[), then:

E [X] =
a+ b

2
and var[X] =

1

2
(b− a)2

then the moments are:

µ1 = 0

µ2 =
1

2
(2θ)2 = 2θ

this is good since it is a genuine function of θ. Set:

µ2 = m2

and solve the following to obtain the method of moment estimator:

2θ2 = m2 ⇒ θ̂ =

√
m2

2
=

√
1
n

∑n
i=1X

2
i

2

Observe that θ could theoretically be zero. But, since this is a continuous distribution, the proba-
bility of θ actually being zero is zero.
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3.1.2 Method of Maximum Likelihood

This is more optimal, but it can be harder to obtain. Assume that Fθ has a PDF or PMF for any
θ ∈ Θ. Recall that we denoted this PMF by f(x; θ) to emphasise the dependence on θ. Before
proceeding, a word of caution:

The likelihood function is NOT RANDOM!!!

Definition 11 (Likelihood Function). Given that (X1, ..., Xn) = (x1, ..., xn) have been observed,
the function of θ defined by L : Θ→ [0,∞[,

L(θ) :=

n∏
i=1

f(xi; θ) (27)

is called the likelihood function for a fixed x = (x1, ..., xn) as a function of θ.

Example 14. Suppose that x1 = 1, x2 = 2, x3 = 2, and x4 = 5 and that we assume the Poisson
model:

F = {P (λ), λ ∈]0,∞[}

then, the likelihood function is:

L(λ;x) = e−λ
λ1

1!
+ e−λ

λ2

2!
+ e−λ

λ3

2!
+ e−λ

λ4

5!

We can think of the Likelihood function as a sort of “function summary” whose domain is the
parameter space.

Interpretation of the Likelihood Function:

1. If Fθ is discrete, then:

L(θ;x) = P [X1 = x1, ..., Xn = xn]

It is simply the product of the PMFs. It thus represents the probability of observing the
sample that we actually observed. Moreover, if for some θ1, θ2 ∈ Θ, if L(θ1;x) > L(θ2;x),
then it means that we were more likely to observe that data if the parameter is θ1 instead of
θ2. Thus, information is encoded in the function.

2. If the distribution Fθ is continuous, then this interpretation will obviously not work. However,
we can do the usual “trick”:

Pθ[X ∈]x− ε, x+ ε[] =

∫ x+ε

x−ε
f(t; θ)dt ≈ f(x;σ) · 2ε

It is thus proportional up to a constant depending on ε. Mathematically:

L(θ;x) ∝ P [X1 ∈]x1 − ε, x1 + ε[, ..., Xn ∈]xn − ε, xn + ε[]

Similar to the discrete case, comparing L(θ1;x) with L(θ2;x) will give us a comparison of the
probability of the actual observed sample.

So the aim is to find a way maximise the likelihood function in θ.

Definition 12 (Maximum Likelihood Estimate). For an observed sample x = (x1, ..., xn), let θ̂(x)
be the value for which L is maximised. In other words:

L(θ̂(x);x) := sup
θ∈Θ

L(θ;x) (28)

Then, θ̂ is called the maximum likelihood estimate. (Grounding: it is a number, not an object).
If θ̂(x) exists for almost all samples, and as a function:

θ̂ : Rn → Rk, x 7→ θ̂(x)

is a measurable, then the function θ̂(X) is called the Maximum Likelihood Estimator (MLE)
of θ.
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Example 15 (Continued from the Poisson Case). Let x1, ..., xn be a sample from the Poisson
distribution. Then, the aim is to maximise:

L(θ;x) =
n∏
i=1

e−λ
λxi

xi!
= e−nλ

λ
∑n
i=1 xi

x1! · · ·xn!

You could differentiate this monstrosity, but differentiating products is in general not fun. However,
sums are not too bad to differentiate. So, observe that this function is:

1. Positive
2. Wherever log(L) is maximised, L is maximised.

So we can equivalently maximise log(L(λ;x)). Thus:

logL(λ;x) = `(λ;x) = −nλ+

n∑
i=1

xi log(λ)− log(x1! · · ·xn!)

⇒∂`(λ;x)

∂λ
= −n+

(
n∑
i=1

xi

)
1

λ
= 0 ⇐⇒ nλ =

n∑
i=1

xi

⇒λ̂(x) = x

Take the second partial derivative to verify that this is indeed a maximum.

δ`2

δλ
= − 1

λ2

n∑
i=1

xi < 0

This, the MLE is x.

Some observations for calculating maximum likelihood estimators:

1. It is often simpler to maximise the log likelihood function, which is defined as:

`(θ;x) := logL(θ;x) (29)

2. If ` is differentiable, we can look for the maximum by solving the so-called likelihood equations:

∂`

∂θj
= 0 j = 1, ..., k (30)

Example 16. Let x1, ..., xn be a random sample from B(N, p), where N is known. Then, Θ = [0, 1]
and

L(p;x) =

n∏
i=1

(
N

xi

)
pxi(1− p)N−xi

thus, the log likelihood function ` is:

`(p;x) =
n∑
i=1

xi log(p) + (N − xi) log(1− p) + log

(
N

xi

)
︸ ︷︷ ︸

if N were unknown, this would be a big mess


We are searching for critical points. Let’s first assume that x /∈ {0, N}. We obtain:

∂`

∂p
=

(
n∑
i=1

xi

)
1

p
+

(
nN −

n∑
i=1

xi

)(
−1

1− p

)
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setting the partial derivative equal to zero and solving, we obtain:

nx

p
− n(N − x)

1− p
= 0

⇒x(1− p)− (N − x)

p(1− p)
= 0

⇒x(1− p)− (Nx)p = 0

⇒x− xp−Np+ xp = 0

⇒p =
x

N

Thus, p = x/N is the method of moments estimator. We now need to verify that this is indeed
a maximum with the second derivative test:

∂2`

∂2p
= −nx 1

p2
+ (nN − nx)︸ ︷︷ ︸

≥0

−1

(1− p2)
< 0 (concave in p)

We now need to check the boundary cases. If x = 0, then

`(p;x) = nN log(1− p)

This function is decreasing in p, which implies that it is maximised at p = 0 = x
N . If x = N , then

xi = N ∀ i ∈ {1, ..., N}. This is an increasing function in p, which implies that it is maximised at
p = 1, which implies that p̂ = 1 = x/N

For the past two examples, we’ve seen that the MLE estimator agrees with the method of moments
examples. The following example will illustrate that this is not always the case.

Example 17. Let x1, ..., xn be an observation of a random sample taken from the model:

F = {U ]0, θ[ | θ ≥ 0}

If X ∼ U ]0, θ[, then using the method of moments we have that:

E [X] = θ/2

θ

2
=

1

n

n∑
i=1

xi ⇒ θ̂ = 2x

In contrast, using the method of maximum likelihood gives:

L(θ;x) =

n∏
i=1

1

θ
χxi∈[0,θ]

since χ depends on θ, taking the log will not be a good idea. Instead, this becomes:

=

(
1

θ

)n
(χmin1≤i≤n(xi)≥0)(χmax1≤i≤n(xi)≤θ)

For almost all samples, we have:

min
1≤i≤n

xi ≥ 0

but for θ < max(xi) we have that L = 0 but for θ ≥ maxxi, L is decreasing. Thus, the MLE is
maximised at max1≤i≤n xi. Thus,

ˆθ(x) = max
1≤i≤n

Xi = X(n)

is the MLE (to do: insert graph).



Math 357: Statistics Winter 2020 Page 22

Example 18. Let x1, ..., xn be a random sample from N(µ, σ2) from the model

F = {N(µ, σ2) | µ ∈ R, σ2 ∈]0,∞[}

Then:

L(µ, σ2;x) =

n∏
i=1

1√
2σ

1√
σ2

exp

{
−(xi − µ)2

2σ

}
and so the log likelihood is:

`(µ, σ2;x) =
N∑
i=1

[
log

1√
2π
− 1

2
log σ2 − (xi − µ2)

2σ2

]
taking the partials, we obtain:

∂`

∂µ
= −

n∑
i=1

2(xi − µ)2(−1)

2σ2
=
nx− nµ
σ2

∂`

∂σ2
=

n∑
i=1

[
−1

2

1

σ2
+

(xi − µ)2

2

1

σ4

]
setting ∂`

∂µ = 0, we obtain that µ̂ = x. For the other one:

−n
2

1

σ2
+

1

2σ4

n∑
i=1

(xi − x)2 = 0

nσ2 =
n∑
i=1

(xi − x)2

⇒ σ̂2 =
1

n

n∑
i=1

(xi − x)2

How do we prove that our values µ̂ and σ̂2 are indeed maximums? The trick is to use
something called the profile likelihood. Define:

`∗(σ2) := sup
µ∈R

`(µ, σ2) (31)

we observe that if we maximise `∗, then this amounts to maximising the whole thing, since x
minimises the sum

∑n
i=1(xi − µ)2. So all we need to do is maximise this:

`∗(σ2) =

n∑
i=1

log
1√
2π
− 1

2
log σ2 − 1

2σ2
(xi − x)2

the above is called the profile likelihood univariate problem. Solving the above gives you the
σ̂2 that is the solution.

3.1.3 Invariance of the MLE Theorem

Motivation: suppose that X1, ..., Xn are iid taken from Bernoulli(p). In this case, we have that
the method of moments and MLE method agree:

p̂ = x = p̂MLE

The standard deviation of X1 =
√
p(1− p). We can estimate this by

√
p̂(1− p̂). This is a non-

bijective function of p. In this sense, this is the MLE of the standard deviation, which motivates
the idea of an invariance principle.
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Theorem 19 (Invariance of the MLE). Consider a statistical model {Fθ | θ ∈ Θ} and suppose
that g : Θ → Rm is an arbitrary function. Set Γ := g(Θ) and γ := g(θ). Then, if θ̂(x1, ..., xn) is
the maximum likelihood estimate of θ, then g(θ̂(x1, ..., xn) is the ML estimate of γ in the following
sense: if

L∗(γ;x1, ..., xn) = sup
θ∈Θ | g(θ)=γ

{L(θ;x1, ..., xn)} (32)

then:

L∗(g(θ̂(x1, ..., xn));x1, ..., xn) = sup
γ∈Γ

L∗(γ;x1, ..., xn) (33)

Proof.

L∗(g(θ̂(x1, ..., xn));x1, ..., xn) = sup
θ | g(θ)=g(θ̂)

{L(θ;x1, ..., xn)}

= L(θ̂;x1, ..., xn) (since θ̂ is the maximiser)

= sup
θ∈Θ

L(θ;x1, ..., xn)

Sup over the range of g, and then through the pre-image (just running through the θ’s in a systematic
way):

= sup
γ∈Γ

sup
θ∈Θ | g(θ)=γ

L(θ;x1, ..., xn)︸ ︷︷ ︸
=L∗(γ;x1,...,xn)

Example 19. Let X1, ..., Xn be iid from Bernoulli(p). If p̂ = X = pMLE, then
√
p̂(1− p̂) is the

MLE of the standard deviation
√
p(1− p).

The next example will be a nice philosophical example.

Example 20. Among 20 tosses, assume that there were 7 heads. Suppose that we want to estimate
p in two ways:

• Experiment # 1: the coin was tossed 20 times and it had 7 heads. However, we don’t know
when those 7 heads happened. In this case, think of likelihood as the probability of observing
what you have observed: (

20

7

)
p7(1− p)13

implies that the log likelihood is

log

(
20

7

)
+ 7 log(p) + 13 log(1− p)︸ ︷︷ ︸

this is called the kernel of the log-likelihood

• Experiment # 2: suppose you waited until 7 heads were tossed, and you are told it took 20
tosses to get there. Therefore, the difference here is that you know that the 20th toss was a
head. This probability is modelled by the negative binomial:(

19

6

)
p7(1− p)13

and so the log likelihood is:

log

(
19

6

)
+ 7 log(p) + 13 log(1− p)︸ ︷︷ ︸

kernel
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Even though the likelihoods are not the same, the MLE between the two will be the same! We have:

L1 ∝ p7(1− p)13 (34)

that is, L1(p) = c1 · p7(1 − p)13. Similarly, L2(p) = c2 · p7(1 − p)13 ∝ p7(1 − p)13. Therefore,
the MLE estimates are the same in the two experiments, since L1(p) = cL2(p). This is called
the likelihood principle: when two likelihood functions of two experiments are equal up to a
multiplicative constant, they contain the same information about the unknown parameter.

3.1.4 Bayesian Method

In the Bayesian philosophy, we quantify the lack of knowledge of a parameter θ with a probability
distribution or density π(θ). This is called a prior. A prior distribution is your belief of what the
probability is. Once the data has been collected– say, x1, x2, ..., xn, we can update the prior to
incorporate this information, and this leads to the posterior density.

The posterior density function is given by:

π(θ | x1, ..., xn) :=
f(θ, x1, ..., xn)

f(x1, ..., xn)
=

f(x1, ..., xn; θ)π(θ)∫
Θ f(x1, ..., xn; θ)π(θ)dθ

(35)

Example 21. Consider X1, ..., Xn taken from a Bernoulli(p) distribution with a prior from the
Beta distribution. Recall that the beta function is given by:∫ 1

0
xα−1(1− x)β−1dx

and so the beta distribution B(α, β) has the density:

f(x;α, β) = xα−1(1− x)(β−1) · Γ(α+ β)

Γ(α)Γ(β)
χx∈]0,1[ (36)

The set of beta distributions has a lot of different shapes as you vary the parameters, which makes
it a nice distribution to choose priors from. For example, the uniform is a special case of a beta
distribution. Given the data x1, ..., xn, we obtain:

f(x1, ..., xn; p) =
n∏
i=1

pxi(1− p)1−xi

= pnx(1− p)n−nx

We thus obtain the posterior:

π(p|x) =
pnx(1− p)n−nxpα−1(1− p)β−1 Γ(α+β)

Γ(α)Γ(β)∫ 1
0 p

nx(1− p)n−nxpα−1(1− p)β−1 Γ(α+β)
Γ(α)Γ(β)dp

∝ c(x1, ..., xn, α, β)pnx+α−1(1− p)n−nx+β−1

The posterior is a beta density:

π(p|x1, ..., xn) ∼ Beta(nx+ α, n− nx+ β)

here, the Beta is the so-called conjugate prior; that means, the posterior belongs to the same
class of densities as the prior. Observe that we no longer have a point estimate of p; we have a
distribution. To obtain a point estimate, we can take the expected value of the density:

p̂B = expected value of the posterior.

⇒ p̂B := E [Y ] , Y ∼ Beta(nx+ α, n− nx+ β)
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Note that the expected value of B(α, β) is α
α+β and:

p̂B =
nx+ α

n+ α+ β
=

n

n+ α+ β
x︸︷︷︸

MLE

+
α+ β

n+ α+ β

α

α+ β︸ ︷︷ ︸
expectation of prior

Notice the weights. The more data that you have, the more the weights favour the data. Thus, a
small sample means that the prior has a larger effect.

Example 22 (Poisson Likelihood Example - Continued). Consider the Poisson(λ) model with
parameter λ > 0 and data x1, ..., xn. In order to go Bayesian, we need to multiply the prior estimate
of λ, and we want it to be a conjugate prior. What do we multiply it by? π(λ) ∼ Gamma(α, β)
works:. We obtain:

f(x1, ..., xn;λ)π(λ) =
1

Γ(α)

λnxe−nλ

x1! · · ·xn!
λα−1e−λββα︸ ︷︷ ︸

π(λ)∼Gamma(α,β)

∝ αλα+nx−1e−λ(n+β) (37)

The posterior is again a Gamma, so the Gamma prior is a conjugate prior. Thus:

π(λ|x) ∼ Gamma(α+ nx, n+ β)

which gives:

λ̂B =
α+ nx

n+ β
=

n

n+ β
x+

β

n+ β

α

β

where the final term comes from the fact that the expected value of Gamma(α, β) is α/β.

3.2 Method of Evaluating Estimators

Definition 13 (Unbiased, Consistent, and MSE). Let F = {Fθ | θ ∈ Θ} be our statistical model,
let γ : Θ→ Rn, and also let T (x1, ..., xn) be an estimator of γ(θ). Then:

1. An estimator T (X1, ..., Xn) is called unbiased if:

Eθ [T (X1, ..., Xn)] = γ(θ) (38)

On average, does it get the right thing?
2. T is called consistent if

T (X1, ..., Xn)
P−→ γ(θ) as n→∞ (39)

Some kind of limiting statement – generally uses WLLN techniques
3. The mean squared error (MSE) of T (X1, ..., Xn) is:

MSE(T ) := Eθ
[
{T (X1, ..., Xn)− γ(θ)}2

]
(40)

Before going on, need to make some important remarks:

1. If X1 has an expectation µ and variance σ2, then we already had that the sample mean is an
unbiased estimator of µ and s2 is an unbiased estimator of σ2 (Theorem 1.9).

2. Sometimes the consistency as defined here is called weak consistency to differentiate it from
strong consistency, which is the case when T (X1, ..., Xn) → γ(θ). In general, it is hard to
prove strong consistency. It generally requires the use of the strong law of large numbers.
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a) Caution! : beware of asymptotics! You can have quite stupid examples. For example,
consider N(µ, σ2). Suppose that we want to estimate µ. We can construct this silly
unbiased estimator:

T (X1, ..., Xn) = X1

And we can construct this silly consistent estimator:

T (X1, ..., Xn) =

{
X1 if n ≤ 106

X if n > 10k

b) (Deriving bias variance decomposition of MSE). Write T = T (X1, ..., Xn). Then, for any
θ:

MSE(T ) = Eθ [T (X1, ..., Xn) + Eθ [T ]− Eθ [T ] + γ(θ)]2

= Eθ [T − Eθ [T ]]2︸ ︷︷ ︸
variance of T

+Eθ [Eθ [T ]− γ(θ)]2

T is the only random part.

= varθ[T ] + (Eθ [T ]− γ(θ))2 + 2(Eθ [T ]− γ(θ))E [T − Eθ [T ]]︸ ︷︷ ︸
=0

= varθ[T ] + [Eθ [T ]− γ(θ)]2

We call Eθ [T ]− γ(θ) the bias of T , and so:

MSEθ = varθ[T ] + (Biasθ(T ))2 (41)

Example 23. Let X1, ..., Xn be a random sample from N(µ, σ2). Then:

MSE(X) = varθ[X] = σ2/n

this converges to zero as n→∞. Moreover:

MSE[s2] = var[s2] = var

n− 1

σ2
s2︸ ︷︷ ︸

∼χ2
n−1

· σ2

(n− 1)

 =
σ4

(n− 1)2
2(n− 1)︸ ︷︷ ︸

variance of χ2
(n−1)

=
2σ4

(n− 1)

This converges at the same rate as the sample mean. Recall the MLE of σ2:

σ̂2 =
(n− 1)

n
s2

and so the bias is:

Bias(σ̂2) = E
[
n− 1

n
s2

]
− σ2

=
n− 1

n
σ2 − σ2

=
−σ
n
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Thus, the bias is always negative and so it will systematically underestimate σ2. Thus, the MSE(σ̂2)
is:

MSE(σ̂2) = E
[
(σ̂2 − σ̂)2

]
= var[σ̂2] + [Bias(σ̂2)]2

=

(
n− 1

n

)2

var[s2] +
σ4

n2

=
(n− 1)2

n2

2σ4

(n− 1)
+
σ4

n2

=
σ4(2(n− 1) + 1

n4

=
σ4

n2
(2n− 1)

=
2σ4

n− 1
· 2n2 − 3n+ 1

2n2︸ ︷︷ ︸
<1

<
2σ4

n− 1

So, σ̂2 is closer, on average, to the true value of θ than s2 is. Thus, the MLE is preferable. This
illustrates the idea of a tradeoff between bias and variability.

To do: insert figure

Example 24. Let X1, ..., Xn be taken from Bernoulli(p). Recall that p̂MLE = x and MSE(p̂MLE) =
p(1−p)
n . In contrast, a Bayesian estimator with a Beta(α, β) prior, we have:

p̂B =
n

n+ α+ β
x+

α

n+ α+ β
=

nx− α
n+ α+ β

Calculating the MSE gives:

MSE(p̂B) = var

[
nx− α
n+ α+ β

]
+

(
Bias

[
nx− α
n+ α+ β

])2

=
np(1− p)

(n+ α+ β)2︸ ︷︷ ︸
variance

+

(
np+ α

n+ α+ β
− p
)2

=
np(1− p)

(n+ α+ β)2
+

(α− pα− pβ)2

(n+ α+ β)2

To compare, we need to choose α and β to be independent of p.

MSE(p̂B) = ... =
α2 + p(n− 2α2 − 2αβ) + p2(−n+ α2 + β2 + 2αβ)

(n+ α+ β)2

Thus, if we want the above equation to be independent of p, set the coefficients of p and p2 to equal
zero. We thus must solve:

n− 2α2 − 2αβ = 0

− n+ α2 + β2 + 2αβ = 0

which gives:

α =

√
n

4
β =

√
n

4
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and therefore:

MSE(p̂B) =
n

4(n+
√
n)2

p̂B =
nx+

√
n/4

n+
√
n

To do: include figures. Thus, for small sample sizes, MSE(p̂B) << MLE(p̂MLE). The advantage
shrinks as sample size increases.

Theorem 20. Suppose Eθ [T (X1, ..., Xn)] → γ(θ) as n → ∞ (that is, T (X1, ..., Xn) is asymptoti-
cally unbiased) and varθ[T ]→ 0 as n→∞. Then, T is a consistent estimator or γ(θ).

Proof. Application of the Markov Inequality. Fix ε > 0. Then:

P [|T (X1, ..., Xn)− γ(θ)| > ε] ≤
E
[
(T (X1, ..., Xn)− γ(θ))2

]
ε2

=
varθ[T ]− (Biasθ[T ])2

ε2
→ 0 as n→ 0

Q: Does there exist a strategy of choosing the best estimator? A: No! Consider the other “stupid”
estimator: Suppose we want to estimate θ and 17 ∈ Θ. Then the statistic:

T (X1, ..., Xn) = 17

will always have

MSE17(T ) = 0

You can never beat that silly statistic. More generally, you can never systematically minimise
the MSE uniformly over all values of θ. Thus, we need to restrict the class of estimators that we
consider, which leads us to the next section.

3.3 Best Unbiased Estimators

Definition 14 (Uniform Minimum Variance Unbiased Estimator). An estimator T ∗(X1, ..., Xn) is
called a uniform minimum variance unbiased estimator (UMVUE) of γ(θ) if

1. For all θ ∈ Θ, Eθ [T ∗] = γ(θ). It must be unbiased for every θ.
2. For every other unbiased estimator T :

varθ[T
∗] ≤ varθ[T ]

for all θ ∈ Θ. It beats it for any θ ⇒ uniform control.

This is an estimator that systematically reduces the bias.

Example 25. Assume that we have a random variable distributed as Poisson. Then, λ̂ = x. Forget
about trying to do a Bayesian estimate on this. However, for the variance we have:

Var[λ̂] = λ/n

This seems like it could be a sensible estimator. Q: Is it the UMVUE? This question motivates the
following theorem:

Theorem 21 (Crammer-Rao Inequality). Suppose X1, ..., Xn form a random sample. Let Fθ, θ ∈
Θ,Θ =]a, b[ where −∞ ≤ a < b ≤ ∞ form the statistical model. Let T (X1, ..., Xn) be an unbiased
estimator of γ(θ). Assume:

1. ∀ θ ∈ Θ, Fθ has a density/PMF f(·; θ), and ∂f(x; θ)/∂θ exists for all θ ∈ Θ.
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2. You can differentiate the log:

Eθ
[
∂

∂θ
log f(x; θ)

]
= 0 ∀θ ∈ Θ

and

Eθ

[(
∂

∂θ
log f(x; θ)

)2
]

= I(θ) <∞

Remark the I(θ) is called the Fisher information
3. varθ[T ] <∞ and:

n∑
i=1

Eθ
[
T (X1, ..., Xn)

∂

∂θ
log f(Xi; θ)

]
= γ′(θ)

then:

varθT (X1, ..., Xn) ≥ {γ
′(θ)}2

nI(θ)

Remark : this is called the Crammer-Rao lower bound

Proof. The theorem follows from the Cauchy - Schwartz inequality. Recall from probability:

{cov(W,Z)}2 ≤ var[W ]var[Z]

We need to choose our quantities for Cauchy-Schwartz inequality:

1. var[W ] is:

var[W ] =
n∑
i=1

var

[
∂

∂θ
log f(xi; θ)

]
= nI(θ) <∞ (by assumption 2)

2. By assumption 3:

varθT <∞

3. Covariance:

covθ[W,Z] = Eθ [W · Z] = Eθ

[
n∑
i=1

T
∂

∂θ
log f(xi; θ)

]
=

n∑
i=1

Eθ [T ] · ∂
∂θ

log f(xi; θ) = γ′(θ) (assumption 3)

Now it follows from Cauchy Schwartz:

[γ′(θ)]2 ≤ nI(θ) · varθT

which happens ⇐⇒ :

varθ[T ] ≥ {γ
′(θ)}2

nI(θ)

Which is what we wanted to show.

Some remarks from the proof:

1. There are a lot of versions of the Crammer-Rao inequality.

a) This version has the cleanest possible assumptions.
b) We did not need to differentiate between the continuous and discrete cases.
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2. Observe the set {x | f(x; θ) > 0}. We define Nθ as the set such that P [x ∈ {x | f(x; θ) > 0}] =
1. On here, X ∼ Fθ. So, you can restrict your attention to this set which makes the log well-
defined. Thus, on Nθ, ∂/∂θ log f(x, θ) exists.

3. Q: What do assumptions (ii) and (iii) mean?

a) This means nothing more than interchanging differentiation and integration. In partic-
ular, if {x | f(x; θ) > 0} does NOT depend on θ, then, assuming that the X ′s have a
density, then these assumptions amount to interchanging differentiation and integration.

b) From Assumption 2, we have: ∫
R
f(x; θ)dx = 1

and so differentiating both sides with respect to θ gives∫
R
f(x; θ)dx = 0

multiplying and dividing by f gives:∫
R

[
∂

∂θ
log f(x; θ)

]
= 0

so, assumption 2.1 is saying that you can interchange the derivatives and integrals.

Also,

γ(θ) = Eθ [T ] =

∫
· · ·
∫
T (x1, ..., xn)

n∑
i=1

∂

∂θ
f(xi; θ)

n∏
i=1

f(xi; θ)dx1 · · · dxn

We will play the same game again: differentiating and swapping derivatives and integrals gives us:

γ′(θ) =

∫
· · ·
∫
T (x1, ..., xn)

n∑
i=1

∂

∂θ
f(xi; θ)

n∏
j 6=i

f(xi; θ)dx1 · · · dxn

artificially multiplying and dividing by f(xi; θ) gives:

=

∫
· · ·
∫
T (x1, ..., xn)

n∑
i=1

∂

∂θ

f(xi; θ)

f(xi; θ)︸ ︷︷ ︸
∂
∂θ

log f(xi;θ)

n∏
j=1

f(xj ; θ)︸ ︷︷ ︸
expected value

=
n∑
i=1

Eθ
[
T (x1, ..., xn)

∂

∂θ
log f(xi; θ)

]
These are actually smoothness conditions. There is also a nice geometric interpretation.

3.3.1 Geometric Interpretation

Define the following space:

L2 := {g : Rn → R, borel measurable ,Eθ
[
g2(x1, ..., xn)

]
<∞}

On L2 space, we can define a scalar product: g1, g2 ∈ L2, then:

〈g1, g2〉 = Eθ [g1(x1, ..., xn) · g2(x1, ..., xn)]

On L2, the norm for g ∈ L2

||g||2 = 〈g, g〉 = Eθ
[
g2
]
<∞
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L2 is a Hilbert space. In particular, it is a space of equivalence classes of functions. In this case:

g1 ∼ g2 if Pθ[g1(x1, ..., xn) = g2(x1, ..., xn)] = 1

We can consider projections since L2 is a Hilbert space. Let T be an unbiased estimator of γ(θ).
Then, T ∈ L2. Define T := T − γ(θ). Then, T ∈ L2 and 〈T , 1〉 = 0 (since it’s unbiased), since
〈T , 1〉 = Eθ [T − γ(θ)]. Thus, T is orthogonal to the subspace of constant functions. Define the
following function:

k(x1, ..., xn) :=
n∑
i=1

∂

∂θ
log f(xi; θ) (42)

From assumption (ii) of the Crammer-Rao inequality, ||k||2 = nI(θ) ∈]0,∞[ which implies that
k ∈ L2. Since the expected value again is zero, we have that 〈k, 1〉 = 0. Moreover, from assumption
(iii) of the Crammer-Rao inequality:

〈k, T 〉 = γ′(θ) = 〈k, T 〉

Therefore, we can re-frame the assumptions of the Crammer-Rao inequality in terms of assumptions
on the norms and scalar products. Now define V := span(k) = {c · k | c ∈ R} and project T onto
V . Then:

TV T =

〈
T ,

k

||k||

〉
k

||k||
=
〈
T , k

〉 k

||k||2
=
γ′(θ)k

nI(θ)

Now, by the pythagorean theorem:

||T ||2︸ ︷︷ ︸
variance

= ||TV T ||2 + ||T − TV T ||2

However, this is precisely the inequality:

varθ[T ] =
{γ′(θ)}2

nI(θ)
+ ||T − TV T ||2︸ ︷︷ ︸

≥0

≥ {γ
′(θ)}2

nI(θ)

equality holds only when T ∈ V . So, the UMVUE must be in V . That is:

T − γ(θ) = ck = a(θ)k

where a(θ) is a constant that depends on θ. So, the UMVUE is of the form:

T = a(θ)k(x1, ..., xn) + γ(θ) (43)

We will see later that the only estimators of this form are members of the exponential family.

Example 26. Consider the Poisson family.

{Poi(λ), λ > 0}

then, the densities are given by:

f(x;λ) = eλ
λx

x!
χx∈Nλ
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Again, we don’t need to worry about the bad points. In this case, Nλ = N0, and so we can
differentiate the density with respect to λ and so we have no problems. We will now check the
conditions of the Crammer-Rao inequality:

∂

∂λ
log f(x, λ) =

∂

∂λ
[−λ+ x log(λ)− log x!] = −1 +

x

λ

and so the first condition is met. Now for the second assumption:

Eλ
[
∂

∂λ
log f(x;λ)

]
=︸︷︷︸

x∼Pos(λ)

Eλ
[
−1 +

x

λ

]
and for the variance

var

[
∂

∂λ
log f(x;λ)

]
= Eλ

[(
∂

∂λ
log f(x;λ)

)2
]

= varλ

[
−1 +

x

λ

]
=

1

λ2
varλ[x] =

1

λ
= I(λ)

so, by the Crammer-Rao inequality, the Crammer-Rao bound is:

1

I(λ) · n
=
λ

n

So, if T ∗(x1, ..., xn) = x, then E [T ∗] = λ and var[T ∗] = λ/n. So, the sample mean attains the
Crammer-Rao upper bound. Is x the UMVUE, or is there something else to check? We need to
check (iii). If T is unbiased for λ, and varλ[T ] <∞, can we have the validity of (iii)?

1 =

n∑
i=1

Eθ [T ]
∂

∂λ
log f(xi;λ)

This comes down to interchanging summation and differentiation. We know that T is unbiased:

λ = Eθ [T ] =
∞∑

x1=0

· · ·
∞∑

xn=0

T (x1, ..., xn)e−λ
λ
∑
xi∏n

i=1 xi!

Trick: move the e−nλ out:

= e−nλ
∞∑
k=1

 ∑
(x1,...,xn)∈Nn0 |

∑n
i=1 xi=k

T (x1, ..., xn)
1∏n
i=1

xi!


︸ ︷︷ ︸

:=ak

λk

This is an absolutely convergent power series. The variance is finite. In the radius of convergence,
we can interchange summation and differentiation:

1 =

∞∑
k=0

∂

∂λ

[
e−nλakλ

k
]

You can deduce that (iii) holds. So, Crammer-Rao is applicable and

varθ[T ] ≥ λ

n
= varλT

∗

and so the sample mean is the UMVUE: T ∗ = x

Example 27. Consider the so-called one-parameter exponential family. This is an umbrella
term for the following families of distributions with distribution functions of the form:

f(x;λ) = χx∈A · exp {c(θ) · T (x) + d(θ) + s(x)}
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important: the support of the characteristic function does NOT depend on θ! For example, the
PMF of the Poisson(λ) is:

f(x;λ) = χx∈N0exp{−λ+ x log(λ)− log(x!)}

here,

c(λ) = log(λ)

d(λ) = −λ
T (x) = x

s(x) = − log(x!)

Or, the PDF of N(µ, σ2) with KNOWN σ2 is:

f(x, µ) =
1√

2πσ2
exp ·

{
xµ

σ2
− −µ

2

2σ2
− x2

2σ2
− 1

2
log(2πσ2)

}
can be written as:

= χx∈Rexp ·
{
xµ

σ2
− −µ

2

2σ2
− x2

2σ2
− 1

2
log(2πσ2)

}
Which means that it is in the one parameter exponential from the set:

c(µ) =
µ

σ2

d(µ) =
−µ2

2σ2

T (x) = x

S(x) =
−x2

2σ2
− 1

2
log(2πσ2)

However, if Θ =]a, b[, −∞ ≤ a < b ≤ ∞, and c is continuously differentiable with derivative
c′(θ) > 0 for all θ ∈ Θ (this is the regularity condition), then for any unbiased estimator T ∗ for
which the assumptions of the Crammer-Rao inequality are met (i.e., we can swap differentiation
and integration), we have that the only densities for which the Crammer-Rao inequality is attained
is if the density belongs to an exponential family.

If E [T (x)] = θ, then:

I(θ) =
1

var[T (x)]

and

1

n

n∑
i=1

T (xi)

is the UMVUE.

Example 28. c(θ)T (x) + d(θ) + s(x)(:= (∗)) Then:

f(x; θ) = χx∈Ae
(∗)

Then, the one-parameter exponential family is:

θ ∈ Θ, where Θ ∈]a, b[

These are the kind of distributions for which the theory works nicely. Moreover:
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1. If c is continuously differentiable on Θ, and c′ > 0, and w(x1, ..., xn) is an estimator with finite
variance and unbiased, then the assumptions of the Crammer-Rao theorem holds.

2. If Eθ [T (x)] = θ, then I(θ) = 1
varθT (x) and 1

n

∑n
i=1 T (xi) is the UMVUE of θ.

Interestingly, if n = 1, we know that the estimator that attains the Crammer-Rao lower bound must
have the form:

T (x) = a(θ)
∂

∂θ
log f(x; θ) + θ

for x fixed, ∂
∂θ log f(x; θ) = T (x)−θ

a(θ) = c′(θ)T (x) + d′(θ), which implies that log f(x; θ) = c(θ)T (x) +

d(θ) + s(x).
Other examples of one-parameter exponential families with T (x) = x are Poisson(λ) or N(µ, σ2)

with known σ2. In this case, x is the UMVUE for λ, µ respectively.

Lemma 22. If f(x; θ) is a PDF/PMF so that f is differentiable with respect to θ ∀θ, x ∈ Nθ, and
so that for X with a PDF/PMF f(x; θ):

1. Eθ
[
∂
∂θ logf(x; θ)

]
= 0 and

2. ∂
∂θEθ

[
∂
∂θ logf(x; θ)

]
= 0 = { ∫

∂
∂θ

([
∂
∂θ log f(x; θ)

]
f(x; θ)

)
dx∑

x
∂
∂θ

[
∂
∂θ log f(x; θ)

]
depending on if x is discrete or continuous, then:

I(θ) = Eθ
[
∂

∂θ
log f(x; θ)

]2

= −Eθ
[
∂2

∂θ
log f(x; θ)

]
Proof. We will only prove this in the case that X is continuous. All this is doing is carrying out
differentiation. The LHS is zero. The RHS is:∫

∂

∂θ

(
∂/∂θf(x; θ)

f(x; θ)

)
dx

=

∫ [
∂2

∂2θ
log f(x; θ)

]
· f(x; θ)dx+

∫ (
∂

∂θ
log f(x; θ)

)
∂

∂θ
f(x; θ)dx

Observe that the f(x; θ) term is simply:

=
∂/∂θf(x; θ)

f(x; θ)
· f(x; θ)

=
∂

∂θ
log f(x; θ)f(x; θ)

which implies that:

0 = Eθ
[
∂2

∂2θ
log f(x; θ)

]
+ Eθ

[
∂

∂θ
log f(x; θ)

]2

which proves what we wanted to show.

The next example highlights the limitations of the result:

Example 29. Let’s consider N(µ, σ2) with µ known. Suppose that we want to estimate σ2. Then:

log f(x;µ, σ2) = −1

2
log(2π)− 1

2
log(σ2)− 1

2

(x− µ)2

σ2
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This is a one-parameter exponential family. The assumptions of CR hold here (can be checked). To
calculate the CR lower bound, we need to calculate I(σ2):

∂

∂2σ2
log f(µ, σ2) = −1

2

1

σ2
− 1

2

(x− µ)2

σ4

and

E
[
−1

2

1

σ2
− 1

2

(x− µ)2

σ4

]
= −1

2

1

σ2
− 1

2

1

σ4
σ2 = 0

By the Lemma:

∂

∂2σ2
log f(x;µ, σ2) =

1

2

1

σ4
+

1

2
(x− µ)2(−2)

1

σ6

and so

E
[

∂

∂2σ2
log f(x;µ, σ2)

]
=

1

2

1

σ4
− 1

σ6
E [x− µ]2

=
1

2σ4
− 1

σ4

= −1

2

1

σ4

So:

I(σ2) =
1

2

1

σ4

So, the Crammer-Rao lower bound for σ2 is:

2σ4

n

Q: Can we find an unbiased estimator with this variance? For the sample variance:

E
[
s2
]

= σ2

but

var[s2] =
2σ4

(n− 1)

where the variance was computed in Example 2.16. So, we have

var[s2] >
2σ2

n

:-(. AN UMVUE would be:

1

n

n∑
i=1

(xi − µ)2

but this requires that we KNOW µ. Note that

n∑
i=1

(xi − µ)2

σ2
∼ χ2

n

But, if µ is unknown, then the above is not an estimator, since there is dependence on a parameter,
and thus the CR lower bound cannot be attained. This shows a limitation of the CR method.
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Example 30. Observe that the CR lower bound is:

1

nI(θ)

if we want to estimate θ, and if CR is applicable, then:

VarθT ≥
1

nI(θ)

which means that the maximum speed at which you could get var[T ] to go to zero is 1/n. This
means it’s at best O(1/n). Now consider the uniform model U [0, θ], θ > 0. Then:

f(x; θ) =
1

θ
χx∈]0,θ[

We already have:

θ̂MOM = 2x

θ̂MLE max{x1, ..., xn}

Here, θ̂MOM is unbiased and var[θ̂MOM] = 4var[x]
n . The rate, 4/n, is what’s interesting. If X(n) =

max{X1, ..., Xn}, then:

fX(n)
(x; θ) =

n

θ
xn−1

and so

E
[
X(n)

]
=

∫ θ

0

xn

θn
ndx = θ

n

n+ 1

which means that the MLE is not unbiased. So, to make it unbiased, set:

θ̃ := θ̂MLE
(n+ 1)

n

which means that

var[θ] =

[
(n+ 1)

n

]2 ∫ θ

0

[
x− θn

n+ 1

]2 nxn−1

θn
dx = · · · = θ2

n(n+ 2)
<<

1

nI(θ)
=
θ2

n

Something is wrong. Let’s check the conditions of the CR. Set Nθ :=]0, θ[. Then, ∂/∂θ log f(x; θ)
on ]0, θ[ is:

∂

∂θ

(
1

θ

)
= − 1

θ2

∂

∂θ
log f(x; θ) = −1

θ

I(θ) = E

[(
∂

∂θ
log f(x; θ)

)2
]

= E
[

1

θ2

]
=

1

θ2

as we can see, the assumptions of CR are not fulfilled on SEVERAL accounts. Also:

E
[
∂

∂θ
log f(x; θ)

]
= −1

θ
6= 0

we have

∂

∂θ

∫ θ

0
t(x) f(x; θ)︸ ︷︷ ︸

1/θ

dx

=
t(θ)

θ
+

∫ θ

0
t(x)

∂

∂θ

(
1

θ

)
dx 6=

∫ θ

0
t(x)

∂

∂θ

(
1

θ

)
dx

unless t(θ) = 0 ∀ θ.
So, we need to temporarily suspend our UMVUE search and do more theory.
Cutoff for Midterm Material
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4 Sufficiency and Completeness

Let X1, ..., Xn be taken from Fθ, θ ∈ Θ ⊆ Rk. Q: How can we summarise the sample without losing
information about θ? This question is closely related to UMVUEs, since statistics are summaries of
data. They will be optimal if we do not lose a lot of information about data when making statistics.
For example, imagine the Bernoulli experiment:

{ Bernoulli Distributions , Bernoulli(p), p ∈ [0, 1]}

If X1, ..., Xn is a random sample from Bernoulli(p), then let X denote the tuple (X1, ..., Xn). Then,
the sample space consists of sequences of length n consisting of 0’s and 1s. It is denoted by:

X = {0, 1}n

To make things more concrete, we can recall the U.S. election example. We can think about it as
follows:

P [X = (x1, ..., xn)] = p
∑n
i=1 xi(1− p)1−

∑n
i=1 xi

Here we have a function of p (the likelihood, L(p)), and it only depends on the xi’s through their
sum. In other words, the probability depends on (x1, ..., xn) only through the sum of the xi’s (or
equivalently, through their mean). Perhaps the sum

∑n
i=1 xi contains all the relevant information?

To check this guess, we will calculate the conditional distribution:

P

[
X1 = x1, ..., Xn = xn |

n∑
i=1

xi = t

]
=

{
0 if

∑n
i=1 xi 6= t

1 if
∑n

i=1 xi = t

=
P [X1 = x1, ..., Xn = xn,

∑n
i=1 xi = t]

P [
∑n

i=1 xi = t]

=
p
∑n
i=1 xi(1− p)

∑n
i=1 xi(

n∑n
i=1 xi

)
p
∑n
i=1(1− p)n−

∑n
i=1 xi

=
1(
n∑n
i=1 xi

)
Which does not depend on p! Now consider a statistic T (X1, ..., Xn). Denote by X the sample space
of the (X1, ..., Xn) and by T the range of the statistic T (X1, ..., Xn):

T := { t ∈ Rk | ∃ (x1, ..., xn) ∈ X so that T (x1, ..., xn) = t}

We want to look at a statistic as something that partitions the sample space X . ∀ t ∈ T , define:

At := {(x1, ..., xn) ∈ X | T (x1, ..., xn) = t}

Concretely, for the Bernoulli experiment, we have that T = {0, ..., n} and the partitions are:

At :=

{
(x1, ..., xn) ∈ {0, 1}n |

n∑
i=1

xi = t

}
Now, {At | t ∈ T } is a partition of X . The At’s are disjoint and X =

⋃
t∈T At.

Insert graphic here

Definition 15 (Sufficient). Let X1, ..., Xn be a random sample from Fθ, θ ∈ Θ. A statistic T =
T (X1, ..., Xn) is called sufficient for θ if the conditional distribution of (X1, ..., Xn) given T doesn’t
depend on θ, and this holds for all t ∈ N so that Pθ[t ∈ N ] = 1 ∀ θ ∈ Θ.

Remark: Sufficiency means that the distribution of the random vector, given (x1, ..., xn) ∈ At,
does not depend on θ.

Example 31 (Bernoulli). Let X1, ..., Xn ∼ bernoulli(p). Then we have that
∑n

i=1 xi is sufficient
for p. So is x.

In general, a random vector is a statistic. Thus, (X1, ..., XN ) is always sufficient for θ. We also
have that the order statistics (X(1), ..., X(n)) is sufficient for θ (this will be proven in Assignment 3).
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4.1 Proving the Sufficiency of Statistics

Motivation: Suppose a statistic T is sufficient for θ. Assume that there are two experimenters.
Experimenter # 1 has access to the full sample (x1, ..., xn). Experimenter # 2 only has access to
the statistic T (x1, ..., xn). Because (X1, ..., Xn) | T = t does not depend on θ, let’s call it P ∗t . So,
Experimenter # 2 can draw a sample (y1, ..., yn) from P ∗t=T (x1,...,xn). So, (y1, ..., yn) is a realisation

of (X1, ..., Xn). We can show that Experimenter # 2 has lost no information:

P [Y1 = y1, ..., Yn = yn] =
∑
t∈T

P [Y1 = y1, ..., Yn = yn, T (y1, ..., yn) = t]

= P [Y1 = y1, ..., Yn = yn, T (Y1, ..., Yn) = T (y1, ..., yn)]

= P [Y1 = y1, ..., Yn = yn | T = T (y1, ..., yn)]︸ ︷︷ ︸
P ∗
T (y1,...,yn)

·P [T = T (y1, ..., yn)]

= P [X1 = y1, ..., Xn = yn | T = T (y1, ..., yn)] · P [T = T (y1, ..., yn)]

= P [X1 = y1, ..., Xn = yn]

Which shows that Experimenter # 2 has lost no information. Thus, sufficiency is a useful concept
when wanting to reduce data to statistics. However, in general it is very hard to prove that a
statistic is sufficient :(. So, we want a criteria to prove that a statistic is sufficient. This motivates
the following “very handy” theorem.

Theorem 23 (Neymen-Fisher Criterion). Let f(x1, ..., xn; θ) denote the joint PMF/PDF of (x1, ...xn),
a random sample from Fθ, θ ∈ Θ. A statistic T = T (x1, ..., xn) is sufficient for θ if and only if ∀ θ ∈ Θ,
there exist measurable functions gθ and h so that h does NOT depend on θ for all (x1, ..., xn) ∈ X .
That is, it can be decomposed in the form:

f(x1, ..., xn; θ) = h(x1, ..., xn)gθ(T (x1, ..., xn)) (44)

Proof. We will only do the proof in the discrete case. “⇒”: first assume that T is sufficient. Set

gθ(t) := Pθ [T (X1, ..., Xn) = t] , t ∈ T

h(x1, ..., xn) :=

{
P [X1 = x1, ..., Xn = xn | T = T (x1, ..., xn)] if P [T = T (x1, ..., xn)] > 0

0 otherwise.

Now apply the law of Total Probability and the definition of conditional probability:

P [X1 = x1, ..., Xn = xn] = P [X1 = x1, ..., Xn = xn, T = T (x1, ..., xn)]

= h(x1, ..., xn) · gθ(T (x1, ..., xn))

where h is P [x | T = T (x1, ...xn)] and gθ is P [T = T (x1, ..., xn)].
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“⇐”: Now assume that the PMF factors. Then:

P [X1 = x1, ..., Xn = xn | T = t] =
P [X1 = x1, ..., Xn = xn, T = t]

P [T = t]

=

{
0 if t 6= T (x1, ..., xn)
P[X1=x1,...,Xn=xn,T=T (x1,...,xn)]

P[T=T (x1,...,xn)] otherwise

=
P [X1 = x1, ..., Xn = xn]

P
[
(x1, ..., xn) ∈ AT (x1,...,xn)

]
=

P [X1 = x, ...,Xn = xn]

P
[
(X1, ..., Xn) ∈ AT (x1,...,xn)

]
=

h(x1, ..., xn)gθ(T (x1, ..., xn))∑
(y1,...,yn)∈AT (x1,...,xn)

h(y1, ..., yn)gθ(T (y1, ...yn))

= T (x1, ..., xn)

=
h(x1, ..., xn)∑

(y1,...,yn)∈AT (x1,...,xn)
h(y1, ..., yn)

which doesn’t depend on θ. This thus proves sufficiency.

Example 32. Let X1, ..., Xn be a random sample from U ]0, θ[, where θ > 0. Then, the PMF is of
the form:

f(x; θ) =

{
1
θ x ∈]0, θ[

0 else

To write the joint PMF of the whole random sample, we need to account for the dependence of the
interval on θ (we need to write it out in terms of characteristic functions):

f(x1, ..., xn; θ) =

n∏
i=1

1

θ
χxi∈]0,θ[

= χminxi>0χmaxxi<θ

(
1

θ

)n
Observe that we can set the first term to be h(x1, ..., xn), since there is no dependence on θ, and
that w can set the second term to be gθ(max1≤i≤n xi). Since this is the likelihood function, we can
conclude that the maximum order statistic, X(n), is sufficient for θ.

Example 33. Let X1, ..., Xn be a random sample from N (µ, σ2). Then, the joint PDF is given by:

f(x1, ..., xn;µ, σ2) =

(
1√
2π

)2( 1

σ

)n
exp

{(
−
∑n

i=1(xi − µ)2

2σ2

)}
From the proof of Theorem 1.7, we know that:

n∑
i=1

(xi − µ)2 = (n− 1)s2 + n(x− µ)2

and so we can re-write the above as:

f(x1, ..., xn;µ, σ2) =

(
1√
2π

)2( 1

σ

)n
exp

{(
−(n− 1)

2σ2
s2 − n(x− µ)2

2σ2

)}
Here, we may choose:

h :=

(
1√
2π

)n
gθ(x, s

2) =

(
1

σ

)n
exp

{(
−(n− 1)

2σ2
s2 − n(x− µ)2

2σ2

)}
So, (x, s2) is sufficient for (µ, σ2). Now suppose that σ2 is known. Then we can set:
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1. h, g as before, and obtain that (x, s2) is sufficient for µ.
2. Or we set:

h(x1, ..., xn) =

(
1√
2π

)n( 1

σ

)n
exp

{
−(n− 1)s2

2σ2

}
which has no dependence on µ, and so

gµ(x) = exp

(
−n(x− µ)2

2σ2

)
and so x is sufficient for µ.

Note: there are some statistics that lead to greater data reduction than others, and this leads
into an idea called “minimal sufficiency.” Also note that:

1. In (1), if we use (x, s2) and set X = Rn, then:

A(a,b) = { (x1, ..., xn) ∈ Rn | x = a, s2 = b}

In this case, a ∈ R and b > 0.
2. In (2), if we only use x, then T = R and:

Aa = { (x1, ..., xn) ∈ Rn |x = a}

If you compare these, observe that A(a,b) ⊆ Aa. In a way, Aa is a projection, and forms a
coarser partition than (x, s2) does.

4.2 Sufficient Statistics

To summarise what we have so far, we have that T (X1, ..., Xn) is a statistic taking values in T .
Then, {At, t ∈ T } is a partition of the sample space X , where

At = { (x1, ..., xn) ∈ X | T (x1, ..., xn) = t}

This means that the statistics induce a partition on X .
Insert graphic here.

Definition 16 (Sufficient Statistic). A sufficient statistic T is called minimally sufficient if for
any other sufficient statistic T ∗, we have the following:

∀ (x1, ..., xn), (y1, ..., yn) ∈ X
T ∗(x1, ..., xn) = T ∗(y1, ..., yn) ⇒ T (x1, ..., xn) = T (y1, ..., yn)

Note that if T is minimally sufficient, and if T ∗ is sufficient, then {At | t ∈ T } (the partition of
X corresponding to T ) is coarser than the partition {A∗t∗ , t∗ ∈ T ∗} corresponding to T ∗. Mathe-
matically:

∀t∗ ∈ T , ∃ t ∈ T s.t. A∗t∗ ⊆ At

Here, A∗t∗ = {(x1, ..., xn) ∈ X | T ∗(x1, ..., xn) = t∗}.
The next theorem applies to statistical models where Fθ has a density:

Theorem 24 (Lehmann-Schafte Criteriea). Suppose that (X1, ..., Xn) has a PDF/PMF f(x1, ..., xn; θ),
θ ∈ Θ. Suppose that T is a statistic such that for any (x1, ..., xn) and (y1, ..., yn) ∈ X such that the
ratio:

f(x1, ..., xn; θ)

f(y1, ..., yn; θ)

is constant as a function of θ ⇐⇒ T (x1, ..., xn) = T (y1, ..., yn). This property gives us that T is
minimally sufficient.
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Example 34. Let X1, ..., Xn be a random sample from N (µ, σ2), where µ ∈ R and σ2 > 0. From
last class, the density can be broken down as:

f(x1, ..., xn;µ, σ2) =

(
1√
2π

)n( 1

σ

)n
exp

{
−
∑n

i=1(xi − µ)2

2σ2

}
=

(
1√
2π

)n( 1

σ2

)n
exp

{
−(n− 1)s2

2σ2
− n(x− µ)2

2σ2

}
Q: is it minimally sufficient? By the previous theorem:

f(x1, ..., xn;µ, σ2)

f(y1, ..., yn;µ, σ2)
= exp

{
−(n− 1)

2σ2
(s2
x − s2

y)−
n

2σ2

[
(x− µ2)− (y − µ2)

]}
where

s2
x =

1

(n− 1)

n∑
i=1

(xi − x)2

s2
y =

1

(n− 1)

n∑
i=1

(yi − y)2

This ratio does not depend on µ and σ2 if and only if x = y and s2
x = s2

y, which implies that (x, s2)
is minimally sufficient for (µ, σ2).

Proof. Proof of the Theorem. We need to prove that T is sufficient and minimally sufficient.

1. (T is sufficient for θ): We will show this using the Neymann-Fischer criteria. As before,
consider {At, t ∈ T }. For any At, choose a point xt ∈ At. Now, fix an arbitrary (x1, ..., xn) ∈
X . Then we have that (x1, ..., xn) ∈ AT (x1,...,xn). Let xT (x1,...,xn) be a fixed point in AT (x1,...,xn).
This is the representative. We thus have that (x1..., xn) ∈ AT (x1,...,xn). So, we have that

f(x1, ..., xn; θ)

f(xT (x1,...,xn); θ)

does not depend on θ by assumption. Now set:

f(x1, ..., xn; θ)

f(xT (x1,...,xn); θ)
= h(x1, ..., xn)

f(xT (x1,...,xn); θ) = gθ(T (x1, ..., xn))

So, we have thus written

f(x1, ..., xn; θ) = h(x1, ..., xn)gθ(T (x1, ..., xn))

and so by the Neymann Fischer Criteria, T is sufficient.
2. (T is minimally sufficient). Let T ∗ be another sufficient statistic. Then, from the Neymann

Fischer criteria, we know that ∃ h∗, g∗θ for which ∀ (x1, ..., xn) ∈ X :

f(x1, ..., xn; θ) = h∗(x1, ..., xn) · g∗θ(T ∗(x1, ..., xn))

Now pick an arbitrary (x1, ..., xn), (y1, ..., yn) ∈ X so that T ∗(x1, ..., xn) = T ∗(y1, ..., yn). We
need to prove that then also T (x1, ..., xn) = T (y1, ...yn). But:

f(x1, ..., xn; θ)

f(y1, ..., yn; θ)
=
h∗(x1, ..., xn) · g∗θ(T ∗(x1, ..., xn))

h∗(y1, ..., yn) · g∗θ(y1, ..., yn)

But we assumed that the g∗ are the same and so those drop out and we obtain:

=
h∗(x1, ..., xn)

h∗(y1, ..., yn)

which does not depend on θ. This implies that T (x1, ..., xn) = T (y1, ..., yn).
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Example 35. Let X1, ..., Xn be a random sample taken from U ]θ, θ + 1[ where θ ∈ R. Then, the
probability density of the sample is:

f(x1, ..., xn; θ) =

{
1 if xi ∈]θ, θ + 1[ ∀i ∈ {1, ..., n}
0 otherwise

= χmin1≤i≤n xi>θχmax1≤i≤n xi<θ+1

for (x1, ..., xn) and (y1, ..., yn). Thus,

f(x1, ..., xn; θ)

f(y1, ..., yn; θ)

does not depend on θ if min1≤i≤n xi = min1≤i≤n yi and max1≤i≤n xi = max1≤i≤n yi. So, (min1≤i≤n(xi),
max1≤i≤n(xi)) is minimally sufficient for θ.

4.3 Applications of Sufficiency in Point Estimation

Let X1, ..., Xn be a random sample from Fθ, θ ∈ Θ. Our goal is to find the uniformly minimum
variance unbiased estimator of γ(θ) (the UMVUE). We will nwo denote our estimators by W . We
want to find W so that

Eθ [W ] = γ(θ) ∀θ ∈ Θ

and for any other unbiased estimator W ∗ of γ(θ), we have:

Varθ[W ] ≤ Varθ[W
∗] ∀θ ∈ Θ

First recall three important facts from Math 356. For any two random variables Y , Z:

1. E [Y ] = E [E [Y |Z]] (Iterative expectation)

2. E [Y |Z] = h(Z) for some measurable function h. That is, this is a function of Z.

3. Var[Y ] = Var[E [Y |Z]] + E [Var[Y |Z]] ≥ 0.

Theorem 25 (Rao-Blackwell). Let W be an unbiased estimator of γ(θ) with finite variance and
let T be a sufficient statistic for θ. Then, if W ∗ := E [W |T ], then:

1. W ∗ is an unbiased estimator of γ(θ).
2. Varθ[W

∗] ≤ Varθ[W ] for all θ ∈ Θ.

Proof. 1. Eθ [W ∗] = Eθ [Eθ [W |T ]] = Eθ [W ] = γ(θ) for all θ ∈ Θ.
2. Varθ[W ] = Varθ[Eθ [W |T ]]+Eθ [Varθ[W |T ]] = Varθ[W

∗]+Eθ [Varθ[W |T ]]. Since the Eθ [Varθ[W |T ]]
term is positive, this implies that Varθ[W ] ≥ Varθ[W

∗] for θ ∈ Θ.
We need to use the sufficiency – finally, since T is sufficient, the distribution of (X1, ..., Xn) given

T does not depend on θ, which means that W ∗ does not depend on θ, which gives us the fact that
W ∗ is an estimator.

Example 36. Assume that X1, X2 ∼ N (θ, 1). Let’s investigate the sample mean, x = (1/2)(x1 +
x2). Computing the quantities:

E [x] = θ

Var[x] = 1/2

E [x|x1] = E
[

1

2
(x1 + x2)|x1

]
=

1

2
E [x1|x2] + E [x2|x1] =

1

2
(x1 + θ) ≡W ∗
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Note that this is not an estimator, since it involves the unknown parameter. So, we need to repair
it.

E [W ∗] =
1

2
(E [X1] + θ) =

1

2
(θ + θ) = θ

and

Var[W ∗] =
1

4
Var[X1] =

1

4
<

1

2

because X1 is not sufficient.

Corollary 2. Let W be any estimator of γ(θ), not necessarily unbiased. Then, W ∗ = E [W |T ]
where T is a sufficient estimator of γ(θ) so that, ∀θ ∈ Θ:

MSEθ[W
∗] ≤ MSEθ[W ]

Note: if W , Z are arbitrary random variables. Then:

E [W |Z] = h(Z)

for some measurable function Z. We have:

E [h(Z)|Z] = h(Z)

Intuition from Rao Blackwell: we should condition on a minimally sufficient statistic to
achieve the greatest reduction of the variance possible. Q: if we condition on a minimally sufficient
statistic, will we get the UMVUE/an UMVUE? Unfortunately, no.

Example 37. (Nasty Way of Improving an Estimator): Suppose that W is some estimator of γ(θ),
unbiased, and has finite variance. Suppose that U is a statistic, U(X1, ..., Xn) so that Eθ [U ] = 0
for all θ ∈ Θ (i.e., U is an estimator of 0, which means that it is unbiased). Now let:

W ∗a := W + aU

where a ∈ R. We get that E [W ∗a ] = γ(θ) and Var[W ∗a ] = Varθ[W ] + a2Varθ[U ] + 2aCovθ[W,U ]. We
have problems when covθ0 [W,U ] 6= 0 for some θ0. If covθ0 [W,U ] < 0, then for a ∈
]0, ((−2covθ0 [W,U ])/varθ[U ])[, we have that varθ0 [W ∗a ] < varθ0 [W ]. This means that W is not an
UMVUE since we found an improvement. We will prevent this from happening.

Definition 17. A family {Fθ | θ ∈ Θ} of distributions is called complete if for any measurable
function g and X ∼ Fθ such that

Eθ [g(X)] = 0 ∀θ ∈ Θ

it holds that g(X) is almost surely zero, i.e.:

P [g(X) = 0] = 1 ∀θ ∈ Θ

A statistic T is called complete if for any measurable function g : T → R,

(∀θ ∈ Θ, Eθ [g(T )] = 0)⇒ (Pθ [g(T ) = 0] = 1 ∀θ ∈ Θ)

Theorem 26 (Lehmann Scheffe Theorem). Consider a random variable X1, ..., Xn from Fθ, θ ∈ Θ.
Let γ(θ) be a real-valued parameter of interest and W an unbiased estimator for γ(θ). If T is a
complete and sufficient statistic, then W ∗ = E [W |T ] is THE UMVUE of γ(θ).

Proof. This is not a very difficult proof but it is very insightful. From the Rao-Blackwell theorem,
we already know:
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1. W ∗ is an unbiased estimator of γ(θ)
2. ∀θ ∈ Θ, Varθ[W

∗] ≤ Varθ[W ] for all θ ∈ Θ.

Now let W̃ be another unbiased estimator of γ(θ). We need to show that for all θ ∈ Θ, Varθ[W
∗] ≤

Varθ[W̃ ]. To do this, first Rao-Blackwelize W̃ , i.e., set W̃ ∗ := E
[
W̃ |T

]
. Then, W̃ ∗ is unbiased for

γ(θ) with:

∀θ ∈ Θ Varθ[W̃
∗] ≤ Varθ[W̃ ]

and we will show that:

∀θ ∈ Θ Varθ[W̃
∗] = Varθ[W̃ ]

This is where completeness comes in. Because W ∗ = E [W |T ] and W̃ ∗ = E
[
W̃ |T

]
, we know that:

W ∗ = h(T ), W̃ ∗ = h̃(T )

for some measurable functions h and h̃. Moreover, for all θ ∈ Θ:

γ(θ) = Eθ [h(T )] = Eθ
[
h̃(T )

]
and so ∀θ ∈ Θ:

Eθ
[
h(T )− h̃(T )

]
= 0

So, set g := h− h̃. Then, ∀θ ∈ Θ, Eθ [g(T )] = 0. This is where completeness comes in: since T is a
complete statistic, g(T ) = 0 almost surely. This gives us:

Pθ[g(T ) = 0] = 1 ∀θ ∈ Θ

∀θ ∈ Θ,Pθ[W ∗ = W̃ ∗] = 1 (*) UMVUE is unique

Var[W ∗] = V ar[W̃ ∗]

This is a very powerful result that we can use in different ways.
Remarks:

1. From the proof, we see that the UMVUE is a function of a complete and sufficient statistic
and that is almost surely unique.

2. If an estimator is unbiased and a function of a complete and sufficient statistic, then it must
be an UMVUE.

a) This means that this is how we prove that things are an UMVUE.
b) “The crowning of all our efforts.”

3. The sufficiency is generally not so hard to prove.

Example 38. Let X1, ..., Xn be a random sample from U ]0, θ[ θ > 0 (this is a notorious counter
example for a lot of things). Set:

W := max{X1, ..., Xn}
n+ 1

n
(∗)

Then, W is an unbiased estimator of θ. The variance → 0 as O(1/n2) (much faster than the
Crammer-Rao lower bound). Is this the UMVUE? Or can we find a better one? Lehmann-Scheffe
will give us our answer. Why?
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1. We already know that X(n) is sufficient.
2. We can now show that X(n) is complete.

We need to show that

(∀θ ∈ Θ,Eθ
[
g(X(n)

]
= 0)⇒ Pθ[g(X(n)) = 0] = 1 ∀θ ∈ Θ

First step: what is the distribution of the max?

P
[
X(n) ≤ t

]
=

n∏
i=1

P [Xi ≤ t] =

(
t

θ

)n
where t ∈]0, θ[. Thus, this tends to 0 if t ≤ θ and 1 if t ≥ θ. So, the density of T := X(n) is
differentiable:

fT (t) =
ntn−1

θn
χt∈]0,θ[

Now suppose that g is such that ∀θ ∈ Θ:

Eθ
[
g(X(n))

]
= 0 =

∫ θ

0
g(t)

ntn−1

θn
dt

Assume that g is Riemann-Integrable:

∂

∂θ
Eθ
[
g(X(n))

]
= 0

=

[
∂

∂θ
(θ−n)

]
︸ ︷︷ ︸

=0

·
∫ θ

0
g(t)

ntn−1

θn
dtθn + θ−n

∂

∂θ

∫ θ

0
g(t)ntn−1dt (Leibnitz Rule)

= 0 + θ−n · g(θ)nθn−1

So, ∀θ ∈ Θ:

0 =
ng(θ)

θ

Since n > 0, θ > 0 ⇐⇒ g(θ) = 0 ∀θ ∈ Θ. Thus:

∀θ ∈ Θ, g(θ) = 0

g(t) = 0∀t ≥ 0

which is what we wanted to show. This only works because Θ =]0,∞[. If it were smaller, we
would not be able to conclude this. So, the maximum is sufficient and it is complete. So, by
Lehmann-Scheffe, it is the UMVUE.

Another easy example is to estimate p by the sample mean for Bernoulli random variables. x is
sufficient and complete.

5 Hypothesis Testing

5.1 Basic Terminology

We will use one example to explain all the concepts.
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Example 39. Let X1, ..., Xn be coffee beans. Quality control example. Let:

Xi =

{
0 if quality is good

1 if bean is spoiled

This is a random sample from Bernoulli(p). We accept the shipment if p ≤ 1
100 . Based on X1, ..., Xn

we need to come up with a decision rule that allows us to decide whether p ≤ 1/100 or not
(p > 1/100). This is a statistical hypothesis testing problem.

Definition 18 (Hypothesis). A hypothesis is a statement about the population parameter θ. It
does not involve the Xi’s. Formally: given a statistical model {Fθ | θ ∈ Θ} and Θ0 ⊆ Θ, the
null hypothesis is denoted by:

H0 : θ ∈ Θ0

It can also just be called the null. In this example, Θ ∈ [0, 1/100[. The alternative hypothesis
is

H1 : θ /∈ Θ0 ⇐⇒ θ ∈ Θc
0

These form a partition of the parameter space. If |Θ0| = 1 (i.e. Θ0 = {θ0}, then H0 is called
simple; otherwise, it is called composite (Similar definitions for H1). We will illustrate these
ideas by going back to our example:

Example 40 (Coffee beans cont’d).

H0 : p < 1/100 vs. H1 : p > 1/100

Idea: estimate p from X1, ..., Xn:

p̂ = x

A decision rule might be:

x ≤ c∗ → choose H0

x > c∗ → choose H1

Or, equivalently, for

sn := X1 + ...+Xn = number of spoiled beans

sn ≤ c→ H1 (do not reject shipment)

sn > c→ H0 (reject shipment)

The uncertainty about p̂ comes into play when determining c∗.

Definition 19 (Hypothesis Test). A hypothesis test is a decision rule that specifies for which sam-
ple values H0 is accepted and for which sample values H1 is accepted. Formally, a hypothesis test
is a Borel-measurable function:

ψ : χ→ [0, 1]

(x1, ..., xn) 7→ ψ(x1, ..., xn) ∈ [0, 1]

The decision rule is the ψ (i.e., ψ(x1, ..., xn) is a statistic which means that it must not depend
on unknown parameters).

1. ψ(x1, ..., xn) is the probability of accepting the alternative hypothesis H1.
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2. R := {(x1, ..., xn) ∈ χ | ψ(x1, ..., xn) = 1} is called the rejection region (for (x1, ..., xn) ∈ R,
we reject H0).

3. A := {(x1, ..., xn) ∈ χ | ψ(x1, ..., xn) = 0} is called the acceptance region (for (x1, ..., xn) ∈
A, we accept H0).

4. The set {(x1, ..., xn) ∈ χ | ψ(x1, ..., xn) ∈]0, 1[} is called the randomisation region.

Remark: most of the time in this course:

ψ : χ→ {0, 1}

• When the randomisation region is non-empty, then ψ is called a randomised test and is
mostly of theoretical interest.
• If ψ(x1, ..., xn) ∈]0, 1[, you decide by drawing z ∼ Bernoulli(ψ(x1, ...xn)) and if

z = 0 take H0

x = 1 take H1

Q: How do we choose c?

B(p) = Pp(ψ(X1, ..., Xn) = 1)

= Pp(x ≥ c)
= PP (X1 + ...+Xn ≥ n · c)

=

n∑
k=nc

(
n

k

)
pk(1− p)(n−k)

H0 H1

H0 correct type 1 error

H1 type 2 error correct

The horizontal axis is the decision that we make and the vertical axis is the truth. By a smart
choice of c, we can control the Type I error, but not the type I and type II error at the same time.
Rejecting the H0 is safe while accepting the H0 is not safe. This is why, if possible, H0 is the
scientific hypothesis that you want to reject (null = no change). If that leads to “acceptance of H0”
instead of saying that we accept H0, then we may say that the data provides no evidence to reject
the H0.

Definition 20 (Power Function). A power function of a test ψ is

Bψ : Θ→ [0, 1]

θ 7→ εθψ(X1, ..., Xn)︸ ︷︷ ︸
expected probability of rejecting H0

Hence,

Bψ(θ) =

{
Probability of Type 1 error if θ ∈ Θ0

1− Prob of Type II error if θ /∈ Θ0

For a given α ∈ [0, 1], a test ψ is called a Level α test if

sup
θ∈Θ0

Bψ(θ) ≤ α

The quantity supθ∈Θ0
Bψ(θ) is called the size of the test ψ. The set of all level α tests for a given

hypothesis testing problem is Cα := {ψ | supθ∈Θ0
Bψ(θ) ≤ α}.
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Example 41 (Example – continued). Here

B(p) =
∑

)k = ncn
(
n

k

)
pk(1− p)n−k

is increasing in p, so the size of the test is B(1/100). To determine c, we pick α, say, α = 5%(0.05)
and solve B(p0) ≤ 0.05 for c. This means pick the smallest c so that B(p0) ≤ 0.05. Suppose that
n = 10, p0 = 1/100. Then:

B(p0)

c = 0 1

c = 1/10 0.0956

c = 2/10 0.0043

c = 3/10 0.0012

Here, we want to choose c = 2/10 so that we have a level α test and minimise the type II error.
Here, the size of the test is

0.0043 < 0.05

If we want the size to be exactly α = 0.05, then we need a randomised test:

ψ(X1, ..., Xn) =


1 if x ≥ 2/10

γ if x = 1/10

0 if x = 0

Calculating the expected value:

Ep0 [ψ(X1, ..., Xn)] = 1 · Pp0 [X1 + ...+Xn ≥ 2] + γ · Pp0 [X1 + ...+Xn = 1] = α

So, if we choose

γ =
α− Pp0 [X1 + ...+Xn ≥ 2]

Pp0 [X1 + ...+Xn = 1]

≈ 0.05006

Suppose that the true p is 0.2. Then, the probability of a Type II error is:

Pp=0.2

(
10∑
i=1

Xi < 2

)
= 1−B(0.2) = 0.376

We can lower this probability by increasing n. If n = 30:

P1/100

(
30∑
i=1

Xi ≥ 2

)
= 0.036

P0.2

(
30∑
i=1

Xi < 2

)
= 0.01

5.2 Likelihood Ratio Tests

General strategy to construct tests:

1. Find a test statistic W (X1, ..., Xn). Needs to have preferably a tractable sampling distribution
under H0.
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2. Construct the rejection region R as the set of (x1, ..., xn) so that W (X1, ..., Xn) is unlikely to
occur under H0.

3. The test is then:

ψ(X1, ..., Xn) = χ(x1,...,xn)∈R

Definition 21 (Likelihood Ratio Statistic). The likelihood ratio statistic for testing H0 : θ ∈ Θ0

vs H1 : θ /∈ Θ0 is given by λ(X1..., Xn) where for (x1, ..., Xn) ∈ χ:

λ(x1, ..., xn) =
supθ∈Θ0

L(θ;x1, ..., xn)

supθ∈Θ L(θ;x1, ..., xn)
∈ [0, 1] (45)

A likelihood ratio test (LRT) has the rejection region

R = {(x1, ..., xn) | λ(x1, ..., xn) ≤ c}

Here, c is typically chosen so that the LRT is a lower level α test for some given α.

Remark:

1. If θ̂ is the MLE of θ, then:
2.

sup
θ∈Θ

L(θ;x1, ..., xn) = L(θ̂;x1, ..., xn)

3. To calculate supθ∈Θ L(θ;x1, ..., xn), we are doing a constrained optimisation:

θ̂0 = arg max
θ∈Θ0

L(θ;x1, ..., xn)

so

λ(x1, ..., xn) =
L(θ̂0;x1, ..., xn)

L(θ̂;x1, ..., xn)
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