
M C G I L L U N I V E R S I T Y - FA L L 2 0 1 7

Important Results - MATH 356

Ralph Sarkis 260729917

March 14, 2019

1 Probability Basics

Proposition 1.1.

• P(∅) = 0 because P(∅) = P (
⋃

i∈N ∅) = ∑i∈N P(∅) using countable additivity.

• If Ai ∈ S for i = 1, . . . , n with Ai ∩ Aj for all i 6= j, we have P (
⋂n

i=1 Ai) =
∑n

i=1 P(Ai) (finite additivity)

• ∀A ∈ S , P(A) ∈ [0, 1], the proof of that also shows that P(Ac) = 1−P(A)

• If A, B ∈ S and A ⊆ B, we have P(B \ A) = P(B)− P(A), in particular, we have
P(A) ≤ P(B) which is called monotonicity

• Let A, B ∈ S , we have P(A ∪ B) = P(A) + P(B)−P(A ∩ B) (finite sub-additivity)

• Let Ai ∈ S for i = 1, . . . , n, the Inclusion-Exclusion formula says the following:

P

(
n⋃

i=1

Ai

)
=

n

∑
i=1

P(Ai)−
n

∑
i1,i2=1
i1<i2

P
(

Ai1 ∩ Ai2
)
+ · · ·+ (−1)n+1P

(
n⋂

i=1

Ai

)

Theorem 1.2 (Bonferonni’s inequality). Let Ai ∈ S for i = 1, . . . , n, we have the following
inequality:

n

∑
i=1

P(Ai)−
n

∑
i1,i2=1
i1<i2

P
(

Ai1 ∩ Ai2
)
≤ P

(
n⋃

i=1

Ai

)
≤

n

∑
i=1

P(Ai)
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Proposition 1.3. Let S be a σ-field and P a probability distribution.

• Continuity from below : If An ∈ S for n ∈ N and An ↑ A, then, the sequence P(An)
is monotonically increasing and limn→∞ P(An) = P(A).

• Continuity from above : If An ∈ S for n ∈ N and An ↓ A, then, the sequence P(An)
is monotonically decreasing and limn→∞ P(An) = P(A).

• Countable sub-additivity : If An ∈ S for n ∈N, we have P (
⋃

n∈N An) ≤ ∑∞
n=1 P(An).

2 Conditional Probability

Definition 2.1 (Conditional probability). Let (Ω,S , P) be a probability space and H ∈
S such that P(H) > 0. Then, for every A ∈ S , we define the conditional probability
of A given H by

P(A|H) =
P(A ∩ H)

P(H)

If P(H) = 0, then P(A|H) is undefined.

Theorem 2.2 (The multiplication rule). If Ai ∈ S for i ∈ {1, . . . , n} and P
(⋂n−1

i=1 Ai

)
>

0, then

P

(
n⋂

i=1

Ai

)
= P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P

An

∣∣∣∣∣∣
n−1⋂
j=1

Aj


Theorem 2.3 (Total probability and Bayes’ rule). Let {Hi | i ≥ 1} be a partition of Ω,
namely, they are disjoint sets whose union is equal to Ω, such that ∀i ≥ 1, P(Hi) > 0. Then,
the total probability rule states that ∀A ∈ S , P(A) = ∑∞

i=1 P(A|Hi)P(Hi). In particular,
Bayes’ rule can be derived :

P(Hi|A) =
P(A|Hi)P(Hi)

∑∞
j=1 P(A|Hj)P(Hj)

Definition 2.4 (Lack of memory). Let (Ω,S , P) be a discrete probability space with
Ω = N and S = P(Ω). We say that P is memoryless if for any m, k ∈ N, we have
P ({k + m} | {m, m + 1, . . . }) = f (k). One can show that P must be a geometric dis-
tribution. Moreover, in the continuous case, P must be an exponential distribution.

3 Random Variables

Definition 3.1 (PMF). Let P be a discrete distribution on some discrete probability
space. The function f : Ω→ [0, 1] defined with f (ω) = P({ω}) is called the probabil-
ity mass function. It has the property that ∑ω∈Ω f (ω) = 1. Moreover, if a function has
this property, then it is the PMF of some discrete distribution.
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We now give some examples of discrete distributions which we will use often be-
cause they describe what we usually study with probability. Note that we most often
work with the probability space (Ω,S , P) and denote the PMF with f .

Definition 3.2 (Discrete Uniform). If |Ω| = n < ∞ and the PMF of P is f (ω) = 1
n , P

is called the discrete uniform distribution. Let’s verify that f is indeed a PMF.

∑
ω∈Ω

f (ω) = ∑
ω∈Ω

1
n
= n · 1

n
= 1

This distribution is used to describe experiences where each sample point happens as
often as the others. For example, a fair coin/dice, three dices, etc...

Definition 3.3 (Dirac). If the PMF of P is such that there exists a sample point ω0 ∈ Ω
such that f (ω0) = 1, we call P a Dirac distribution. We can infer that all the other
sample points have probability zero. Let’s verify that f is indeed a PMF.

∑
ω∈Ω

f (ω) = ∑
ω∈Ω\{ω0}

0 + f (ω0) = 1

This distribution is used when only one possible outcome happens all the time.

Definition 3.4 (Bernoulli). If Ω = {0, 1} and there is a number p ∈ (0, 1) such that
f (0) = 1− p and f (1) = 1, we call P the Bernoulli distribution and denote it B(p).
Let’s verify that f is indeed a PMF.

∑
ω∈Ω

f (ω) = f (1) + f (0) = p + 1− p = 1

This distribution is used when the experience has two outcomes, where one has prob-
ability p of happening. We often call this outcome the success and the other outcome
the failure, so the experience has probability p of succeeding.

Definition 3.5 (Binomial). If Ω = {0, . . . , n} for n > 0 and there is a number p ∈ (0, 1)
such that f (k) = (n

k)pk(1− p)n−k for every k ∈ Ω, we call P the Binomial distribution
and denote it B(n, p). Let’s verify that f is indeed a PMF1.

∑
ω∈Ω

f (ω) =
n

∑
k=0

(
n
k

)
pk(1− p)n−k = (p + (1− p))n = 1

This distribution is used to describe the probability of having k successes in n inde-
pendent Bernoulli trials. In particular B(1, p) = B(p). A concrete example of that is
the probability of getting 4 heads when flipping 5 weighted coins that fall on head
75% of the time.

1We will use the binomial formula
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Definition 3.6 (Poisson). If Ω = N and there is a number λ > 0 such that f (k) =

e−λ λk

k! for every k ∈ N, we call P the Poisson distribution and denote it P(λ). Let’s
verify that f is indeed a PMF2.

∑
ω∈Ω

f (ω) = e−λ
n

∑
k=0

λk

k!
= e−λeλ = 1

This distribution models the number of rare events occurring in a certain period when
we know that the rare events have a constant rate and occur independently from the
last time since the last event. It can also be viewed as the limit of B(n, λ

n ) as n→ ∞.

Definition 3.7 (Geometric). If Ω = N and there is a number p ∈ (0, 1) such that
f (k) = (1− p)k p for every k ∈N, we call P the Geometric distribution and denote it
G(p). Let’s verify that f is indeed a PMF3.

∑
ω∈Ω

f (ω) =
∞

∑
k=0

(1− p)k p = p
∞

∑
k=0

(1− p)k = p
1

1− (1− p)
= 1

This distribution models the number of failed Bernoulli trials before the first success.

Although the PMF gives all the information needed for a discrete distribution, it is
not enough for a continuous distribution. Hence, we will explore a new notion.

Definition 3.8 (CDF). Consider the probability space (R,B(R), Q). The cumulative
distribution function F of Q is defined as F : R→ [0, 1] and F(x) = Q((−∞, x]). It has
three important properties :

• F is non-decreasing on R.

• limx→−∞ F(x) = 0 and limx→∞ F(x) = 1

• F is right continuous.

Moreover, if some function F satisfies these three properties, then it is the cumulative
distribution function for some distribution on (R,B(R)).

In order to study their CDFs, we will look at discrete distributions on the space
(R,B(R)).

Example 3.9.

• Consider the distribution B(n, p) on (R,B(R)), here is its CDF.

F(x) = P((−∞, x]) = ∑
k≤x

f (k) = ∑
k≤x

(
n
k

)
pk(1− p)n−k

Here are some values : x < 0 =⇒ F(x) = 0, 0 ≤ x ≤ 1 =⇒ F(x) = (1− p)n,
1 ≤ x ≤ 2 =⇒ F(x) = (1− p)n + np(1− p)n−1, etc...

2We use the Taylor expansion of the function ex

3We use the formula of the geometric series
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• Consider the distribution P(λ) on (R,B(R)), here is its CDF.

F(x) = P((−∞, x]) = ∑
k≤x

f (k) = ∑
k≤x

e−λ λk

k!

Here are some values : x < 0 =⇒ F(x) = 0, 0 ≤ x ≤ 1 =⇒ F(x) = e−λ,
1 ≤ x ≤ 2 =⇒ F(x) = e−λ + λe−λ, etc...

• Consider the distribution G(p) on (R,B(R)), here is its CDF.

F(x) = P((−∞, x]) = ∑
k≤x

f (k) = ∑
k≤x

(1− p)k p

Here are some values : x < 0 =⇒ F(x) = 0, 0 ≤ x ≤ 1 =⇒ F(x) = p,
1 ≤ x ≤ 2 =⇒ F(x) = p(1− p), etc...

The CDF does not give more information than the PMF for discrete distributions,
so we will look at continuous distribution. The simplest example being the uniform
distribution.

Definition 3.10 (Continuous uniform). Let Q be a distribution on (R,B(R)) and a < b
be two real numbers such that the CDF of Q is the following :

F(x) =


0 x < 0
x−a
b−a x ∈ [a, b]
1 x > b

We call Q the uniform distribution on [a, b] and we denote it U(a, b). Let’s verify that
F is indeed a CDF. It is clearly non-decreasing since each part is non-decreasing and
∀x ∈ [a, b], x−a

b−a ∈ [0, 1]. Moreover, we have limx→−∞ F(x) = 0 and limx→∞ F(x) = 1
since x ≤ a =⇒ F(x) = 0 and x ≥ b =⇒ F(x) = 1. Lastly, we want to show that
it is right continuous, inside the intervals, this is clear but we need to check at x = a
and x = b4.

lim
x→a+

F(x) = lim
n→∞

F(a +
1
n
) = lim

n→∞

1
n

1
b− a

= 0 = F(a)

lim
x→b+

F(x) = lim
n→∞

F(b +
1
n
) = 1 = F(b)

We will now look at other continuous distributions and their definitions.

Definition 3.11 (Continuous distribution). Consider the space (R,B(R), Q) and the
CDF F. We say that Q is a continuous distribution if F is a absolutely continuous,
namely,∃ f : R→ [0, ∞) such that ∀x ∈ R, F(x) =

∫ x
−∞ f (t)dt. We call f the probability

density function (PDF). Here are some properties of Q.

4This is not really a proof since we are using only one sequence to show the limit but it can be refined
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•
∫ ∞
−∞ f (t)dt = 1

• ∀a ≤ b, Q((a, b]) = F(b)− F(a) =
∫ b

a f (t)dt

• F is continuous everywhere and differentiable almost everywhere. Also, F′(x) =
f (x) at almost every x and at every x where f is continuous.

Examples 3.12.

• For U(a, b), the PDF is f (x) = 1
b−a for x ∈ [a, b] and f (x) = 0 everywhere else.

• The Gaussian distribution (also called normal) is denoted N(0, 1) and has the
following CDF and PDF.

F(x) =
1√
2π

∫ x

−∞
e
−t2

2 dt f (t) =
1√
2π

e
−t2

2

We will use these distribution to talk about random variables.

Definition 3.13 (RV). Let Ω be a simple space and S be a σ-field on Ω. A function
X : Ω→ S is called a random variable if ∀B ∈ B(R), X−1(B) ∈ S .

Note that the notion of probability is not part of this definition and if Ω is discrete
and S = 2Ω, any function from Ω to R is a random variable. An equivalent definition
is that ∀x ∈ R, {X ≤ x} = {ω ∈ Ω | X(ω) < x} ∈ S Using this definition, it is easy to
show that if X is a RV, aX + b, eX and other simple transformations of X are RVs. More
generally, if g is a Borel function (i.e: g : R→ R and ∀B ∈ B(R), g−1(B) ∈ B(R)) then
g ◦ X is a RV as well.

Now, we introduce the notion of probability in RVs.

Definition 3.14 (Distribution of RV). Given a probability space (Ω,S , P) and a RV X.
Define the following set function Q : B(R)→ R by B 7→ P(X−1(B)). The CDF of Q is
also the CDF of X and it can be written as F(X) = P(X ≤ x). If g is a Borel function,
we have Qg◦X(B) = QX(g−1(B)).

We now turn to expectation and variance of a RV.

Definition 3.15 (Discrete expectation). If X is a discrete RV on (Ω,S , P) and X ∈ {xn |
n ∈N}with PMF fX. The expectation of X, denoted E[X], is defined if ∑∞

n=0 |xn| fX(xn) <
∞ and we have E[X] = ∑∞

n=0 xn fX(xn).

Proposition 3.16. Here are some properties of the expectation. Let X and Y be RVs with
E[|X|] < ∞ and E[|Y|] < ∞, then the following holds.

• Let a, b ∈ R, then E[aX + bY] = aE[X] + bE[Y] (linearity).

• If X ≥ Y, then E[X] ≥ E[Y] (monotonicity).

• If E[X2] and E[Y2] also exist, then |E[XY]| ≤ E[|XY|] ≤
√

E[X2]E[Y2].
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Let’s calculate the expectations for various discrete RVs we know. We will assume
that the expectation exists to avoid some computations.

Examples 3.17. We will work in the discrete probability space (Ω,S , P) and we will
denote f to be the PMF of the RV.

• Let X be a Dirac RV with f (x0) = 1, then E[X] = x0.

• Let X be a Bernoulli RV (X ∈ {0, 1}) with parameter p ∈ (0, 1), then E[X] =
0 · (1− p) + 1 · p = p.

• Let X be a Binomial RV (X ∈ {0, n}) with parameter n > 0 and p ∈ (0, 1), we
get the following.

E[X] =
n

∑
k=0

k ·
(

n
k

)
pk(1− p)n−k (definition of expectation)

=
n

∑
k=1

k ·
(

n
k

)
pk(1− p)n−k (since first term is 0)

= np
n

∑
k=1

k
(n− 1)!
(n− k)!k!

pk−1(1− p)n−k (factoring np)

= np
n

∑
k=1

(n− 1)!
(n− 1− (k− 1))!(k− 1)!

pk−1(1− p)n−1−(k−1) (developping stuff)

= np
n

∑
j=0

(n− 1)!
(n− 1− j)!j!

pj(1− p)n−1−j (putting j = k− 1)

= np (using the sum of PMF = 1)

• Let X be a Poisson RV (X ∈N) with parameter λ > 0, we get the following.

E[X] =
∞

∑
k=0

k · e−λ λk

k!
(definition of expectation)

=
∞

∑
k=1

k · e−λ λk

k!
(since the fisrt term is 0)

= λe−λ
∞

∑
k=1

λk−1

(k− 1)!
(factoring λe−λ and simplifying)

= λe−λ
∞

∑
j=0

λj

(j)!
(set j = k− 1)

= λe−λeλ (using Taylor expansion of ex)
= λ (simplifying)
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• Let X be a Geometric RV (X ∈N) with parameter p ∈ (0, 1), we get the follow-
ing.

E[X] =
n

∑
k=0

k · (1− p)k p (definition of expectation)

=
n

∑
k=1

k · (1− p)k p (since first term is 0)

=
n

∑
j=0

(j + 1) · (1− p)j+1p (set j = k− 1)

= (1− p)
n

∑
j=0

j · (1− p)j p + (1− p)
n

∑
j=0

(1− p)j p (develop the sum)

= (1− p)E[X] + (1− p) (using the sum of PMF of G(p))

Solving this for E[X] gives us E[X] = 1−p
p .

Definition 3.18 (Moments). If E[Xk] is defined, it is called the k-th moment of X.

Definition 3.19 (Variance). If the second moment of X is defined, the variance of X is
also defined like so;

E[(X−E[X])2] = E[X2]−E[X]2

Proposition 3.20. Let X be a RV with Var(X) = σ < ∞, then Var(aX + b) = a2σ.

Definition 3.21 (MGF). If ∃s0 > 0 such that ∀s ∈ (−s0, s0), M(s) = E[esX] is defined,
then, the Moment Generating function is defined as E[esX], denoted M(s). If M(s)
exists, then E[Xk] exists for all k ≥ 0 and M(k)(0) = E[Xk].

Proposition 3.22. If X is a continuous RV with a defined MGF M(s), assume that for any
s ∈ R, M(2s) = M(s)4, E[X] = 0 and Var(X) = 1, then X is a N(0, 1) RV.

Let’s calculate the MGF and variance for the same discrete RVs as above. Once
again, we assume that they exist

Examples 3.23.

• Let X be Dirac RV with f (x0) = 1. Then M(s) = E[esX] = esx0 . We indeed get

M′(0) = x0esx0 |s=0 = x0 = E[X]

Moreover, we have

E[X2] = M′′(0) = x2
0esx0 |s=0 = x2

0

We can then calculate the variance5

Var(X) = E[X2]−E[X]2 = x2
0 − x2

0 = 0
5Note that the variance of a RV is 0 if and only if it is a Dirac RV
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• Let X be a Bernoulli RV with parameter p ∈ (0, 1), we find its MGF:

M(s) = E[esX] = es·0(1− p) + es·1(p) = (1− p) + pes

Indeed, we find M′(0) = pes|s=0 = p = E[X]. Moreover, we have

E[X2] = M′′(0) = pes|s=0 = p

We can then calculate the variance

Var(X) = E[X2]−E[X]2 = p− p2 = p(1− p)

• Let X be a Binomial RV with parameter n > 0 and p ∈ (0, 1). We find its MGF:

M(s) = E[esX] =
n

∑
k=0

esk
(

n
k

)
· pk(1− p)n−k

=
n

∑
k=0

(
n
k

)
· (pes)k(1− p)n−k

= (pes + 1− p)n (using the binomial formula)

Indeed, we get

M′(0) = n(pes + 1− p)n−1(pes)|s=0 = np = E[X]

Moreover, we have

E[X2] = M′′(0)

= npes(p(es − 1) + 1)n−2(p(nes − 1) + 1)|s=0

= np(p(n− 1) + 1)

So we can find the variance:

Var(X) = E[X2]−E[X]2 = np(p(n− 1) + 1)− (np)2 = np(1− p)

• Let X be a Poisson RV with parameter λ > 0. We can find its MGF.

M(s) = E[esX] =
∞

∑
k=0

eske−λ · λk

k!

= e−λ
∞

∑
k=0
· (e

sλ)k

k!

= e−λeesλ (using the Taylor expansion of ex)

= eλ(es−1)
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Indeed, we have M′(0) = λeseλ(es−1)|s=0 = λ. Moreover, we have

E[X2] = M′′(0) = (λes + 1)(λeseλ(es−1))|s=0

= λ2 + λ

So we can find the variance

Var(X) = E[X2]−E[X]2 = λ2 + λ− λ2 = λ

• Let X be a Geometric RV with parameter p > 0. We find its MGF:

M(s) = E[esX] =
∞

∑
k=0

esk · (1− p)k p

= p
∞

∑
k=0

(es(1− p))k

= p · 1
1− (es(1− p))

Indeed, we have

M′(0) = p · (1− p)es

(1− es(1− p))2 |s=0 =
1− p

p

Moreover, we have

E[X2] = M′′(0) =
p(p− 1)es((p− 1)es − 1)

((p− 1)es + 1)3 |s=0 =
(p− 1)(p− 2)

p2

So we can find the variance :

Var(X) = E[X2]−E[X]2 =
(p− 1)(p− 2)

p2 −
(

1− p
p

)2

=
1− p

p2

4 Inequalities and Estimates

Proposition 4.1. Let X ∈N be a discrete RV, then

E[X] =
∞

∑
i=1

P(X ≥ i)

Proposition 4.2. Let X ∈ R+ be a continuous and nonnegative RV, then

E[X] =
∫ ∞

0
P(X > t)dt
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Definition 4.3. For t > 0, P(X > t) is called the tail probability. This section is all
about deriving inequalities and estimates on it.

First, we derive some sufficient (but not necessary) conditions for the existence of
moments and generating functions (it works for any RV X).

Proposition 4.4. If there exists δ > 0 and C > 0 such that for any t ∈ [0, ∞), P(|X| > t) ≤
C

t1+δ , then

E[|X|] ≤
∫ ∞

0

C
t1+δ

dt < ∞

Proposition 4.5. Fix k ∈ N, if there exists δ > 0 and C > 0 such that for any t ∈ [0, ∞),
P(|X|k > t) ≤ C

t1+ δ
k

, then

E[|X|k] ≤
∫ ∞

0

C

t1+ δ
k

dt < ∞

Proposition 4.6. If there exists δ > 0 and C > 0 such that for any t ∈ [0, ∞), P(|X| > t) ≤
Ce−δt, then for any s ∈ (−δ, δ), we have

E[esX] ≤
∫ ∞

0
tCe−

δ
|s| dt < ∞

Theorem 4.7. Let X be a RV and h be a Borel function with h ≥ 0. Assume that E[h ◦ X]
exists, then for any t > 0, we have

P(h(X) > t) ≤ E[h(X)]

t

From this theorem, we can derive three important inequalities.

Theorem 4.8 (Markov’s inequality). If X is a RV with E[|X|k] < ∞, then for any t > 0,

P(|X| > t) = P(|X|k > tk) ≤ E[|X|k]
tk

Theorem 4.9 (Chebyshev’s inequality). If X is a RV with E[|X|2] < ∞, then for any
t > 0,

P(|X−E[X]| > t) = P(|X−E[X]|2 > t2) ≤ Var(X)

t2

Theorem 4.10 (Chernoff’s bound). If X is a RV with E[es|X|] < ∞, then for any t > 0,

P(|X| > t) = P(es|X| > est) ≤ e−stE[es|X|]
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5 Multiple Random Variables

5.1 Distributions

Definition 5.1 (Joint CDF). The joint CDF of a RV (X, Y) is defined to be F(X,Y)(x, y) =
P(X ≤ x, Y ≤ y).

Proposition 5.2. For a fixed x ∈ R, the following holds.

• limy→∞ F(X,Y)(x, y) = FX(x)

• limy→−∞ F(X,Y)(x, y) = 0

• limx,y→∞ F(X,Y)(x, y) = 1

• limε→0+ F(X,Y)(x, y + ε) = F(X,Y)(x, y)

Definition 5.3 (Joint and marginal PMF). Let X ∈ {xi | i ∈ N} and Y ∈ {yj | j ∈ N}
be discrete RVs, the joint PMF is defined to be f(X,Y)(xi, yj) = P(X = xi, Y = yi). We
can retrieve the marginal PMF of X by fixing x and summing over the possible values
of Y.

fX(xi) =
∞

∑
j=0

f(X,Y)(xi, yj)

Definition 5.4 (Joint and marginal PDF). We say that (X, Y) is a continuous multivari-
ate RV if there exists a nonnegative function f(X,Y) such that for any (x, y) ∈ R2, we
have

F(X,Y)(x, y) =
∫ x

−∞

∫ y

−∞
f(X,Y)(u, v)dvdu

This function is called the joint PDF and we can retrieve the marginal PDF for X by
fixing some x and integrating for y on R.

fX(x) =
∫

R
f(X,Y)(x, y)dy

5.2 Transformations

Definition 5.5. Let X and Y be discrete RVs and g : R2 → R be a Borel function, then
g(X, Y) is a RV taking values in {zk | k ∈N}. We define its PMF like so:

P(g(X, Y) = zk) = ∑
{(i,j)|g(xi,yj)=zk}

P(X = xi, Y = yj)

Definition 5.6. Let (X, Y) be a continuous RV and g : R2 → R be a Borel function,
then g(X, Y) is also a RV with the following CDF:

P(g(X, Y) ≤ z) =
∫ ∫

{(x,y)|g(x,y)≤z}
f(X,Y)(x, y)dydx

12



Proposition 5.7. Let (X, Y) be a continuous RV and f1, f2 : R→ R be two Borel functions
with U = f1(X, Y) and V = f2(X, Y). If ( f1, f2)

−1 = (g1, g2) is the unique inverse, g1 and
g2 have continuous partial derivatives and det ∂(g1,g2)

∂(u,v) 6= 0, then (U, V) is a continuous RV
and the PDF is defined like so:

f(U,V)(u, v) = f(X,Y)(g1(u, v), g2(u, v))
∣∣∣∣det

∂(g1, g2)

∂(u, v)

∣∣∣∣
Examples 5.8. Here are two common transformations we have seen multiple times.

• If f1(x, y) = x + y and f2(x, y) = x− y, then f(U,V)(u, v) = f(X,Y)
(u+v

2 , u−v
2

)
· 1

2 .

• If f1(x, y) =
√

x2 + y2 and f2 = arctan y
x , then f(U,V)(u, v) = u f(X,Y) (−u cos v,−u sin v).

Proposition 5.9 (Consequences of independence). Let X and Y be RVs, X ⊥⊥ Y, i.e.
F(X,Y)(x, y) = FX(x)FY(y) and f , g : R→ R be Borel functions, then the following holds.

• f(X,Y)(x, y) = fX(x) fY(y)

• M(X,Y)(s, t) = MX(s)MY(t)

• f (X) ⊥⊥ g(Y)

• E[ f (X)g(Y)] = E[ f (X)]E[g(Y)]

• If the second moments are defined for both X and Y, then Var(X + Y) = Var(X) +
Var(Y)

Definition 5.10 (i.i.d. sequence). Let {Xi | i ∈ N} be a sequence of RVs, we say that
they are independent and identically distributed if the sequence is an independent
family and ∀i ∈N, FX1 = FXi .

Examples 5.11. We calculated the sum of notable independent sequences of RVs.

• Let Xi be independent B(ni, p) RVs, then ∑m
i=0 Xi is a B(∑m

i=0 ni, p) RV.

• Let Xi be independent P(λi) RVs, then ∑m
i=0 Xi is a P(∑m

i=0 λi) RV.

• Let Xi be i.i.d. exp(λ) RVs, then ∑m
i=0 Xi is a Γ(m, λ) RV.

• Let Xi be i.i.d. N(m, σ2) RVs, then ∑m
i=0 Xi is a N(nm, nσ2) RV.

13



5.3 Covariance and Correlation

Let X and Y be RVs, we give the following definitions and formal consequences.

Definition 5.12 (Covariance).

Cov(X, Y) = E[(X−E[X])(Y−E[Y])] = E[XY]−E[X]E[Y]

Proposition 5.13.

|Cov(X, Y)| ≤
√

Var(X)Var(Y)

Definition 5.14 (Correlation).

Corr(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)

Proposition 5.15.
Corr(X, Y) = 1⇔ ∃c > 0, Y = cX

Proposition 5.16.

X ⊥⊥ Y =⇒ Cov(X, Y) = 0 = Corr(X, Y)

Proposition 5.17. Let {Xi | i ∈ N} be an uncorrelated sequence of variables such that
E[Xi] = m and Var(Xi) = σ2 for any i, with m ∈ R and σ ∈ (0, ∞). Let Sn = ∑n

i=0 Xi and
Sn = Sn

n , the following holds.

• For any n ∈N, E[Sn] = m and Var(Sn) =
σ2

n .

• For any ε > 0 and n ∈N, P(|Sn −m| > ε) ≤ σ2

nε2 .

6 Conditional Distribution

Definition 6.1 (Conditional CDF). Let X and Y be RVs, the conditional CDF of X given
Y = y is defined like so:

FX|Y(x | y) = lim
ε→0

P(X ≤ x | Y ∈ (y− ε, y + ε)) = lim
ε→0

P(X ≤ x, Y ∈ (y− ε, y + ε))

P(Y ∈ (y− ε, y + ε))

Remark 6.2. Let X ∈ {xi | i ∈ N} and Y ∈ {yj | j ∈ N} be discrete RVs, FX|Y(x | y)
is only defined if y ∈ {yj | j ∈ N}. Also, the conditional PMF is defined by fX|Y(xi |
yi) = P(X = xi | Y = yj).

Definition 6.3 (Discrete conditional expectation). If ∑∞
i=0 |xi| fX|Y(xi | y) < ∞ for any

y ∈ {yj | j ∈N}, then we can define the conditional expectation which is a RV:

E[X | Y](ω) =
∞

∑
i=0
|xi| fX|Y(xi | Y(ω))

14



Proposition 6.4.
E[E[X | Y]] = E[X]

Proposition 6.5. If X ⊥⊥ Y, then ∀ω ∈ Ω, E[X | Y](ω) = E[X].

Proposition 6.6. Let (X, Y) be a continuous RV with joint PDF f(X,Y) and marginal PDFs
fX and fY, then we have the following formulas:

FX|Y(x | y) =
∫ x

−∞

f(X,Y)(u, y)
fY(y)

du

fX|Y(x | y) =
f(X,Y)(x, y)

fY(y)

Definition 6.7 (Continuous conditional expectation). If
∫

R
|x| fX|Y(x | y)dx < ∞ for

any y ∈ R, then E[X | Y](ω) =
∫

R
x fX|Y(x | Y(ω))dx.

Definition 6.8 (Conditional variance). Let (X, Y) be a RV with E[X2] < ∞ and assume
that for every ω ∈ Ω, E[X2 | Y](ω) and E[X | Y](ω) are defined. The conditional
variance is defined by Var(X | Y)(ω) = E[X2 | Y](ω)− (E[X | Y](ω))2.

Proposition 6.9. In the same setting as last definition, we have the following.

Var(X) = Var(E[X | Y]) + E[Var(X | Y)]

7 Asymptotics

Throughout this section, we will consider a sequence of RVs {Xi | i ∈ N} with DFs
{Fi | i ∈N} and a RV X with DF F.

Definition 7.1 (Convergence in distribution). If for all continuous points x in F we
have limn→∞ Fn(x) = F(x), then we say that Xn → X in distribution.

Theorem 7.2. If ∀n, Xn, X ∈ N then, Xn → X in distribution if and only if for all k ∈ N,
we have limn→∞ P(Xn = k) = P(X = k).

Theorem 7.3. If ∀n,Xn is continuous with PDF fn and X is continuous with PDF f and for
almost every x ∈ R, we have limn→∞ fn(x) = f (x), then, Xn → X in distribution.

Proposition 7.4. If Xn → X in distribution and a, b ∈ R, then aXn + b → aX + b in
distribution.

Definition 7.5 (Convergence in probability). If for every ε > 0, we have limn→∞ P(|Xn−
X| > ε) = 0, then we say that Xn → X in probability.

Proposition 7.6. If Xn → X, Xn → X′ and Yn → Y in probability then the following holds.

• Xn → X in distribution.
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• P(X = X′) = 1.

• Xn + Yn → X + Y and Xn −Yn → X−Y and XnYn → XY in probability.

Theorem 7.7 (Slutsky). If Xn → X in distribution and Zn → c in probability (where c ∈ R

is viewed as a Dirac RV at c), then Xn + Yn → X + c and XnYn → cX in distribution.

Proposition 7.8. If Xn → c in distribution and g : R→ R is a Borel function, the following
holds.

• Xn → c in probability.

• g(Xn)→ g(c) in distribution.

• limn→∞ E[g(Xn)] = g(c)

In the following, we denote Sn = ∑n
i=0 Xi and Sn = Sn

n to be the partial sum of the
RVs and the rescaled partial sum respectively.

Definition 7.9. We say that the sequence {Xi | i ∈ N} obeys the weak law of large
numbers (WLLN) if Sn−E[Sn]

n → 0 in probability. Equivalently, Sn − E[Sn] → 0 in
probability.

Theorem 7.10 (WLLN-I). If {Xi} is uncorrelated and the second moments are bounded (i.e.
supi∈N E[X2

i ] = M < ∞), then the sequence obeys WLLN.

Theorem 7.11 (WLLN-II). If {Xi} is pairwise independent and identically distributed with
E[Xi] = m for any i, then the sequence obeys WLLN.

Theorem 7.12 (Central Limit Theorem). If {Xi} is i.i.d. with E[Xi] = m and Var(Xi) =

σ2, then Sn−mn√
nσ2 → X in distribution where X a N(0, 1) RV.
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