Important Results - MATH 350

Ralph Sarkis 260729917

January 4, 2018

1 Introduction to graphs

Lemma 1.1 (Handshaking lemma). For every graph G = (V, E), the sum of the degrees of all the vertices is even.

Corollary 1.2. *The number of vertices with odd degrees is even.*

Proposition 1.3. For any two vertices, the existence of walk between them guarantees the existence of a trail which guarantees the existence of a path which guarantees the existence of a walk.

Corollary 1.4. For any graph G, the walk, trail and path relations are equivalence relations on V(G).

Lemma 1.5. Let G be a graph, $e \in E(G)$ is a cut edge if and only if there is no cycle in G containing e.

1.1 From Assignments

Proposition 1.6. Let G = (V, E) be a simple graph with $|V| \ge 2$, then $\exists v, w \in V$, deg(v) = deg(w).

Proposition 1.7. *Let G be a disconnected graph, the complement of G,* \overline{G} *is connected.*

Proposition 1.8. *Let G be a graph with minimum degree k, then G contains a cycle of length k.*

2 Trees

Lemma 2.1. Every tree with at least two vertices has at least two leafs.

Corollary 2.2. Let G be a graph. For any leafs $v \in V(G)$, G is tree if and only if G - v is a tree.

Proposition 2.3. *A graph G being a tree is equivalent to each of the following statements:*

- 1. G is connected and contains no cycle
- 2. $\forall e \in E(G)$, *e* is a cut-edge
- 3. *G* is connected and every trail in *G* is a path
- 4. Between any two vertices there is a unique path.
- 5. Maximal graph with respect to adding edges that has no cycle
- 6. *G* is connected and |V(G)| = |E(G)| + 1
- 7. *G* has no cycle and |V(G)| = |E(G)| + 1

Lemma 2.4. For every rooted trees, there exists a unique out-rooted orientation.

Theorem 2.5 (Cayley's formula). We denote t_n to be the number of labeled trees on $\{1, ..., n\}$.

$$t_n = n^{n-2}$$

2.1 From Assignments

Proposition 2.6. *If a tree T contains a vertex of degree k, then T has at least k leaves.*

3 Spanning Trees

Proposition 3.1. *If G is connected, then G has a spanning tree.*

Proposition 3.2. Let T be the spanning tree of a graph G and $e \in E(G) \setminus E(T)$, take any edge f in the fundamental cycle with respect to T and e. Then, $T_p = (T + e) - f$ is a spanning tree.

Algorithm 3.3 (Kruskal). Kruskal gives a greedy algorithm to find the shortest path spanning tree of a graph. Let G = (V, E) be a graph and w be a weight function on it.

```
KRUSKAL(G = (V, E), w)

1 Initialize T = (V, \emptyset)

2 for each e = \{u, v\} in E sorted by increasing weight do

3 if u \not\sim v then

4 Add e to T.
```

```
5 return T
```

Algorithm 3.4 (Dijkstra). Dijkstra gives a greedy algorithm to find the path of minimum between two vertices. Let G = (V, E) be a graph, w a weight function on it and s and t be source and target vertices.

DIJKSTRA(G = (V, E), w, s, t) 1 Initialize $T = (V, \emptyset)$ 2 Initialize dist $[u] = \infty$ for all $u \in V \setminus \{s\}$. Set dist[s] = 03 Initialize $H = \{s\}$ a min-heap of vertices sorted by dist 4 while $H \neq \emptyset$ do 5 Let $u = H.remove_min()$ 6 Add the edge of smallest weight connecting u to T. 7 for each neighbor v of u do 8 Set dist $[v] = min\{dist[v], dist[u] + w(\{u, v\})\}$ 9 return T

4 Euler Tours

Theorem 4.1. *A multigraph G contains a closed Eulerian tour if and only if G is connected and there is no vertices of odd degree.*

Corollary 4.2. A multigraph G contains an Eulerian tour if and only if it is connected and contains at most two vertices of odd degree.

Theorem 4.3 (Ore's theorem). Let G = (V, E) be a graph with $n = |V| \ge 3$. Suppose that for every pair $u, w \in V$ such that $\{u, w\} \notin E$, $\deg(u) + \deg(w) \ge n$, then G contains a Hamiltonian cycle.

Corollary 4.4. Let G = (V, E) be a graph, then $\min_{v \in V} \deg(v) \ge \frac{n}{2}$ implies that G contains a Hamiltonian cycle.

5 Bipartite Graphs

Theorem 5.1. *A graph G is bipartite if and only if it has no odd cycle.*

Theorem 5.2. Let G = (V, E) be a graph, then the following are equivalent :

- 1. *G* is bipartite
- 2. G does not contain a closed walk of odd length
- 3. G does not contain an odd cycle

Proposition 5.3. *Let G be a simple graph. G is bipartite if and only if it contains no induced cycle of odd length.*

6 Matching in graphs

Proposition 6.1. For any $k \ge 1$, a (2^k) -regular graph contains a 2-factor.

Lemma 6.2 (Berge). Let G = (V, E) be a graph and M be a matching in G. M is maximum matching if and only if there is no M-augmenting paths.

Theorem 6.3 (Konig). *Let G be a bipartite graph, then* $\tau(G) = \nu(G)$ *.*

Theorem 6.4 (Hall). *Let G* be a bipartite graph with bipartition *A* and *B*, then there exists an *A*-covering matching in *G* if and only if $\forall S \subseteq A$, $|N(S)| \ge |S|$.

Theorem 6.5. *Every* (2*k*)*-regular graph has a 2-factor.*

Corollary 6.6. *Every* (2*k*)*-regular graph has k disjoint 2-factors.*

Proposition 6.7. Let G = (V, E) be any graph, $\alpha(G) + \tau(G) = |V|$.

Proposition 6.8 (Gallai). Let G = (V, E) be any graph, $\rho(G) + \nu(G) = |V|$.

Corollary 6.9. *If G is bipartite,* $\alpha(G) = \rho(G)$ *.*

Theorem 6.10 (Tutte). Let G = (V, E) be any graph, then G has a perfect matching if and only if for any subset of vertices X, $Odd(G - X) \le |X|$.

Theorem 6.11 (Petersen). *All 3-regular graphs containing no cut-edges have perfect matchings.*

Corollary 6.12. *A* 3-regular graph *G* has a perfect matching if and only if it has a 2-factor.

Lemma 6.13. Let G = (V, E) be a graph with |V| even. Then for any $X \subseteq V$, $Odd(G - X) \equiv |X| \mod 2$.

Corollary 6.14. Let G = (V, E) be a bipartite graph with parts A and B. Suppose that $\forall S \subseteq A, |N_G(S)| \ge |S|$, then G has an A-covering matching.

7 Ramsey Theory

Lemma 7.1.

$$R(k,\ell) \le R(k-1,\ell) + R(k,\ell-1)$$

Lemma 7.2.

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}$$

Corollary 7.3. $R(k) = R(k,k) < 4^k$

Theorem 7.4 (Ramsey). For any $k \in \mathbb{N}$, $R(k) < 4^k$, implying R(k) is finite.

Theorem 7.5. *For any* ℓ *and* k*,* $R_{\ell}(k)$ *is finite.*

Theorem 7.6 (Schur). For any $\ell \in \mathbb{N}$, \mathbb{N}^+ is not ℓ -colorable such that x + y = z has no monochromatic solution.

8 Connectivity of Graphs

Theorem 8.1 (Menger). *Let G be a simple and not complete graph, then*

$$\kappa(G) = \min_{C \ vertex \ cut} |C|$$

Theorem 8.2 (Ford-Fulkerson). Let G be a multigraph, then

$$\kappa'(G) = \min_{F \ edge \ cut} |F|$$

Lemma 8.3. Let G = (V, E) be a simple graph. For any $u \neq w \in V$ such that $\{u, w\} \notin E$, we have $c_G(u, w) = P_G(u, w)$.

Lemma 8.4. Let G = (V, E) be a multigraph. For any $u \neq w \in V$, we have $c'_G(u, w) = P'_G(u, w)$.

9 Networks

Lemma 9.1. Let D = (V, E) be a digraph and $s \neq t \in V$, then either there exists a directed path from *s* to *t* or there exists a subset $X \subseteq V$ with $\{s\} \subseteq X \subseteq V \setminus \{t\}$ such that $\partial^+(X) = \emptyset$.

Lemma 9.2. Let D = (V, E) be a digraph, $s \neq t$ be vertices and ϕ be an s, t-flow of value k, then $\forall \{s\} \subseteq X \subseteq V \setminus \{t\}$, we have

$$\sum_{e \in \partial^+(X)} \phi(e) - \sum_{e \in \partial^-(X)} \phi(e) = k$$

Lemma 9.3. Let D = (V, E) be a digraph, $s \neq t$ be vertices and ϕ be an integral s,t-flow of value k, then there exists a collection of paths $\{P_1, \ldots, P_k\}$ all going from s to t such that every edge $e \in E$ belongs to at most $\phi(e)$ paths.

Lemma 9.4. Let (V, E, s, t, c) be a network, ϕ be an integral *c*-admissible *s*, *t*-flow and *P* be an augmenting path for ϕ . Then there exists a *c*-admissible *s*, *t*-flow ψ with val $(\psi) \ge$ val $(\phi) + 1$.

Theorem 9.5 (Ford-Fulkerson). Let (V, E, s, t, c) be a network and Φ be the set of all *c*-admissible *s*, *t*-flows, then, we have the following:

$$\max_{\phi \in \Phi} \operatorname{val}(\phi) = \min_{\{v\} \subseteq X \subseteq V \setminus \{t\}} \operatorname{cap}(X)$$

10 Proper Vertex Coloring

Proposition 10.1. Let G be a simple graph, recall that $\alpha(G)$ is the size of the largest independent set. We have $\chi(G) \ge \frac{|V(G)|}{\alpha(G)}$.

Theorem 10.2. For any $k \in \mathbb{N}$, there exists a graph G_k simple graph with no triangles and $\chi(G_k) > k$.

Theorem 10.3. Let G = (V, E) be a graph without triangles with n = |V|, then $\chi(G) \le \sqrt{2n}$.

Theorem 10.4 (Brooks). *Let G be a connected loopless multigraph that is not complete nor an odd cycle, then* $\chi(G) \leq \Delta(G)$.

Proposition 10.5. *If G is d-degenerate, then* $\chi(G) \leq d + 1$ *.*

Theorem 10.6 (Vizing). If *G* is a simple graph, then $\chi'(G) \leq \Delta(G) + 1$. If *G* is not simple, then denote $\mu(G)$ to be the maximum multiplicity of an edge in *G*, we have $\chi'(G) \leq \Delta(G) + \mu(G)$.

Theorem 10.7 (Konig's line coloring). *If* G = (V, E) *is a bipartite graph, then* $\chi'(G) = \Delta(G)$.

Theorem 10.8 (Shannon). If *G* is a loopless multigraph, $\chi'(G) \leq 3 \lceil \frac{\Delta(G)}{2} \rceil$.

10.1 From Assignments

Proposition 10.9. *Let G be a simple graph and* \overline{G} *be its complement, then* $\chi(G)\chi(\overline{G}) \geq |V|$ *.*

Proposition 10.10. *Let G be a simple graph such that for any two odd cycles* C_1 *and* C_2 , $V(C_1) \cap V(C_2) \neq \emptyset$, then $\chi(G) \leq 5$.

Proposition 10.11. *Let G be a* 3-*regular simple graph with a Hamiltonian cycle, then* $\chi'(G) = 3$ *.*

Proposition 10.12.

$$\chi'(K_n) = \begin{cases} n & \text{for odd } n \\ n-1 & \text{for even } n \end{cases}$$

11 Structural Graph Theory

Theorem 11.1 (Jordan's curve theorem). *Any continuous non self-intersecting loop in the plane divides the plane in exactly two regions.*

Lemma 11.2. *If the top and bottom regions of an edge are the same, then it must be a cut edge.*

Theorem 11.3 (Euler's formula). Let *D* be a drawing of G = (V, E) a connected planar graph, then |V| + Reg(D) - |E| = 2, where Reg(D) denotes the number of regions in *D*.

Corollary 11.4. *If e is a cut edge of G, then e is surrounded by only one region in any drawing of G.*

Proposition 11.5. Let G be a planar graph and D be an arbitrary plane drawing, then

$$\sum_{\substack{R \text{ region in } D}} \ell(R) = 2|E(G)|$$

Corollary 11.6. *Let* G *be a planar graph and* D_1 *and* D_2 *be two of its plane drawings, then*

$$\sum_{\substack{R \text{ region in } D_1}} \ell(R) = \sum_{\substack{R \text{ region in } D_2}} \ell(R)$$

Theorem 11.7. Let G = (V, E) be a simple planar graph with $n = |V| \ge 3$, m = |E| and f = Reg(G), then $m \le 3n - 6$.

Corollary 11.8. *K*⁵ *is not planar.*

Lemma 11.9. Let G be a connected planar graph with $n \ge 3$ vertices. For any drawing D and any region R in D, $\ell(R) \ge 3$.

Lemma 11.10. *G* is planar if and only if *G* sbd *e* is planar.

Proposition 11.11. $K_{3,3}$ is not planar.

Theorem 11.12 (Kuratowski). *G is planar if and only if G contains no subdivision of* K_5 *or* $K_{3,3}$.

Proposition 11.13. *Let G be a planar graph,* $e \in E$ *an edge and G' be the contraction of e, then G' is planar.*

Theorem 11.14 (Kuratowski-Wagner). *G* is planar if and only if *G* does not contain K_5 nor $K_{3,3}$ as a minor.

12 Coloring of Planar Graphs

Theorem 12.1. *Every planar graph can be drawn using straight lines only.*

Theorem 12.2 (Four color theorem). *Let G be a planar graph, then* $\chi(G) \leq 4$.

Theorem 12.3 (Six color theorem). *Let G be a planar graph, then* $\chi(G) \leq 6$.

Theorem 12.4 (Five color theorem). *Let G be a planar graph, then* $\chi(G) \leq 5$.

Theorem 12.5. *Let G be a* K_5 *minor-free graph, then* $\chi(G) \leq 4$ *.*

Theorem 12.6. *Let G be a* K_4 *minor-free graph, then* $\chi(G) \leq 4$ *.*

Theorem 12.7. *Let G be a* K_3 *minor-free graph, then* $\chi(G) \leq 2$ *.*

Theorem 12.8. Let G be a K₄ minor-free graph, then $m \le 2n - 3$, where m = |E| and n = |V|.

12.1 From Assignments

Proposition 12.9. *Let G be a simple triangle-free graph, then* $\chi(G) \leq 4$ *.*

Proposition 12.10. *Let G be an outerplanar graph, then* $\chi(G) \leq 3$ *.*

Proposition 12.11. *A* graph *G* is outerplanar if and only if it does not contain K_4 nor $K_{3,3}$ as *a minor.*

Proposition 12.12. *Let H be a simple graph with maximum degree at most 3. Show that every simple graph contains a subdivision of H if and only if it contains H as a minor.*

Proposition 12.13. *Let G be a simple graph that contains* K_5 *as a minor, then G contains a subdivision of* K_5 *or a subdivision of* $K_{3,3}$ *.*