Important Results - MATH 350

Ralph Sarkis 260729917

January 4, 2018

1 Introduction to graphs

Lemma 1.1 (Handshaking lemma). For every graph $G=(V, E)$, the sum of the degrees of all the vertices is even.

Corollary 1.2. The number of vertices with odd degrees is even.
Proposition 1.3. For any two vertices, the existence of walk between them guarantees the existence of a trail which guarantees the existence of a path which guarantees the existence of a walk.

Corollary 1.4. For any graph G, the walk, trail and path relations are equivalence relations on $V(G)$.

Lemma 1.5. Let G be a graph, $e \in E(G)$ is a cut edge if and only if there is no cycle in G containing e.

1.1 From Assignments

Proposition 1.6. Let $G=(V, E)$ be a simple graph with $|V| \geq 2$, then $\exists v, w \in V, \operatorname{deg}(v)=$ $\operatorname{deg}(w)$.

Proposition 1.7. Let G be a disconnected graph, the complement of G, \bar{G} is connected.
Proposition 1.8. Let G be a graph with minimum degree k, then G contains a cycle of length k.

2 Trees

Lemma 2.1. Every tree with at least two vertices has at least two leafs.
Corollary 2.2. Let G be a graph. For any leafs $v \in V(G), G$ is tree if and only if $G-v$ is a tree.

Proposition 2.3. A graph G being a tree is equivalent to each of the following statements:

1. G is connected and contains no cycle
2. $\forall e \in E(G), e$ is a cut-edge
3. G is connected and every trail in G is a path
4. Between any two vertices there is a unique path.
5. Maximal graph with respect to adding edges that has no cycle
6. G is connected and $|V(G)|=|E(G)|+1$
7. G has no cycle and $|V(G)|=|E(G)|+1$

Lemma 2.4. For every rooted trees, there exists a unique out-rooted orientation.
Theorem 2.5 (Cayley's formula). We denote t_{n} to be the number of labeled trees on $\{1, \ldots, n\}$.

$$
t_{n}=n^{n-2}
$$

2.1 From Assignments

Proposition 2.6. If a tree T contains a vertex of degree k, then T has at least k leaves.

3 Spanning Trees

Proposition 3.1. If G is connected, then G has a spanning tree.
Proposition 3.2. Let T be the spanning tree of a graph G and $e \in E(G) \backslash E(T)$, take any edge f in the fundamental cycle with respect to T and e. Then, $T_{p}=(T+e)-f$ is a spanning tree.
Algorithm 3.3 (Kruskal). Kruskal gives a greedy algorithm to find the shortest path spanning tree of a graph. Let $G=(V, E)$ be a graph and w be a weight function on it.
$\operatorname{Kruskal}(G=(V, E), w)$

```
Initialize \(T=(V, \varnothing)\)
for each \(e=\{u, v\}\) in \(E\) sorted by increasing weight do
    if \(u \nsim v\) then
        Add \(e\) to \(T\).
return \(T\)
```

Algorithm 3.4 (Dijkstra). Dijkstra gives a greedy algorithm to find the path of minimum between two vertices. Let $G=(V, E)$ be a graph, w a weight function on it and s and t be source and target vertices.

Dijkstra $(G=(V, E), w, s, t)$

```
Initialize \(T=(V, \varnothing)\)
Initialize \(\operatorname{dist}[u]=\infty\) for all \(u \in V \backslash\{s\}\). Set dist \([s]=0\)
Initialize \(H=\{s\}\) a min-heap of vertices sorted by dist
while \(H \neq \varnothing\) do
    Let \(u=\) H.remove_min()
    Add the edge of smallest weight connecting \(u\) to \(T\).
    for each neighbor \(v\) of \(u\) do
        Set \(\operatorname{dist}[v]=\min \{\operatorname{dist}[v], \operatorname{dist}[u]+w(\{u, v\})\}\)
return \(T\)
```


4 Euler Tours

Theorem 4.1. A multigraph G contains a closed Eulerian tour if and only if G is connected and there is no vertices of odd degree.

Corollary 4.2. A multigraph G contains an Eulerian tour if and only if it is connected and contains at most two vertices of odd degree.

Theorem 4.3 (Ore's theorem). Let $G=(V, E)$ be a graph with $n=|V| \geq 3$. Suppose that for every pair $u, w \in V$ such that $\{u, w\} \notin E, \operatorname{deg}(u)+\operatorname{deg}(w) \geq n$, then G contains a Hamiltonian cycle.

Corollary 4.4. Let $G=(V, E)$ be a graph, then $\min _{v \in V} \operatorname{deg}(v) \geq \frac{n}{2}$ implies that G contains a Hamiltonian cycle.

5 Bipartite Graphs

Theorem 5.1. A graph G is bipartite if and only if it has no odd cycle.
Theorem 5.2. Let $G=(V, E)$ be a graph, then the following are equivalent:

1. G is bipartite
2. G does not contain a closed walk of odd length
3. G does not contain an odd cycle

Proposition 5.3. Let G be a simple graph. G is bipartite if and only if it contains no induced cycle of odd length.

6 Matching in graphs

Proposition 6.1. For any $k \geq 1, a\left(2^{k}\right)$-regular graph contains a 2 -factor.
Lemma 6.2 (Berge). Let $G=(V, E)$ be a graph and M be a matching in G. M is maximum matching if and only if there is no M-augmenting paths.
Theorem 6.3 (Konig). Let G be a bipartite graph, then $\tau(G)=v(G)$.
Theorem 6.4 (Hall). Let G be a bipartite graph with bipartition A and B, then there exists an A-covering matching in G if and only if $\forall S \subseteq A,|N(S)| \geq|S|$.

Theorem 6.5. Every (2k)-regular graph has a 2-factor.
Corollary 6.6. Every ($2 k$)-regular graph has k disjoint 2 -factors.
Proposition 6.7. Let $G=(V, E)$ be any graph, $\alpha(G)+\tau(G)=|V|$.
Proposition 6.8 (Gallai). Let $G=(V, E)$ be any graph, $\rho(G)+v(G)=|V|$.
Corollary 6.9. If G is bipartite, $\alpha(G)=\rho(G)$.
Theorem 6.10 (Tutte). Let $G=(V, E)$ be any graph, then G has a perfect matching if and only if for any subset of vertices $X, \operatorname{Odd}(G-X) \leq|X|$.
Theorem 6.11 (Petersen). All 3-regular graphs containing no cut-edges have perfect matchings.

Corollary 6.12. A 3-regular graph G has a perfect matching if and only if it has a 2-factor.
Lemma 6.13. Let $G=(V, E)$ be a graph with $|V|$ even. Then for any $X \subseteq V, \operatorname{Odd}(G-$ $X) \equiv|X| \bmod 2$.
Corollary 6.14. Let $G=(V, E)$ be a bipartite graph with parts A and B. Suppose that $\forall S \subseteq A,\left|N_{G}(S)\right| \geq|S|$, then G has an A-covering matching.

7 Ramsey Theory

Lemma 7.1.

$$
R(k, \ell) \leq R(k-1, \ell)+R(k, \ell-1)
$$

Lemma 7.2.

$$
R(k, \ell) \leq\binom{ k+\ell-2}{k-1}
$$

Corollary 7.3. $R(k)=R(k, k)<4^{k}$
Theorem 7.4 (Ramsey). For any $k \in \mathbb{N}, R(k)<4^{k}$, implying $R(k)$ is finite.
Theorem 7.5. For any ℓ and $k, R_{\ell}(k)$ is finite.
Theorem 7.6 (Schur). For any $\ell \in \mathbb{N}, \mathbb{N}^{+}$is not ℓ-colorable such that $x+y=z$ has no monochromatic solution.

8 Connectivity of Graphs

Theorem 8.1 (Menger). Let G be a simple and not complete graph, then

$$
\kappa(G)=\min _{\text {c vertex cut }}|C|
$$

Theorem 8.2 (Ford-Fulkerson). Let G be a multigraph, then

$$
\kappa^{\prime}(G)=\min _{F \text { edge cut }}|F|
$$

Lemma 8.3. Let $G=(V, E)$ be a simple graph. For any $u \neq w \in V$ such that $\{u, w\} \notin E$, we have $c_{G}(u, w)=P_{G}(u, w)$.

Lemma 8.4. Let $G=(V, E)$ be a multigraph. For any $u \neq w \in V$, we have $c_{G}^{\prime}(u, w)=$ $P_{G}^{\prime}(u, w)$.

9 Networks

Lemma 9.1. Let $D=(V, E)$ be a digraph and $s \neq t \in V$, then either there exists a directed path from s to t or there exists a subset $X \subseteq V$ with $\{s\} \subseteq X \subseteq V \backslash\{t\}$ such that $\partial^{+}(X)=$ \varnothing.

Lemma 9.2. Let $D=(V, E)$ be a digraph, $s \neq t$ be vertices and ϕ be an s, t-flow of value k, then $\forall\{s\} \subseteq X \subseteq V \backslash\{t\}$, we have

$$
\sum_{e \in \partial^{+}(X)} \phi(e)-\sum_{e \in \partial^{-}(X)} \phi(e)=k
$$

Lemma 9.3. Let $D=(V, E)$ be a digraph, $s \neq t$ be vertices and ϕ be an integral s, t-flow of value k, then there exists a collection of paths $\left\{P_{1}, \ldots, P_{k}\right\}$ all going from s to t such that every edge $e \in E$ belongs to at most $\phi(e)$ paths.

Lemma 9.4. Let (V, E, s, t, c) be a network, ϕ be an integral c-admissible $s, t-f l o w$ and P be an augmenting path for ϕ. Then there exists a c-admissible s, t-flow ψ with $\operatorname{val}(\psi) \geq \operatorname{val}(\phi)+1$.

Theorem 9.5 (Ford-Fulkerson). Let (V, E, s, t, c) be a network and Φ be the set of all c admissible s, t-flows, then, we have the following:

$$
\max _{\phi \in \Phi} \operatorname{val}(\phi)=\min _{\{v\} \subseteq X \subseteq V \backslash\{t\}} \operatorname{cap}(X)
$$

10 Proper Vertex Coloring

Proposition 10.1. Let G be a simple graph, recall that $\alpha(G)$ is the size of the largest independent set. We have $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$.

Theorem 10.2. For any $k \in \mathbb{N}$, there exists a graph G_{k} simple graph with no triangles and $\chi\left(G_{k}\right)>k$.

Theorem 10.3. Let $G=(V, E)$ be a graph without triangles with $n=|V|$, then $\chi(G) \leq$ $\sqrt{2 n}$.

Theorem 10.4 (Brooks). Let G be a connected loopless multigraph that is not complete nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

Proposition 10.5. If G is d-degenerate, then $\chi(G) \leq d+1$.
Theorem 10.6 (Vizing). If G is a simple graph, then $\chi^{\prime}(G) \leq \Delta(G)+1$. If G is not simple, then denote $\mu(G)$ to be the maximum multiplicity of an edge in G, we have $\chi^{\prime}(G) \leq \Delta(G)+$ $\mu(G)$.

Theorem 10.7 (Konig's line coloring). If $G=(V, E)$ is a bipartite graph, then $\chi^{\prime}(G)=$ $\Delta(G)$.

Theorem 10.8 (Shannon). If G is a loopless multigraph, $\chi^{\prime}(G) \leq 3\left\lceil\frac{\Delta(G)}{2}\right\rceil$.

10.1 From Assignments

Proposition 10.9. Let G be a simple graph and \bar{G} be its complement, then $\chi(G) \chi(\bar{G}) \geq|V|$.
Proposition 10.10. Let G be a simple graph such that for any two odd cycles C_{1} and C_{2}, $V\left(C_{1}\right) \cap V\left(C_{2}\right) \neq \varnothing$, then $\chi(G) \leq 5$.

Proposition 10.11. Let G be a 3-regular simple graph with a Hamiltonian cycle, then $\chi^{\prime}(G)=$ 3.

Proposition 10.12.

$$
\chi^{\prime}\left(K_{n}\right)= \begin{cases}n & \text { for odd } n \\ n-1 & \text { for even } n\end{cases}
$$

11 Structural Graph Theory

Theorem 11.1 (Jordan's curve theorem). Any continuous non self-intersecting loop in the plane divides the plane in exactly two regions.

Lemma 11.2. If the top and bottom regions of an edge are the same, then it must be a cut edge.
Theorem 11.3 (Euler's formula). Let D be a drawing of $G=(V, E)$ a connected planar graph, then $|V|+\operatorname{Reg}(D)-|E|=2$, where $\operatorname{Reg}(D)$ denotes the number of regions in D.

Corollary 11.4. Ife is a cut edge of G, then e is surrounded by only one region in any drawing of G.

Proposition 11.5. Let G be a planar graph and D be an arbitrary plane drawing, then

$$
\sum_{\text {R region in } D} \ell(R)=2|E(G)|
$$

Corollary 11.6. Let G be a planar graph and D_{1} and D_{2} be two of its plane drawings, then

$$
\sum_{\text {R region in } D_{1}} \ell(R)=\sum_{\text {R region in } D_{2}} \ell(R)
$$

Theorem 11.7. Let $G=(V, E)$ be a simple planar graph with $n=|V| \geq 3, m=|E|$ and $f=\operatorname{Reg}(G)$, then $m \leq 3 n-6$.

Corollary 11.8. K_{5} is not planar.
Lemma 11.9. Let G be a connected planar graph with $n \geq 3$ vertices. For any drawing D and any region R in $D, \ell(R) \geq 3$.

Lemma 11.10. G is planar if and only if G sbd e is planar.
Proposition 11.11. $K_{3,3}$ is not planar.
Theorem 11.12 (Kuratowski). G is planar if and only if G contains no subdivision of K_{5} or $K_{3,3}$.
Proposition 11.13. Let G be a planar graph, $e \in E$ an edge and G^{\prime} be the contraction of e, then G^{\prime} is planar.

Theorem 11.14 (Kuratowski-Wagner). G is planar if and only if G does not contain K_{5} nor $K_{3,3}$ as a minor.

12 Coloring of Planar Graphs

Theorem 12.1. Every planar graph can be drawn using straight lines only.
Theorem 12.2 (Four color theorem). Let G be a planar graph, then $\chi(G) \leq 4$.
Theorem 12.3 (Six color theorem). Let G be a planar graph, then $\chi(G) \leq 6$.
Theorem 12.4 (Five color theorem). Let G be a planar graph, then $\chi(G) \leq 5$.
Theorem 12.5. Let G be a K_{5} minor-free graph, then $\chi(G) \leq 4$.
Theorem 12.6. Let G be a K_{4} minor-free graph, then $\chi(G) \leq 4$.
Theorem 12.7. Let G be a K_{3} minor-free graph, then $\chi(G) \leq 2$.
Theorem 12.8. Let G be a K_{4} minor-free graph, then $m \leq 2 n-3$, where $m=|E|$ and $n=|V|$.

12.1 From Assignments

Proposition 12.9. Let G be a simple triangle-free graph, then $\chi(G) \leq 4$.
Proposition 12.10. Let G be an outerplanar graph, then $\chi(G) \leq 3$.
Proposition 12.11. A graph G is outerplanar if and only if it does not contain K_{4} nor $K_{3,3}$ as a minor.

Proposition 12.12. Let H be a simple graph with maximum degree at most 3. Show that every simple graph contains a subdivision of H if and only if it contains H as a minor.

Proposition 12.13. Let G be a simple graph that contains K_{5} as a minor, then G contains a subdivision of of K_{5} or a subdivision of $K_{3,3}$.

