
Lecture Notes for MATH 350 - Fall 2017
Ralph Sarkis

January 11, 2018

These are my lecture notes taken during the Introduction to graph
theory class in fall 2017.

Contents

Course Introduction 1

Introduction to graphs 1

Trees 9

Spanning trees 14

Euler tours 17

Bipartite graphs 20

Matching in graphs 21

Ramsey theory 29

Connectivity of graphs 34

Networks 38

Proper Vertex Coloring 41

Structural graph theory 45

Colorings of planar graphs 50

Course Introduction

This class will be taught by Jan Volec. There will be 10 assignments
with one warm-up question and a challenge question on each which
will not be graded. Both the midterm and the final will be open-book
exams. The weights of the assignments will be 20%, the weights of
the midterm will be 20% and the weight of the final will be 60%.
The office hours of Jan Volec are on Tuesday from 10:30 to 12:30 in
Burnside 1242. There is more information on Jan Volec’s website at
http://honza.ucw.cz.

Introduction to graphs

Definition 1 (Graph). A graph G is an ordered pair with a set of
vertices V and a set of edges E ⊆ (V

2)
1. V is normally finite and E is a 1 Here the binomial notation (S

k) where
S is a set and k ∈ N denotes the set of
unordered k− tuples with elements in S
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set of unordered pair of vertices. E can sometimes be considered as a
multi-set so that you can have multiple edges which are the same.

1

2 3

Figure 1: This represents the graph
G = (V, E) where V = {1, 2, 3} and
E = {{1, 2}, {2, 3}, {3, 1}}

Example 2. See figure 1.

Before actually diving into the formal theory of graphs, we look at
simple problems that were solved using graph theory (simple in their
formulation, not necessarily their solution).

1. How can you connect houses on an electrical grid with the least
amount of wires ?

The first algorithm to solve this problem was designed by Otakar
Borůvka in 1926.

2. What is the shortest distance you can travel while visiting all 647

U.S. colleges exactly once ?

The tour was found in 2015 by William Cook from UW.

Figure 2: The seven bridges of Königs-
berg puzzle

3. Can you cross the seven bridges of Königsberg exactly once ? (See
figure 2.)

The answer is no and it was proved by Euler. Draw each part of
land separated by the river as a node of a graph, and draw the
bridges as edges between the nodes. Observe that more than 2

nodes have an odd amount of edges. However, all nodes which
are not the start or end of the tour must have an even amount of
edges, because if you come on the land from a bridge, you must
leave from another bridge. Hence, we can have at most 2 nodes
with uneven edges connected, which is not the case in Königsberg
puzzle.

4. How can you disconnect 2 railway networks by destroying the least
amount of connections between towns ?

There are secret reports from 1955 that show the solution to this
problem on the railway network connecting the Soviet Union to
East Europe.

5. Let there be a town with several factories and stores with roads
connecting them. There are 3 rules for the roads.

• No road can connect 2 stores.

• No road can connect 2 factory.

• There can be intersection between roads.

Can there be simultaneously more than 2 factories and more than
2 stores ?

No, it is not possible.
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6. You have eight batteries in your bag and you know that four of
them work (you do not know which work or which do not work).
You need two charged batteries to power a GPS. What is the best
strategy to switch batteries in the device the least amount of time
before being sure to have two charged batteries ?

Make a two groups of three batteries and try every possible com-
bination in each groups (maximum six trials). If no combination
worked, the two batteries outside of the group are charged and
so you have a total of seven trials. The general solution for this
problem is known if you need two batteries but not if you need
three.

7. Is every political map 4-colorable ? You color a map with four
colors and each country is colored so that no adjacent countries
have the same colors.

This is the first accepted proof that was computer assisted. It is
really big and considers lots of cases (that is why a computer was
needed). Note that the proof for 6-colorable is almost trivial.

8. In a graph with 20 vertices, you can always find 4 vertices which
are either not connected or all connected.

This is part of Ramsey theory which gives motivation for the Ram-
sey numbers. The following remark is a result easier to prove than
the one above.

Remark 3. In a complete graph with 6 vertices and 2 colors of edges
(red and blue), you can always find a red triangle or a blue triangle.

Proof. Take an arbitrary node in the graph, call it A. Assume A has
at least three blue edges, then between nodes connected connected
to A via blue edges there are two possibilities. If there is a blue
connection between these nodes, we obtain a blue triangle with A,
if there is no blue connection, we obtain a red triangle. If A has less
than three blue edges, then it has at least three red edges and the
same argument as above holds.

We will now give several vocabulary definitions that we will often
use in the course.

Definitions 4 (Vocabulary of graphs). Let G = (V, E) be a graph.

• Let e1, e2 ∈ E be two edges, we say that they are parallel if they join
the same pair of vertices.

• Let e ∈ E be an edge, we say that it is a loop if it connects a vertex
to itself.
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• Let e = {u, v} ∈ E where u, v ∈ V, we say that u and v are the
endpoints or ends of e.

• G is called simple if it contains no parallel edges and no loops. It is
called loopless if it has no loops.

• Non-simple graphs are also called multi-graph.

• We use the following notation when working with multiple graphs
: V(G) = V and E(G) = E.

• Let u, v ∈ V, we say that u and v are adjacent if there exists an
edge e ∈ E of which they are the endpoints.

• Let v ∈ V and e ∈ E, we say that e is incident to v or that v is
incident to e if v is an endpoint of e.

• Let e1, e2 ∈ E be two edges, we say that they are coincident if the
share a common endpoint.

• The degree of a vertex v ∈ V is defined by the number of edges
incident to v. It is denoted deg (v).

We will take a small break from these definitions to prove a simple
lemma and its corollary.

Lemma 5 (Handshaking lemma). For every graph G = (V, E), the sum
of the degrees of all the vertices is even.

Corollary 6. The number of vertices with odd degrees is even.

Proof of corollary. Let V0 = {v ∈ V | deg (v) ≡ 0 (mod 2)} and
V1 = {v ∈ V | deg (v) ≡ 1 (mod 2)}, we decompose the summation of
all degrees like so:

∑
v∈V

deg (v) = ∑
v∈V0

deg (v) + ∑
v∈V1

deg (v)

The summation in V0 is even and since the left hand side is even, the
summation in V1 must be even. Hence, |V1| must be even.

The proof technique we are using here,
namely counting the same thing in 2

different ways, is often used in proofs
about graphs

Proof of lemma. By the definition of degree, we can infer that each time
a vertex v is an endpoint of an edge, its degree is incremented (loop
edges count twice for the same vertex). Thus, the summation is equal
to the number of endpoints or twice the number of edges (an even
number).

Back to definitions now. When working with simple graphs, we can
define really useful matrices.
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Definition 7 (Adjacency matrix). Let G = (V, E) be a graph with
V = {v1, · · · , vn}, the adjacency matrix is defined by A =

(
aij
)

where

aij =

1 {vi, vj} ∈ E

0 otherwise v1 v2

v3

v4

v5

v6

Figure 3: Example of a simple graph

Example 8. For the graph in figure 3, the adjacency matrix is the
following: 

0 1 1 1 1 1
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0


Note that the adjacency matrix is always
a n× n symmetric because when vi is
adjacent to vj, the other way is true as
well

Definition 9 (Incidence matrix). Let G = (V, E) be a graph with
V = {v1, . . . , vn}, the incidence matrix is defined by B =

(
bij
)

where

bij =

1 ej is incident to vi

0 otherwise

Example 10. For the graph in Figure 3., we denote e1 to be the edge
going from v1 to v2 and increment the subscript counter clockwise,
the incidence matrix is the following:

1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The intuition for the adjacency matrix is that is shows which edges

are connected to together2. Since, we are familiar with matrices from 2 I did not find a nice intuition for the
incidence matrix, maybe we will see
more of it in the class

linear algebra, there are natural questions we can ask.

Question 11. What does A · A mean ? (where A is the adjacency matrix
and · is the usual matrix product)

Answer 12. Obviously, it is a n × n matrix and we have A2 =
(
aij
)
,

where aij is the number of walks from vi to vj with distance 2. A
consequence of that is that the diagonal is the degrees of the vertices,
namely, aii = deg (vi).

Question 13. What does B · BT mean ? (where B is the incidence matrix)

Answer 14. We end up with a n× n matrix and we have

B · BT = A + diag (deg (v1), . . . , deg (vn))
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We talked about a walk in the first answer and you can actually
have an intuition about what a walk is on a graph but we will define
it in a formal way along with other similar definitions.

Definition 15 (Walk). Let G = (V, E) be a graph, a walk on G is a
sequence {v0, e1, v1, . . . , ek, vk} where ∀i ∈ N, vi ∈ V, ei ∈ E with the
property that ∀i ≥ 1, ei = {vi−1, vi}.

Definition 16. ∼W
G

3 is a relation on V(G) with u ∼W
G v if and only if 3 We use the W superscript to specify

that is a walking relationthere exists a walk on G from u to v.

Definition 17 (Trail). Let G = (V, E) be a graph, a trail on G is a walk
on G with the property that no edge is repeated.

Definition 18. ∼T
G is a relation on V(G) with u ∼W

G v if and only if
there exists a trail from u to v.

Definition 19 (Path). Let G = (V, E) be a graph, a path on G is a walk
on G with the property that no vertex is repeated4. 4 A consequence is that no edge is

repeated so every path is a trail
Definition 20. ∼T

G is a relation on V(G) with u ∼W
G v if and only if

there exists a trail from u to v.

The next proposition will show that these three relations are redun-
dant and that we will only need one of them.

Proposition 21. All these relations are the same, namely, the existence of
walk guarantees the existence of a trail which guarantees the existence of a
path which guarantees the existence of a walk.

Before proving it, we prove a corollary which motivates the defini-
tion of these relations.

Corollary 22. For any graph G, the walk, trail and path relations are equiv-
alence relations on V(G).

Proof. Let G = (V, E) be a graph and u, v, w ∈ V be vertices. Using
the proposition, we only need to prove it for a walk. The walk relation
is symmetric because if there exists a walk from u to v, the reversed
sequence is a walk from v to u. It is also reflexive because u is always
a valid walk from u to u. To prove transitivity, assume that u ∼W

G v
and v ∼W

G w, then there exists sequences {u, e1, v1, . . . , em, v} and
{v, e′1, v′1, . . . , e′n, w} that represent walks on G. Indeed, we can create a
new walk {u, e1, v1, . . . , em, v, e′1, v′1, . . . , e′n, w} from u to w.

Proof of the proposition. We will show that if a walk exists between
u, v ∈ V(G) for an arbitrary graph G, a path also exists from u to v.
The other directions we need for equivalence between walk, trail and
path are all trivial. Suppose that there exists a walk from u to v, then
we can find the smallest walk W = {w0, e1, w1, e2, . . . , en, wn} where
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w0 = u and wn = v5. We claim that this walk is a path. Assume that 5 A formal argument for that would be
to use the well-ordering principle on
the set of sizes of walks from u to v

for some 1 ≤ i < j ≤ n, wi = wj. Then, we can construct a smaller
walk W ′ = {w0, e1, w1, . . . , ei, wi, ej+1, wj+1, . . . , wn} that still goes
from u to v, contradicting our choice of W. Since, W does not have a
repeated vertex, it is a path.

Definition 23 (Connected components). The equivalence classes
defined by the ∼G relation are called connected components. See
figure 4 for an example. For some graph G, the number of connected
components in the graph is denoted comp(G). We say that a graph G
is connected if comp(G) = 1.

Figure 4: The connected components of
this graph each have different colors

To formalize some of the concepts we described above, we some-
times use the notion of subgraphs.

Definition 24 (Subgraph). Let G = (V, E) be a graph. We say that a
graph H = (V′, E′) is a subgraph of G if V′ ⊆ V and E′ ⊆ E ∩ (V′

2 ). In
other words, all the vertices in H must be in G and all the edges in H
must be in G and incident to the vertices in H. We say that a subgraph
H of G is induced if E(H) = E(G) ∩ (V(H)

2 ).

Remark 25. For a graph G = (V, E), a vertex-maximal subgraph of G
that is connected is a connected subgraph for which you cannot add
a node from G and still get a connected subgraph. Notice that any
vertex-maximal subgraph of G is a connected component of G.

Here we present some common examples of graphs.

Examples 26.

1. The null graph is a graph with no vertices and no edges : G =

(∅, ∅).

2. The empty graph on n vertices is En = (V, ∅) where V =

{1, . . . , n}.

3. The complete graph on n vertices is En = Kn = (V, E) where
V = {1, . . . , n} and E = (V

2).

4. A path on n vertices is Pn = (V, E) where V = {1, . . . , n} and
E = {e1, . . . , en−1} with ei = {i, i + 1} for i ∈ {1, ·, n− 1}.

5. A cycle on n vertices is Cn = (V, E) where V = {1, . . . , n} and
E = {e1, . . . , en} with ei = {i, i + 1} for i ∈ {1, ·, n − 1} and
en = {n, 1}.

Remark 27. When we talk about the length of paths or cycles, we will
refer to the number of edges in the path/cycle.

When working with graphs, we sometimes need to compare them
and say that they are "equal". We formalize this with the notion of
isomorphism.
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Definition 28 (Graph isomorphism). Let G and H be graphs, we say
that G is isomorphic to H6 and denote it G ' H if there exists a 6 We often make an abuse of vocabulary

and just say that G is Hbijection f : V(G) → V(H) such that {u, v} ∈ E(G) ⇔ { f (u), f (v)} ∈
E(H). In simpler terms, we just want to be able to rearrange the
representation of G so that it looks like the representation of H.

Remark 29. In this course, when we talk about any graph, we are in
fact talking about all the graphs that are isomorphic to it (i.e: we never
make distinctions between graphs that are isomorphic).

We quickly go back to the notion of connected components and
prove an interesting result.

Definition 30. Let G = (V, E) be a graph. For some e ∈ E, we
denote G − e to be the graph G with the edge e removed. Namely,
G− e = (V, E′) with E′ = E \ {e}.

Definition 31 (Cut edge). An edge e ∈ E(G) is a cut edge if

comp (G− e) = comp (G) + 1

.

Lemma 32. Let G be a graph, e ∈ E(G) is a cut edge if and only if there is
no cycle in G containing e.

Proof. (⇒) Denote e = {u, v}, we know that G − e has one more
connected component than G. This implies that in G − e, the ver-
tex u is in a different component than v. Assume towards a con-
tradiction that there is a cycle containing e, we can write it as C =

{v1, e1, v2, . . . , vk, ek, v1} where v1 = u, vk = v and ek = e. Now, we can
construct a path P = {v1, e1, · · · , vk} which is valid in G− e but this
contradicts the fact that u and v are not connected.

(⇐) If e is not a cut edge, then u and v are still connected in G− e.
Thus, we can find a path from u to v in G− e. If you add e to the path
in G, you form a cycle that contains e. By contrapositive, this shows
that if there is no cycle containing e, e is a cut edge.

We can do similar work with a vertex instead of an edge.

Definition 33. Let G = (V, E) be a graph. For some v ∈ V(G), we
denote G − v to be the graph G with the vertex v removed as well
as all the edges incident to v. You can also view it as the induced
subgraph with v removed.

Definition 34 (Cut vertex). A vertex v ∈ V(G) is a cut vertex if

comp (G− v) > comp (G)

Remark 35. There is no analog to the lemma above for a cut vertex.
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Trees

In this section, we will present a class of graphs we call trees and
prove some result about them.

In order to define a tree, we first look at some graphs which we
want to call trees and some graph we do no want to call trees and try
to find formal definitions for them. Then, we will prove that all these
definitions are equivalent. Here is a list of definition that seem to fit I am really lazy but there should

be some diagram of trees and some
diagram of non-trees (look online if you
really want those examples)

our purpose. A tree is a graph G such that :

1. G is connected and contains no cycle

2. ∀e ∈ E(G), e is a cut-edge

3. G is connected and every trail in G is a path

4. Between any two vertices there is a unique path.

5. Maximal graph with respect to adding edges that has no cycle

6. G is connected and |V(G)| = |E(G)|+ 1

The first of these definitions is the one that is most often used and
it also is one of the clearest. Thus, we will use it to define trees and
prove that all the others are equivalent.

Definition 36 (Tree). A tree is a connected graph with no cycle.

Proposition 37. All the definitions given above are equivalent.

Proof. (1⇔ 2) follows trivially from Lemma 32.
(1⇐ 3) Let T = {v0, e1, v1, . . . , ek, vk} be a trail with vi = vj for

some i < j, without loss of generality, suppose that this is a pair such
that j− i is minimal. Then, {vi, ei+1, . . . , ej, vj} is a cycle in G and we
have a contradiction.

(1⇒ 3) Suppose there is a cycle in G, then, there is a trail which is
not a path and we again have a contradiction.

Before doing the rest, we will give the definition for a leaf and 2

results that we will use to make our proofs smaller.

Definition 38 (Leaf). Let G be a graph, v ∈ V(G) is called a leaf if
deg (v) = 1.

Lemma 39. Every tree with at least two vertices has at least two leafs.

Proof. Since there is two vertices, the smallest path has length 1 and
contains two ends (this is important for te last part). Take the longest
path in the graph, the ends of this path must have degree one. Indeed,
if one end was connected to another vertex, it would either be a vertex
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not in the path, meaning there exists a longer path, or a vertex in the
path, meaning there is a cycle in the tree. Both lead to a contradiction.
The two ends in this path are the two leafs in the tree.

Corollary 40. Let G be a graph. For any leafs v ∈ V(G), G is tree if and
only if G− v is a tree.

Proof. (⇒) Since v has degree 1 in G, it cannot be part of a cycle, and
since all vertices in G − v are connected to the only vertex adjacent
to v, v is connected to all of G. We get that G is connected and has
no cycle. (⇐) Since v has degree 1, it cannot be part of a path. Thus,
G − v is still connected because no path between vertices passed
through v. Moreover, removing a vertex cannot create a cycle in G− v.
We get that G− v is connected and has no cycle.

Now, we continue the proof of the proposition.

Proof of proposition (continued). We will do an induction on the num-
ber of vertices (denoted n) and prove that 1 implies 4, 5 and 6. When
n = 1, 4,5 and 6 are trivially true for a tree with a single vertex. Let
T be a tree on n > 1 vertices, it contains a leaf v by the lemma and
T − v is a tree by the corollary. By induction hypothesis, 4, 5 and 6 are
satisfied in T − v.

From every vertex in T − v, there is an unique path to v because v
has only one adjacent vertex and it has unique paths to every vertex
in T − v. Moreover, since v cannot be part of path in which it is not
one of the ends, 4 is satisfied.

Suppose you can add an edge such that the graph still has no
cycle, the edge must be incident to v because 5 is satisfied for T − v.
However, that would mean the edge would be part of a new path
from v to the other endpoint of the edge and this contradicts 4. Thus,
5 is also satisfied.

Lastly, 6 is clearly satisfied because we are adding one edge and
one vertex to the graph.

(4 =⇒ 1) If there is a unique path between any two vertices, in
particular, there is a path so it is connected. Moreover, if there was a
cycle in G, you could decompose it into two different path between
the same vertices.

(5 =⇒ 1) We already have that it has no cycle. Suppose ∃u, v ∈
V(G) such that u is not connected to v. If we add the edge {u, v},
we will not create a cycle because there is no other path from u to v.
Hence, there is a contradiction and G is in fact connected.

(6 =⇒ 1) We already have that it is connected. If G has a vertex
of degree 1, then take G − v, it has |V| − 1 and |E| − 1 edges, so
6 is still satisfied. By continuing to remove vertices, we will either
end up with |G′| = 1 meaning that we found no cycles (since we
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were able to keep removing vertex of degree 1) or with |G′| > 2
and deg (v) ≥ 2, ∀v ∈ V(G′). Suppose that the latter is true, then
2|E| = ∑v∈V(G′) deg (v) ≥ 2|V| which implies |E| ≥ |V| which
contradicts 6. Hence, the first case is the only one possible and there
cannot be any cycle.

Our next goal is Cayley’s formula but we will explore similar ideas
before actually stating it, getting away from the realm of the trees for
a bit. Here is one natural question one might ask about graphs.

Question 41. How many isomorphism classes of simple graphs on n
vertices are there ?

We will denote this number gn. While looking for an answer to this
question, you might consider a question that seems simpler.

Question 42. How many labeled simple graphs on {1, . . . , n} are there ? 7 7 By labeled, we mean that isomorphic
graphs are not considered to be the
sameDenote this number hn. Since there is (n

2) possible edges in the
graph G and each edge is either in E(G) or not in E(G), we clearly
have hn = 2(

n
2).

Remark 43. Clearly, we have gn ≥ hn. Moreover, observe that each
isomorphism class of the labeled graphs have a size of at most n!
graphs. Thus, we get hn ≥ gn

n! . If we consider the upper bound n! < nn

and the formula 2(
n
2) = 2n( n−1

2 ), we obtain the following :

2
n2
2 ≈ 2n( n−1

2 ) ≥ hn ≥
2(

n
2)

nn

≥ 2(
n
2)−n log(n)

= 2n( n−1
2 −log(n))

≈ 2
n2
2

We can see that asymptotically gn and hn are equal.

We will consider that a satisfying answer for our initial question
but you might already see that there are some improvements that can
be made. Instead of detailing them, we will ask a new question that
will get us closer to Cayley’s formula.

Question 44. How many isomorphism class on trees on n vertices are there
?

Denote this number un. Once again, we ask a simpler question
before giving an answer for this one.

Question 45. How many labeled trees on {1, . . . , n} are there ?
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Denote this number tn. This question is answered by Cayley’s
formula which states that tn = nn−2. Before giving a proof, we
relate tn to un in the same way as we related gn to hn. Clearly, we
have tn ≥ un ≥ tn

n! . Now, if we try to end up bounding n! with nn

again, we end up with un ≥ 1
n2 which gives that for n > 2 there is

at least zero isomorphism class of trees on n vertices. Compared to
our previous result, this is really underwhelming and we will try to
do better. Sterling’s approximation is the best one for n! and it is the
following :

n! ≈
(n

e

)n√
2πn

We obtain the following lower bound :

un ≥
nn−2en

nn√n
√

2π
=

en

n
5
2
√

2π

Remark 46. It is known that un behaves like C αn

n
5
2

where α ≈ 2.956 and

C ≈ 0.535.

We still need one little thing before proving Cayley’s formula.

Joke 47. There once was a hunter that lived in one of the biggest
forests in Quebec. He woke up one day with the idea to kill every
deers in his forest. But before he could kill them all, he needed to
count them. He was not really good at even the most basic mathemat-
ics, so he went to ask his mathematician friend how many deers there
were in his forest. Surely, the mathematician quickly came up with an
answer : "There are 1729 deers in your forest."

The hunter was really impressed and asked his friend how he
counted. To that, the mathematician answered : "Well it is pretty easy,
I counted their legs and divided by four."

For Cayley’s formula, we will use the same technique as the math-
ematician in this joke to count the trees. Namely, we will count some-
thing else which is simpler to count and find the relation between the
number of trees and this thing. In fact, we will go even deeper with
this method and that is why we will define some new objects before
the proof.

Theorem 48 (Cayley’s formula).

tn = nn−2

Definition 49 (Rooted tree). A rooted tree T is a tree plus one special
vertex v ∈ V(T) which is called the root. There are no restrictions to
where this vertex is in the tree.

Definition 50 (Orientation). An orientation of a graph G is a function
o : E(G) → V(G) such that ∀e ∈ E(G), o(e) = v where v is one of
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the endpoints of e. You can see it as adding one arrow to each edge to
show which end it is pointing at.

u

Source

v

Target

Figure 5: Example of an oriented edge.
By convention, o(e) is the target.

Definition 51 (Out-rooted orientation). An orientation of a rooted
tree is called out-rooted if every vertex except the root is the target of
exactly one edge.

Lemma 52. For every rooted trees, there exists a unique out-rooted orienta-
tion.

Proof. Orient the edges from the root towards the neighbors of the
root. Then, orient the edges from vertices at distance i from the root
towards the vertices at distance j from the root. This is a out-rooted
orientation although the proof is left to the reader. Now, we will show
that this is the unique orientation. Suppose o1 and o2 are two out-
rooted orientation of some rooted tree T with a root r. If |V(T)| =
1 there are no edges so o1 is vacuously equal to o2. Suppose that
|V(T)| > 1, then take a leaf v ∈ V(T) \ {r} (we know there exists
one from Lemma 39). Denote w to be the only neighbor of v and
e = {u, w} to be the edge that connects them. Clearly, we have o1(e) =
o2(e) = v because if w was the target, v would not have any incoming
edge. Define o′1 = o1|E(T)\{e} and o′2 = o2|E(T)\{e}. Clearly, they
are out-rooted orientation of T − v and by induction hypothesis, we
must have o′1 = o′2. However, this must mean that o1 = o2 because
we already saw that they agree on e which was the only edge we
removed.

Proof of Cayley’s formula. Denote t′n to be the number of rooted trees
on {1, . . . , n}. There is n possible choices for the root so we have
t′n = n · tn. Thus, we will show that t′n = nn−1. We already know that
the number of trees on {1, . . . , n} with an out-rooted orientation is the
same as t′n, so our formula does not change here. Denote t′′n to be the
number of trees on {1, . . . , n} with an out-rooted orientation and an
ordering of the edges. Clearly, there are (n− 1)! possible choices for
this ordering (|Sn−1|), so we obtain t′′n = t′n(n− 1)!. Our goal is now to
show that t′′n = nn−1(n− 1)!.

We will describe a procedure to build the trees counted by t′′n and
then we will count the number of ways to run the procedure. The
procedure will maintain two key properties :

• Whatever is built at each step is acyclic.

• Every vertex will be the target of at most one edge.

The zeroth step is to start with an empty graph on {1, . . . , n}. The
next n− 1 steps are the following:

1. Choose a vertex s ∈ {1, . . . , n}
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2. Choose a vertex t ∈ {1, . . . , n} such that t 6= s, t has no incoming
edge and adding the edge {s, t} will not create a cycle.

3. Add the edge {s, t} with orientation o({s, t}) = t.

Notice that if the procedure is run with at least one different choice
for s or t you get a different tree. Hence, we need to count the number
of choices we have. Clearly, we always have n choices for s. Observe
that a the k + 1th step, the graph has n − k connected components.
Using the invariants we can see that each of these components have
exactly one vertex with no incoming edge. Since connecting two
components with an edge cannot create a cycle, we have n− k choices
for t. Hence, the total number of choices is t′′n = ∏n−1

k=1 n(n − k) =

nn−1(n− 1)!.

Spanning trees

While trees can be studied on their own, it is sometimes useful to
study trees embedded in a graph.

Definition 53 (Forest). A forest is a graph with no cycle (also called
acyclic). In other words, each connected components of G are trees.

Definition 54. Let G be a graph, a forest in G is an acyclic subgraph
of G.

Definition 55 (Spanning subgraph). Let G = (V, E) be a graph, and
H be a subgraph of G. We say that H is a spanning subgraph of G if
V(H) = V.

Definition 56 (Spanning tree). Let G be a graph, a spanning tree of G
is a spanning subgraph of G that is a tree.

Proposition 57. If G is connected, then G has a spanning tree.

Proof. Let G be a graph, take a connected spanning subgraph of G
which is minimal with respect to the number of edges. We know at
least one connected spanning subgraph exists because G itself satisfies
these properties. Call this subgraph T and we claim that it is a tree.
Suppose that there exists a cycle {v0, e1, v1, . . . , ek, v0} in T. Then,
T − ek is still a connected spanning subgraph of G and has one less
edge than T. We get a contradiction.

Definition 58 (Fundamental cycle). Let G be a graph and T be a
spanning tree of G. Moreover, take one edge e ∈ E(G) \ E(T). We
define the fundamental cycle of G with respect to T and e to be the
unique cycle in T + e.
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Proposition 59. In the same setting as last definition, take any edge f in
the fundamental cycle with respect to T and e. Then, Tp = (T + e)− f is a
spanning tree.

Proof. There is only one cycle in T + e, by removing f , we clearly
do not create any cycle nor disconnect the graph, hence Tp is still
acyclic and connected. Furthermore, we did not remove edges so
V(Tp) = V(T) = V(G) and we see that Tp is indeed spanning.

One meaningful problem related to spanning trees is the minimum
spanning tree problem which is well studied in computer science and
especially in algorithm design. We have one definition to make before
stating the problem.

Definition 60 (Weighted graph). A weighted graph is a triple
(V, E, w) where (V, E) is a graph and w : E → R assigns weights
to each edge. For any subgraph H of a weighted graph G, w(H) =

∑e∈E(H) w(e) is the weight of H.

The minimum spanning tree problem or MST for short asks what is
the spanning tree with smallest weight for some connected weighted
graph G. We will give an algorithm to find the MST of such a graph.
The input of this algorithm is a weighted graph and the output is a
spanning tree of this graph with minimal weight.

Denote the input G = (V, E, w). The first step of the algorithm is to
initialize T = (V, ∅). Then, we sort the edges in E according to their
weight to obtain an ordering {e1, . . . , em} with w(ei) < w(ej) for all
i < j. Next, we iterate from i = 1 to i = m. At each iteration, we add ei

to the edges of of T if T + ei is still a tree. At the end of these iteration,
we will obtain a MST of G. It is clear that T is a spanning tree but it
is maybe not so clear that it is minimal. What follows is the proof of
that.

Correctness of Kruskal’s algorithm. We will prove it by induction on
the number of edges of T. At the start when T has no edges, there
clearly exists a MST of G which contains T. We will show that this
property holds whenever T gets a new edge implying that the final
T is a MST of G. Suppose that at some step in the algorithm, we are
about to add some edge e to T and that M is a minimal spanning tree
containing T. If e is in M, then clearly M contains T + e. If e is not
in M, then M + e has a cycle. Moreover, there exists an edge f in the
cycle and not in T (if there were no such edge, e would have created
a cycle in T). We obtain that M− f + e is a spanning tree, this means
that its weight is no less that the weight of M because M is a MST. In
addition, w( f ) < w(e) is not possible or the algorithm would have
chosen to add f before e. Hence, we must have w( f ) = w(e) and
M− f + e is in fact a MST containing T.
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We now explore a problem that is closely related to the MST prob-
lem. In a simple graph, how can you find the shortest path between
two vertices ? If we consider an unweighted graph, the solution is
pretty simple. Run a breadth-first search algorithm on the graph start-
ing at the source vertex and stop when the target vertex is reached
for the first time. The path taken to the target vertex must be of short-
est length. Next, we answer the same question in the setting of a
weighted graph but we give a definition first.

Definition 61 (Distance in a graph). Let G = (V, E, w) be a weighted
graph with w : E→ R+. Define the function of distance in G like so :

distG : V ×V → R+, (u, v) 7→ min
P∈{paths from u to v}

w(P)

Remark 62. We a require that the weights are positive because it is
extremely hard to solve the question otherwise and most real life set-
tings only need positive weights. Also, note that in the MST problem,
we said that the image of w was in the reals but it is sufficient for it to
be in a linearly ordered set.

Proposition 63. The distance function in a weighted graph is a metric.

Proof. Not in the scope of this class.

Once again, we present an algorithm that will find the shortest
path between two vertices in a graph. Without loss of generality, we
assume that this graph is connected. Let G = (V, E, w) be a connected
weighted graph, we want to find the shortest path between s and t,
both in vertices in V.

We describe Dijkstra’s algorithm. This algorithm will build a tree
Ts such that ∀v ∈ Ts, distG(s, v) = distTs(s, v). In particular, the unique
path in Ts from s to t, will be a shortest path in G. Each step of the
algorithm will add one edge to Ts. Note that since we will stop when
t is reached, Ts is not necessarily a spanning tree.

In step 0, the tree is initialized to T0
s = ({s}, ∅). Next, we repeat

this step while t /∈ V(Tk
s ). Choose an edge f = {u, v} ∈ E such that

u ∈ Tk−1
s , v /∈ Tk−1

s and distTk−1
s

(s, u) + w( f ) is minimal. Add the edge

f to get Tk
s = Tk−1

s + f .

Correctness of Dijkstra’s algorithm. In order to prove that this algorithm
achieves the result we want, we will show that the following invariant
holds at any step k :

∀v ∈ Tk
s , distTk

s
(s, v) = distG(s, v)

When k = 0, this is clearly true since the distance from a vertex
to itself is 0. Let k > 0 and assume that this invariant holds for all



lecture notes for math 350 - fall 2017 17

the steps before k. Call v the new vertex added at step k, namely,
v ∈ Tk

s \ Tk−1
s . Denote f = {x, v} to be the edge that was added at this

step. We claim that for any path P = {u0, e1, u1, . . . , el , ul} with u0 = s
and ul = v, w(P) ≥ distTk

s
(s, v). Let uj be the first vertex in P that is

not in Tk−1
s , we know it exists since v /∈ Tk−1

s . We obtain the following:

w(P) ≥ distG(s, uj−1) +
l

∑
i=j

w(ei)

≥ distG(s, uj−1) + w(ej)

≥ distTk−1
s

(s, uj−1) + w(ej) By induction hypothesis

≥ distTk−1
s

(s, x) + w( f ) By the steps in the algorithm

= distTk
s
(s, v)

Euler tours

In this section, we will talk about multigraphs. The arguments we
will make are valid for graphs as well but they require some details
which we do not want to spend too much time on. We start with some
simple definitions.

Definition 64 (Tour). A tour in G is a walk {v0, e1, v1, . . . , ek, vk} such
that ∀i 6= j, ei 6= ej.

Definition 65 (Closed walk/tour). A walk/tour is said to be closed if
v0 = vk, namely, the start and end vertex is the same.

Definition 66 (Eulerian tour). A tour is said to be Eulerian if E(G) =

{e1, . . . , ek} and V(G) = {v1, . . . , vk}.

We would like to find some necessary and sufficient condition
for a graph to contain an Eulerian tour. You can try to draw some
graphs and figure out a condition but you might remember from
the Königsberg bridges problem that you should have at most two
vertices of odd degree for a graph to contain an Eulerian tour. We
state a stronger statement and prove our result as a corollary.

Theorem 67. A multigraph G contains a closed Eulerian tour if and only if
G is connected and there is no vertices of odd degree.

Corollary 68. A multigraph G contains an Eulerian tour if and only if it is
connected and contains at most two vertices of odd degree.

Proof of corollary. (⇒) This direction does not use the theorem. If
there is an Eulerian tour, then all the vertices of G are in the same
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walk and so G must be connected. Moreover, all the vertices which are
not the endpoints of the walk must have even degree and we have at
most two distinct endpoints so we are done.

(⇐) If the number of vertices of odd degree is 0, we can use the
theorem. There cannot be only one vertex of odd degree so the
case where there is two vertices of odd degree is the only one left.
Call u, w the vertices with odd degree. Let G′ = G + {u, w}8, 8 This is where having a multigraph is

useful since we do not need to handle
the case where the edge is already there

we can now use the theorem to find a closed Eulerian tour T =

{v0, e1, . . . , ei, vi, . . . , ek, vk} where, without loss of generality, v0 =

vk = u and ei = {u, w}. Define the sub-walks T1 = {v0, e1, . . . , vi−1}
and T2 = {vi, . . . , ek, vk}. Clearly, T1 and T2 are walks in G, and T2T1 is
an Eulerian tour in G.

Proof of theorem. (⇒) As in the corollary, G is connected and all the
vertices which are not endpoints of T have even degree. Moreover,
since the start and endpoint is the same, it must have even degree as
well.

(⇐) Let T = {v0, e1, . . . , ek, vk} be the longest tour in G (with re-
spect to the number of edges), we claim that T is closed and Eulerian.

First, assume towards a contradiction that T is not closed. Look
at the graph H = (V, E(T)). The vertices v0 and vk must have odd
degrees in H since v0 6= vk. Since we know deg(v0) is even in G, there
exists an edge f = {v0, x} ∈ E(G) \ E(T). Clearly, x f T is a tour with
more edges than T, so we obtain that T must be closed.

Next, assume towards a contradiction that there exists an edge
f = {u, w} ∈ E(G) \ E(T). We consider two cases. If at least one
vertex of f is somewhere in T, without loss of generality, u = vi for
some 0 ≤ i ≤ k, define the sub-walks T1 = {v0, e1, · · · , vi−1} and
T2 = {vi, . . . , vk}. We can see that T′ = viT2vkT1vi f w is a longer tour
so we get a contradiction. Conversely, if f has no endpoint in T. Let
P be the shortest path from some vertex in T to some vertex not in T.
Clearly, P is just an edge {x, y} with x ∈ V(T) and y /∈ T and this
leads to a contradiction like in the first part of this proof. Since all the
edges are in T and G is connected, all the vertices must also be in T so
T is Eulerian.

A notion related to Eulerian tours is Hamiltonian paths.

Definition 69 (Hamiltonian paths). A path is said to be Hamiltonian
if it visits all vertices.

Definition 70 (Hamiltonian cycle). A Hamiltonian path with its
starting point being its endpoint is called a Hamiltonian cycle.

Unfortunately, as of today, there is no necessary and sufficient
condition for a graph to contain a Hamiltonian cycle. However, there
is a sufficient condition.
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Theorem 71 (Ore’s theorem). Let G = (V, E) be a graph with n =

|V| ≥ 3. Suppose that for every pair u, w ∈ V such that {u, w} /∈ E,
deg(u) + deg(w) ≥ n, then G contains a Hamiltonian cycle.

Proof. Fix n, the number of vertices, we will prove this by induction
on the number of edges missing from Kn, namely, an induction on
z = (n

2) − |E|. When z = 0, the graph is Kn which clearly contains
a Hamiltonian cycle. Let z > 0 and assume that any graph with
z − 1 edges removed that satisfies the property in the theorem con-
tains a Hamiltonian cycle. Then, consider a graph G with z edges
removed, still satisfying the property. We know there exists an edge
e = {u, w} /∈ E(G). Consider the graph, H = G + e, it is trivial to
show that H also satisfies the property and has z− 1 edges removed,
so by our induction hypothesis, it contains a Hamiltonian cycle CH . If
CH does not contain the edge e, we are done since CH is also a Hamil-
tonian cycle in G. On the other hand, if CH contains e, then, we can
write CH = {v1, e1, v2, . . . , vn, e, u} where v0 = u and vn = w.

We claim that there exists an integer i ∈ {3, . . . , n− 1} such that v1

is adjacent to vi and vn is adjacent to vi−1. First, denote U = NG(u)
to be the neighbors of u in G, clearly , U ⊆ {v2, . . . , vn−1}. Also,
denote NG(w) to be the neighbors in G, we can infer that NG(w) ⊆
{v2, . . . , vn−1}. Lastly, we define W = {vi+1 | vi ∈ NG(w)} ⊆
{v3, . . . , vn}. Notice that |U| = deg(u) and |W| = deg(w), so |U|+
|W| ≥ n by our assumption that G satisfies the property. However,
we also know that |U ∪W| ≤ n − 1 because v − 1 /∈ U ∪W, hence
we must have U ∩W 6= ∅. This proves our claim that there exists
i ∈ {3, . . . , n− 1} such that vi ∈ U ∩W, namely, v1 = u is connected
to vi and vn = w is connected to vi−1.

Using our claim, we can construct a Hamiltonian cycle in G. It
is really easier to see it in a diagram but here is the construction.
Let P1 be the path from u to vi−1 in CH , P2 be the path from w to vi

in CH and denote e1 = {u, vi} and e2 = {w, vi−1}. We construct
CG = P1e2P2e1, one can verify that this is indeed a Hamiltonian path
in G.

Corollary 72. Let G = (V, E) be a graph, then minv∈V deg(v) ≥ n
2

implies that G contains a Hamiltonian cycle.

We state this really simple corollary, because we will introduce the
next section with an example to show that the bound is tight.

Example 73. Let A be an empty graph on a vertices and B be an
empty graph on a + 1 vertices. Connect all the vertices in A to all
the vertices in B with an edge. We have deg(v) ≥ a for all vertices
but a < 2a+1

2 , so we want to show that there is no Hamiltonian cycle.
Indeed, any cycle must visit the same number of vertices in A and
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B but it cannot do that if it visits all vertices. The kind of graph we
described is the subject of the next section.

Bipartite graphs

Definition 74 (Bipartite graph). We say that a graph G is bipartite if
there exists sets A, B ⊆ V(G) such that A ∪ B = V, A ∩ B = ∅ and
∀e ∈ E(G), |e ∩ A| = |e ∩ B| = 1.

Examples 75. Paths and cycles of even length are bipartite. Indeed,
we already know that we can 2-color them, then we can have each
color correspond to a set of the bipartition. It is also easy to show
that trees are bipartite 9. Moreover, subgraphs of bipartite graphs are 9 Pick a root in the tree and consider the

vertices of even distance to the root and
odd distance to the root

clearly bipartite. In particular, if a graph contains a subgraph that is
not bipartite, then the graph cannot be bipartite.

The next theorem gives a necessary and sufficient condition for a
graph to be bipartite.

Theorem 76. A graph G is bipartite if and only if it has no odd cycle.

We stated this theorem first because it is the result we will most
likely use when trying to say if a graph is bipartite but we will prove
it with an intermediary step.

Theorem 77. Let G = (V, E) be a graph, then the following are equivalent :

1. G is bipartite

2. G does not contain a closed walk of odd length

3. G does not contain an odd cycle

Proof. We will denote A and B to be the sets of the bipartition of G.
(1 =⇒ 2) Pick any closed walk W = {v0, e1, v1, . . . , em, vm}.

Without loss of generality, assume v0 = vm ∈ A. Each edge in W goes
from A to B or from B to A, since the start and end of the walk are in
A, there must be an even number of edges in W.

(2 =⇒ 1) The contrapositive of this statement follows immediately
from the definition because an odd cycle is a closed walk of odd
length.

(3 =⇒ 1) Without loss of generality, assume that G is connected
and let T be any spanning tree of G. Let u ∈ V and define the follow-
ing bipartition for T :

A′ = {v ∈ V | distT(u, v) ≡ 0 (mod 2)}
B′ = {v ∈ V | distT(u, v) ≡ 1 (mod 2)}
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It is left to prove that for any e ∈ E(G) \ E(T), |e ∩ A′| = |e ∩ B′| = 1.
Assume towards a contradiction and without loss of generality that
for some e = {v1, v2}, we have v1, v2 ∈ A′. Denote Ce to be the
fundamental cycle of e in T. The path P which is the cycle Ce with
the edge e removed has both its endpoints in A so it must have even
length. Thus, Ce is an odd cycle and we get a contradiction.

Proposition 78. Let G be a simple graph. G is bipartite if and only if it
contains no induced cycle of odd length.

Proof. (⇒) G is bipartite so it contains no odd cycle, in particular,
none of its induced subgraph can be a cycle of odd length.

(⇐) We prove the contrapositive. Suppose there is an odd cycle,
then take one with shortest length, call it C = {v0, e1, . . . , ek, vk} where
v0 = vk. If the subgraph induced by the vertices on this cycle is not a
cycle, then ∃i < j, |j− i| > 1, {vi, vj} ∈ E(G). This edge breaks C into
two cycles, and one must be of odd length and smaller than C. This
contradicts our choice of C.

Matching in graphs

Definition 79 (Matching). Let G = (V, E) be a graph. A matching in
G is a set of edges M ⊆ E with the property that every vertex in V is
incident to at most one edge in M. A matching is said to be perfect if
all vertices are incident to exactly one edge in M.

A observation one can make fairly quickly is that for a matching
M in G, we have |M| ≤ b |V|2 c. Looking at this bound, one could ask
how to find the largest matching in G. Before reaching for that goal,
we introduce related notions.

Definition 80 (2-factor). Let G = (V, E) be a graph, a 2-factor in G
is a set of edges F ⊆ E with the property that every vertex in V is
incident to exactly two edges in F.

Example 81. If a graph contains a Hamiltonian cycle H, the set edges
of H is a 2-factor in G.

Definition 82 (k-regularity). A graph G = (V, E) is said to be k-
regular if ∀v ∈ V, deg(v) = k.

Proposition 83. For any k ≥ 1, a (2k)-regular graph contains a 2-factor.

Proof. Without loss of generality, we will assume that G is connected
and we will prove it by induction. For k = 1, every vertex is incident
to exactly two edges in the graph so the set of all edges is a 2-factor.
Assume that the proposition is true for some k ≥ 1, then let G be a
(2k+1)-regular graph which is (without loss of generality) connected.
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Since the degree of all vertices is even, we know that there exists a
closed Eulerian tour T = {v0, e1, . . . , em, vm} where v0 = vm and
m = |E| = 2kn. Since m is even, we can separate the set of edges like
so :

E1 = {e2k | k ≤ m
2
} E2 = {e2k+1 | k <

m
2
}

Define the subgraphs H1 = (V, E1) and H2 = (V, E2). Observe that
in the tour, each vertex is connected to the same number of edges in
E1 and E2, so we infer that degH1

(v) = degH2
= 2k. We can use the

induction hypothesis to find two 2-factors for H1 and H2, clearly, the
union of these 2-factors is a 2-factor for G.

We now go back to study matchings and we will see later why the
notion of 2-factors was introduced.

Definition 84 (M-alternating path). Let G = (V, E) be a graph and
M be a matching in G. An M-alternating path is a path in G which
alternates between edges in M and edges in E \M. Equivalently, every
internal vertex in the path is connected to his neighbors in the path by
one edge in M and one edge in E \M

Definition 85 (M-augmenting path). An M-augmenting path is an
M-alternating path of non-zero length which starts in a vertex v not
incident to any edge in M and ends in a vertex w 6= v not incident to
any edge in M.

Lemma 86 (Berge). Let G = (V, E) be a graph and M be a matching in G.
M is maximum matching if and only if there is no M-augmenting paths.

Proof. (⇒) Assume towards a contradiction that G contains an M-
augmenting path P. The set (E(P) \ M) ∪ (M \ E(P)) is a matching
since every vertex outside the path is still matched by the same edge
and every vertex in the path gets matched with the unique edge not in
M and incident to it in P. It also has more edges than M since P has
more edges not in M than edges in M.

(⇐) We will prove this direction by contrapositive, namely, we will
show that if M is not maximal, then there exists a M-augmenting
path. We know that there exists a larger matching M′, so we define
H = (V, M ∪ M′). We know that ∀v ∈ V, degH(v) ≤ 2, so H is the
union of cycles and paths.

We have two claims that imply that there exists an M-augmenting.
The first one is that all cycles in H have even length. Indeed, for
each cycle C in H, each vertex must be connected to one edge in
M \ M′ and one edge in M′ \ M and this cannot happen if there is
an odd amount of edges. The second claim that there is a connected
component with more edges in M′ than M follows from the fact that
|M′| > |M|. This component must be a path because of our first claim
and this implies that this path is M-augmenting.
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In bipartite graphs, the problem of finding maximal matching is
simpler and it also uses the concept of a vertex cover.

Definition 87 (Vertex cover). A vertex cover in a graph G = (V, E) is
a set of vertices X ⊆ V such that any edges are incident to at least one
vertex in X.

Definition 88 (Sizes of minimal cover and maximal matching). Let
G be a graph, we will denote the size of a minimal vertex cover with
τ(G) and the size of a maximal matching with ν(G).

Remark 89. We can see that ν(G) ≤ τ(G) since we need at least one
vertex per edge in the maximal matching in order to cover all edges.
Also, we have τ(G) ≤ 2ν(G) because the set of all endpoints of the
edges in the maximal matching covers all the edges. Moreover, one
can find via simple graph examples that these inequalities are tight.

Theorem 90 (Konig). Let G be a bipartite graph, then τ(G) = ν(G).

Proof. It is immediate that τ(G) ≤ ν(G) since for a maximum match-
ing M, the vertex cover should contain at least one endpoint for each
edge. Next, we show that ν(G) ≤ τ(G). Let A and B be the bipartition
of G and M be a matching of size ν(G). Denote A = AM ∪ AN and
B = BM ∪ BN where Am and BM are the vertices, in A and B respec-
tively, that are matched by M and AN = A \ AM and BN = B \ BM.
Further decompose this sets in AM = AX ∪ AZ and BM = BX ∪ BZ

with the following definitions :

AZ = {a ∈ AM | ∃M-alternating path starting in AN and ending in a}
BZ = {b ∈ BM | ∃a ∈ AZ, {a, b} ∈ M}
AX = AM \ AZ BX = BM \ BZ

Next, we will make some simple observations that will lead us to find
a good vertex cover.

• There is no edge in G between AN and BN . If it were the case, this
edge could be added to M contradicting the maximality of M.

• There is no edge in G between AN and BX . If it were the case, we
would have an M-alternating path of length two going from AN to
BX then to AX . This implies the vertex where this path ends in AX

should be in AZ by definition.

• There is no edge in G between BN and AZ. If it were the case, we
could glue this edge to the M-alternating path starting in AN and
ending in the vertex in AZ, yielding an M-augmenting path and
contradicting Berge’s lemma.
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• There is no edges in G between AZ and BX . If it were the case we
could glue that edge and and edge in M from BX to AX to the M-
alternating path starting in AN and ending in the vertex in AZ to
form an M-alternating path from AN to AX , which contradicts the
definition.

AX

AZ

AN

BX

BZ

BN

Figure 6: Summary of the observations
in Konig’s theorem

Figure 6 shows a graph that summarizes the observations by showing
the edges in the graph that can be there. From here, we clearly see
that S = AX ∪ BZ is a vertex cover. We can compute its size like so

|S| = |AX |+ |BZ| = |AX |+ |AZ| = |AM| = |M|

implying that ν(G) ≥ τ(G).

Definition 91 (Matching covering sets). Let A ⊆ V(G). An A-
covering matching M is a matching M in G with the property that
every vertex in A is incident to an edge in M.

Definition 92 (Neighbors notation). Let G be a graph, v ∈ V(G) and
S ⊆ V(G). We denote the set of neighbors of v as N(v) and N(S)
denotes the union over v ∈ S of N(v).

Theorem 93 (Hall). Let G be a bipartite graph with bipartition A and
B, then there exists an A-covering matching in G if and only if ∀S ⊆
A, |N(S)| ≥ |S|.

Proof. (⇒) Follows trivially from the pigeonhole principle.
(⇐) Since we are looking for an A-covering matching and a vertex

covering cannot be larger than one part of G. It is enough to show
that ν(G) = |A| which is equivalent to τ(G) = |A| by Konig’s
theorem. Let X be a vertex cover in G. Denote A′ = A \ X. By our
hypothesis, |N(A′)| ≥ |A′| and since N(A′) ⊆ B ∩ X, we get |A| =
|A ∩ X|+ |A′| ≤ |A ∩ X|+ |B ∩ X| = |X|. Since |A| ≤ |X| and A is a
vertex cover, we have ν(G) = |A|.

Corollary 94. A d-regular graph bipartite contains a perfect matching.

Proof. Let A and B be the bipartition of this graph. In order to find
a perfect matching, we first need |A| = |B|. This is true because the
number of edges leaving A and leaving B is the same, so we have
|A| · d = |B| · d. Now, we only have to show Hall’s condition holds for
A to get an A-covering matching which will be perfect. Let S ⊆ A, the
number of edges leaving S is less than the number of edges leaving
N(S) so we get d · |S| ≤ d · |N(S)| implying Hall’s condition is
true.

Corollary 95. Every (2k)-regular graph has a 2-factor.
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Proof. Since every vertex has an even degree, G contains an Eulerian
tour. Moreover, each vertices has k incoming edges and k outgoing
edges in that tour. Split up each vertex into vi and vo connected to
the incoming edges and outgoing edges respectively. This yields
a k-regular bipartite graph so it contains a perfect matching. This
matching corresponds to a 2-factor in the original graph since vi and
vo both have degree 1 in that matching.

Corollary 96. Every (2k)-regular graph has k disjoint 2-factors.

We have enough results on bipartite graphs so let us move back to
matchings in general graphs.

Definition 97 (Independent sets). Let G = (V, E) be a graph. A subset
of vertices X is said to be independent if the induced subgraph G[X]

has no edges. We will use α(G) to denote the maximal size of an
independent set in G.

Proposition 98. Let G = (V, E) be any graph, α(G) + τ(G) = |V|.

Proof. We first show that α(G) ≥ |V| − τ(G). Let C ⊆ V be a mini-
mum vertex cover and let X = V \ C. X is an independent set because
if there is an edge completely in X, this means C does not cover it.

Then, we show that τ(G) ≤ |V| − α(G). Let X ⊆ V be an in-
dependent set of size α(G) and let C = V \ X. C is a vertex cover
because if an edge has no endpoints in C, it must be completely in X
contradicting its independence.

Using the two inequalities, we obtain α(G) + τ(G) = |V|.

Definition 99 (Edge cover). Let G be a graph without isolated points
(i.e: ∀v ∈ V, deg(v) > 0). We say that L ⊆ E is an edge cover if every
vertex is incident to at least one edge in L. We use ρ(G) to denote the
minimum size of an edge cover.

Proposition 100 (Gallai). Let G = (V, E) be any graph, ρ(G) + ν(G) =

|V|.

Proof. We first prove that ρ(G) ≤ |V| − ν(G). Let M be a maximum
matching in G and define L = M ∪ Z where Z is a set containing
one incident edge for each vertex not matched by M. Note that |Z| =
|V| − 2|M| there are 2|M| vertices matched by M and each edge
chosen in Z cannot be chosen twice. This gives |L| = |M| + |Z| =
|V| − |M| = |V| − ν(G). Since L is an edge cover, the inequality must
hold.

Then, we show that ν(G) ≥ |V| − ρ(G). Let L be an edge cover
of minimal size. Denote H ⊆ G = (V, L). We claim that for each
edge e ∈ L there is at least one of its endpoint v with degH(v) = 1.
Assume otherwise, both endpoint have a degree higher than one
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so we can remove e from L and still get a cover, contradicting the
minimality of L. We can conclude that H is acyclic, or equivalently,
it is a forest. Recall that |V(H)| − |E(H)| = comp(H). Moreover,
no component of G is of size one since L is an edge cover. Choosing
one edge in each component clearly defines a matching in G of size
comp(H) = |V| − ρ(G).

Using the two inequalities, we obtain ρ(G) + ν(G) = |V|.

Corollary 101. If G is bipartite, α(G) = ρ(G).

We will now try to find something similar to Hall’s theorem in gen-
eral graphs. Namely, we would like to find a necessary and sufficient
condition to find a perfect matching in G. We first observe that |V|
being even is already a necessary condition, but it is not sufficient. We
will look at a more general condition but with the same idea behind.
Before that we state a simple vocabulary definition.

Definition 102 (Odd components). Let G be a graph, and G1, . . . , Gk

be its connected components. We say that some component Gi is odd
if |V(Gi)| is odd. Moreover, we use Odd(G) to denote the number of
odd components of G.

Theorem 103 (Tutte). Let G = (V, E) be any graph, then G has a perfect
matching if and only if for any subset of vertices X, Odd(G− X) ≤ |X|.

Proof. (⇒) This is the trivial implication.

Before giving the proof of the other implication, we will explore
multiple uses for it to familiarize ourself with its consequences. The
first corollary is Petersen’s theorem.

Theorem 104 (Petersen). All 3-regular graphs containing no cut-edges
have perfect matchings.

Corollary 105. A 3-regular graph G has a perfect matching if and only if it
has a 2-factor.

Proof. Let M be a perfect matching in G, G−M is 2-regular so E(G) \
M is a 2-factor. Let F be a 2-factor in G, G − F is 1-regular so E(G) \
E(F) is a perfect matching.

Proof of Petersen’s theorem. Let G = (V, E) be a 3-regular graph con-
taining no cut-edges. It is enough to show Petersen’s condition is
satisfied. Without loss of generality, we assume that G is connected.
For X = ∅, we need to check that |V| is even. By the handshaking
lemma, 3|V| is even so |V| must be even. Assume towards a contra-
diction that ∃X ⊆ V with |X| > 0 and Odd(G− X) > |X|. We claim
that each odd connected component of G sends at least three edges to
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X. This would imply that X has more edges than 3|X| contradicting
the regularity of G.

In order to prove the claim, we consider multiple cases. Denote n to
be the number of edges sent from some connected component C to X.
Clearly, n ≥ 1 because the initial graph G is connected. If n = 1, the
unique edge sent must be a cut-edge contradicting our hypothesis. If
n = 2, then, since ∀v ∈ C, degG(v) = 3, we get ∑v∈C degC(v) = 3|C| −
2 which cannot be an even number, contradicting the handshaking
lemma. Therefore, we can only have n ≥ 3.

Next, we will show that Tutte’s theorem implies one direction of
Hall’s theorem. We will use the following observation in this proof.

Lemma 106. Let G = (V, E) be a graph with |V| even. Then for any
X ⊆ V, Odd(G − X) ≡ |X| mod 2. We will refer to this as the parity
observation.

Corollary 107. Let G = (V, E) be a bipartite graph with parts A and B.
Suppose that ∀S ⊆ A, |NG(S)| ≥ |S|, then G has an A-covering matching.

Proof. Define E′ = {{b1, b2} | b1, b2 ∈ B} (i.e: all the edges between
vertices in B) and define a new graph as follows:

G′ =

(V, E ∪ E′) |V| even

(V ∪ {b′}, E ∪ E′ ∪ {{b′, b} | b ∈ B}) |V| odd

This transforms the graph G by adding a new vertex to B if |V| is
odd and putting all the edges in B. Observe that a perfect matching
in G′ is an A-covering matching in G. Hence, we will check Tutte’s
condition, namely that for any X ⊆ V(G′), Odd(G′ − X) ≤ |X|. If we
look at the components of G′ − X, we see that one component has the
vertices in B′ − X10 and the vertices in A connected to it and all the 10 B′ = B ∪ {b′} if b′ was added, B′ = B

otherwiseother components only have isolated vertices of A. We will call the
set of these isolated vertices Y. We know that Odd(G′ − X) ≤ |Y|+ 1.
Now, if we show that |X| ≥ |Y|, we will have Odd(G′ − X) ≤ |X|+ 1,
but by the parity observation, this is equivalent to Odd(G′ − X) ≤ |X|.

In order to prove |X| ≥ |Y|, we will show a tighter bound, namely,
|Y| ≤ |X ∩ B|. In the original graph G, NG(Y) ⊆ X ∩ B because the
vertices in Y are not connected to B anymore. By Hall’s condition,
|NG(Y)| ≥ |Y| and combining it with the last sentence, we get |Y| ≤
|X ∩ B|.

We are now ready for the proof the second part of Tutte’s theorem.

Proof of Tutte’s theorem (continued). (⇐) We will prove it by induction
on |V| = n. The base case is n = 0 and it is the implication obviously
holds. Assume that it holds for every k < n, let G = (V, E) be a graph



lecture notes for math 350 - fall 2017 28

with |V| = n and suppose that ∀X ⊆ V, Odd(G− X) ≤ |X|, we want
to show that G contains a perfect matching. We will have multiple
claims that will lead us to our end goal.

Claim 1. |V| is even

This is clear from because Tutte’s condition holds with X = ∅. We
will say that a set X ⊆ V is Tutte-critical if Odd(G− X) = |X|.

Claim 2. There exists a Tutte-critical set for G.

The empty set is Tutte-critical. Let X0 be the maximal Tutte-critical
set (i.e: ∀X ⊆ V such that |X| ≥ |X0|, we have Odd(G− X) < |X0|).

Claim 3. G− X0 only has odd connected components.

Suppose E is an even connected component of G − X0, then take
any vertex v ∈ E, the set X0 ∪ {v} is Tutte-critical because we added
one vertex to X0 and increased the number of odd components by one.
However, this contradicts the maximality of X0. Denote C1, . . . , Ck to
be the connected components of G− X0, from Claim 3, we know that
they are all odd.

Claim 4. For any i ∈ {1, . . . , k} and for any vertex v ∈ Ci, the induced
subgraph G[Ci − v] has a perfect matching.

Denote C = Ci − v, we can use the induction hypothesis because
|C| < |G|. Assume that G[C] does not contain a perfect matching,
then there exists a Y ⊆ V(C) such that Odd(C − Y) ≥ |Y| + 1. Let
X = X0 ∪ Y ∪ {v}, then G − X still contains the odd components
C1 to Ck without Ci and at least |Y|+ 1 more odd components (from
breaking Ci). Thus, we have the following :

Odd(G− X) ≥ k− 1 + |Y|+ 1 = k + |Y| = |X0|+ |Y| ≥ |X| − 1

By the parity observation, this gives Odd(G − X) ≥ |X|. Since, our
hypothesis says Odd(G− X) > |X| is not possible, we get Odd(G−
X) = |X| which contradicts the maximality of X0. From all these
claims, we can conclude that if we find an X0-covering matching with
exactly one edge in each connected component of G− X0, we can find
a perfect matching in G.

Claim 5. There exists a matching with the property stated above.

Let H = (X0 ∪ {1, . . . , k}, F) be a graph where X0 and {1, . . . , k} are
a bipartition of H and F contains an edge {x, i} if and only if x ∈ X0,
1 ≤ i ≤ k and there exists an edge in G from X0 to Ci. Assume that
there does not exist a B-covering matching, then by Hall’s theorem,
∃Y ⊆ B, |NH(Y)| < |Y| and define X = NH(Y), we have X ⊆ X0

and Odd(G − X) ≥ |Y| > |X| contradicting Tutte’s condition. Any
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B-covering matching in H shows the existence of matching we are
looking for in Claim 5.

Ramsey theory

Recall the following statement from the start of the course : "Among
any six people, there is always a choice of three people such that
either all three people are friends or none are." We proved this result
and mentioned that Ramsey theory generalizes this result. The goal
here is to introduce some fundamental concepts of Ramsey theory.
We first formalize the notion of coloring and give the definition of the
Ramsey number.

Definition 108 (Coloring). A k-coloring of the edges in Kn (the com-
plete graph on n vertices) is a function c : E(Kn)→ {1, . . . , k}.

If we formalize the the friendship statement, we get the following.
In any 2-coloring of the edges of K6, you can find a monochromatic
triangle, namely, three edges that connect three vertices with the same
color.

Remark 109. When talking about a k-coloring with k being small, we
will use actual colors like red, green and blue instead of integers to
facilitate our arguments.

Definition 110 (Ramsey number). The Ramsey number R(k) is the
minimal integer n such that for any 2-coloring of E(Kn), there is a Observe that for the graph Km with

m > R(k), the property will still hold
because you can take any complete
subgraph Kn in Km, restrict the coloring
to E(Kn) and find the desired subset of
V(Kn) which will also be a subset of
V(Km)

subset X ⊆ V(Kn) with |X| = k and Kn[X] has all of its edges of one
color (also called monochromatic).

v1

v2
v3

v4
v5

Figure 7: Counter example for K5

The friendship statement is saying that R(3) ≤ 6 and the counter-
example shown in figure 7 shows that R(3) > 5, so we obtain R(3) =
6. One might wonder if it is always possible to find monochromatic
subgraphs of arbitrary size. Ramsey’s theorem answers this question.

Theorem 111 (Ramsey). For any k ∈ N, R(k) < 4k, implying R(k) is
finite.

Before giving a proof, we will look at the known bounds for some
values of k. The obvious ones are R(1) = 1 and R(2) = 2 and more
generally, R(k) ≥ k. Next, R(3) = 6 which we have already seen and,
although it takes a lot more work to prove, we know that R(4) = 18.
Then, we hit a wall, the next numbers are not known but we do have
some bounds. For example, we know that 42 < R(5) ≤ 49 and that
101 < R(6) ≤ 165. Let us digress a bit and quote Paul Erdos.

"Suppose aliens invade the earth and threaten to obliterate it in a
year’s time unless human beings can find the [R(5)]. We could marshal
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the world’s best minds and fastest computers, and within a year we
could probably calculate the value. If the aliens demanded the [R(6)],
however, we would have no choice but to launch a preemptive attack."

While still postponing the proof of Ramsey’s theorem, we look at a
nice argument for the quadratic lower bound R(k) > (k− 1)2. To show
this lower bound holds, we will construct a coloring on E(K(k−1)2)

that does not have any monochromatic subgraph Kk. Divide the
complete graph on (k− 1)2 vertices in k− 1 groupings of k− 1 vertices.
Color the edges between the groupings in blue and the edges between
the vertices of each grouping in red. Take any subgraph induced
by k vertices, all the vertices cannot be in the same grouping, so all
the edges are not red. Also, all the vertices cannot be in different
groupings, so all the edges are not blue.

Definition 112 (General Ramsey number). We will use R(k, `) to
denote the minimal integer n such that for any 2-coloring of E(Kn),
we can either find a red Kk or a blue K`. Note that R(k, k) = R(k).

We now show the finiteness of R(k).

Lemma 113.
R(k, `) ≤ R(k− 1, `) + R(k, `− 1)

Proof. We will prove this by induction on k + `. For the base case,
observe that for any k, R(k, 1) = R(1, k) = 1 and R(k, 2) = R(2, k) = k
since the subgraph induced by at most two vertices contains at most
one edge, so it can only be monochromatic. If you cannot find two
vertices connected by the color you want, then the whole graph must
be of the other color so you found Kk of the other color. You can now
verify the inequality holds when k + ` ≤ 5.

For the induction step, assume that it holds up until the sum is
one less than k + ` ≥ 6 and fix some 2-coloring of E(Kn), where
n = R(k− 1, `) + R(k, `− 1) (we know these numbers are finite by the
induction hypothesis). Pick an arbitrary vertex v and observe that we
have two cases. There is either at least R(k− 1, `) red neighbors of v
or at least R(k, `− 1) blue neighbors of v. For the first case, we use the
induction hypothesis in the red neighbors to find a blue K` or a red
Kk−1 from which we can create a red Kk by adding v. For the second
case, we use the induction hypothesis in the blue neighbors to find
a red Kk or a blue K − `− 1 from which we can create a blue K` by
adding v.

A similar result can be used to obtain the upper bound stated in
Ramsey’s theorem.

Lemma 114.

R(k, `) ≤
(

k + `− 2
k− 1

)
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Corollary 115. R(k) = R(k, k) < 4k

Proof.

R(k, k) ≤
(

2k− 2
k− 1

)
< 22k−2 < 4k

The second inequality is true because 22k−2 is the number of subsets
of a set of size 2k − 2 while (2k−2

k−1 ) is the number of subsets of size
k− 1 of a set of size 2k− 2.

Proof of lemma. The proof is really similar to the last lemma and uses
induction. Again, we have two base cases :

R(1, k) = R(k, 1) = 1 ≤
(

k + 1− 2
k− 1

)
=

(
1 + k− 2

k− 1

)
R(2, k) = R(k, 2) = k ≤

(
k + 2− 2

k− 1

)
=

(
2 + k− 2

k− 1

)
For the induction step, assume that the inequality holds up until the
sum is one less than k + ` ≥ 6 and fix some coloring of E(Kn) where
n = (k+`−2

k−1 ). Pick an arbitrary vertex v, we have two cases again.
There is either at least (k+`−3

k−2 ) red neighbors of v or at least (k+`−3
k−1 )

blue neighbors. Assume that none of these cases happen, then we
obtain the following:

n ≤ 1 +
(

k + `− 3
k− 2

)
− 1 +

(
k + `− 3

k− 1

)
− 1 =

(
k + `− 2

k− 1

)
− 1

leading to a contradiction. The rest of the proof is the same as for the
last lemma.

Although this upper bound can be improved, we will instead
focus on improving our lower bound with a more involved argument.
We will argue to obtain a value as large as we can without actually
constructing the graph (like we did for the last lower bound).

Fix some k ≥ 3 and make the following definitions.11 11 These definitions all depend on n
but we refrain from indicating in the
notation to lighten the latterC = {all 2-colorings of E(Kn)}

CY = {c ∈ C | ∃ monochromatic Kk}
CN = C \ CY

We are interested in the size of these collections. Observe that the size
of C is 2(

n
2) and that our goal is to find an n as large possible for which

|CN | or equivalently |CY| < |C|. For a set A ⊆ V(Kn) of size k and
define the following collections.

RA = {c ∈ C | the complete subgraph induced by A is red}
BA = {c ∈ C | the complete subgraph induced by A is blue}
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A simple combinatorics argument gives |RA| = |BA| = 2(
n
2)−(

k
2), also,

we have

CY =

 ⋃
A⊆V(Kn)
|A|=k

BA

 ∪
 ⋃

A⊆V(Kn)
|A|=k

RA


We will try to bound |CY| to see for what n it is smaller than |C|. We
will use what is called the union bound which can be stated as follows
for any set X and Y.

|X ∪Y| = |X|+ |Y| − |X ∩Y| ≤ |X|+ |Y|

We obtain the following derivation.

|CY| ≤
∣∣∣∣∣⋃

A
BA

∣∣∣∣∣+
∣∣∣∣∣⋃

A
RA

∣∣∣∣∣ (union bound)

= 2

∣∣∣∣∣⋃
A

BA

∣∣∣∣∣ (symmetry of colorings)

≤ 2 ∑
A∈(V

k )

|BA| (union bound)

= 2
(

n
k

)
· 2(

n
k)−(

k
2) (counting)

= nk · 2(
n
k)−(

k
2)+1 ((n

k) ≤ nk)

= 2(
n
k)−(

k
2)+1+k log2(n) (properties of exponent)

If we want to know when |CY| < |C|, we need to solve for n in
2(

n
k)−(

k
2)+1+k log2(n) < 2(

n
2). This is equivalent to the following.(

n
2

)
>

(
n
k

)
−
(

k
2

)
+ 1 + k log2(n)(

k
2

)
> 1 + k log2(n)

k2 − k
2

> 1 + k log2(n)

k > 2 log2(n) +
2
k
+ 1

Choose n = 2
k−2

2 to obtain k > k− 2 + 1 + 2
k which holds for k ≥ 3.

This is our lower bound for R(k).

Remark 116. Before further generalizing the Ramsey numbers, we want
to point out that R(k) can also be viewed as the minimal integer n
such that any graph on n vertices contains either a complete subgraph
on k vertices or an empty one (equivalently, α(G) ≥ k).
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Definition 117 (More general Ramsey number). We use R`(k) to
denote the minimal integer n such that for any `-coloring of E(Kn),
we can find a monochromatic subgraph induced by k vertices. We can
also use R`(k1, . . . , k`) to denote the minimal integer n such that for
any `-coloring of E(Kn), we can either find a Kk1 of color k1 or a Kk2

of color k2, etc...

Theorem 118. For any ` and k, R`(k) is finite.

Proof. We prove it by induction, for ` = 1, 2 the proof is already done.
Assume that the theorem holds up to some `, we claim that

R`+1(k) = R`+1(k, `+1. . . , k) ≤ R`(k, `−1. . . , k, R2(k, k))

Take any complete graph of size bigger than the R.H.S. and any
(`+ 1)-coloring c. Reduce this coloring to an `-coloring by combining
the colors ` and `+ 1 together. If we can find a monochromatic Kk of
color in {1, . . . , `− 1}, we are done because it will be also monochro-
matic with the coloring c. If we cannot find such coloring, then we
must be able to find a monochromatic KR2(k). If we look at this sub-
graph with the coloring c, it has only two colors so it must contain a
monochromatic Kk of color ` or `+ 1.

We now use the Ramsey numbers in a number theoretic puzzle.

Question 119. Can you color the natural numbers12 with red and blue such 12 We are working with N+ since
0 + 0 = 0 would always be a monochro-
matic solution

that there is no monochromatic solution to x + y = z ?

By a monochromatic solution, we mean that c(x) = c(y) = c(z) and
x + y = z. Let us start coloring and see what happens. By symmetry,
we can arbitrary choose 1 to be red. Since 1 + 1 = 2, 2 must be blue to
have a valid coloring. Since 2 + 2 = 4, 4 must be colored red and then
1 + 4 = 5 means 5 must be blue. Then, 3 can be either red or blue. In
the first case, 1 + 3 = 4 is a monochromatic solution. In the second
case, 2 + 3 = 5 is a monochromatic solution.

In fact, it is possible to generalize this result to any numbers of
colors.

Theorem 120 (Schur). For any ` ∈ N, N+ is not `-colorable such that
x + y = z has no monochromatic solution.

Proof. We will prove an equivalent statement : for any ` ∈ N, there
exists an integer n(`) such that any `-coloring of {1, . . . , n(`)} has a
monochromatic solution to that equation.

We claim that n(`) = R`(3) − 1. Denote c to be an arbitrary `-
coloring of {1, . . . , n(`)}. Take the complete graph on the integers
{1, . . . , R`(3)} and consider the following `-coloring d of E(KR`(3)) :
∀i < j, d({i, j}) = c(j− i). Note that 1 ≤ j− i ≤ R`(3)− 1 so this is
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well defined. By the definition of R`(3), there exists a monochromatic
triangle in d. Namely, there exists integers x < y < z such that
d({x, y}) = d({y, z}) = d({x, z}). However, by how we defined
d, this is equivalent to c(y − x) = c(z − y) = c(z − x). We get a
monochromatic solution since y− x + z− y = z− x.

Connectivity of graphs

This section will introduce the notion of connectivity. This part of
graph theory arose during the war, when Russian were trying to
figure out how to disconnect the railway network by destroying
the least amount of connections. Another problematic was to find
the maximal amount of resources could be sent through the same
network. As it turns out these two problems lead to the same theory.

There are two ways to define connectivity in a graph, using the
vertices or the edges. We will study those in parallel as the results will
be similar but not always the same.

Definition 121 (Vertex-disjoint paths). Let G = (V, E) be a simple
graph and u 6= w ∈ V. We will use PG(u, w) to denote the maximal
size of a collection of internally vertex-disjoint paths from u to w. By
internally vertex-disjoint, we imply that all vertices except for u and w
are in at most one path of the collection.

Clearly, PG(u, w) is positive and PG(u, w) = 0 if and only if u 6∼ w.
Moreover, since paths cannot contain the same vertices and at most
one path contains only 2 vertices, we have PG(u, w) ≤ |V| − 1. We
define the connectivity of G as follows :

κ(G) = min
u 6=w∈V

PG(u, w)

One can remark that κ(G) = 0 if and only if G is disconnected.

Definition 122 (Edge-disjoint paths). Let G = (V, E) be a multigraph
and u 6= w ∈ V. We will use P′G(u, w) to denote the maximal size of
a collection of edge-disjoint paths. By edge-disjoint, we imply that all
edges are in at most one path of the collection.

Once again, P′G(u, w) is positive and zero if and only if u 6∼ w.
However, since we are working in a multigraph, it is impossible to
give an upper bound. Indeed, the graph could have an arbitrary
number of edges from u to w and P′G(u, w) would be at least this
number. The new definition of connectivity we give is the following :

κ′(G) = min
u 6=w∈V

P′G(u, w)

Examples 123. • For an empty graph on a single vertex, we have
κ(G) = κ′(G) = 1.
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• For a complete graph, we have κ(Kn) = κ′(Kn) = n− 1.

• For a tree T, we have κ(T) = κ′(T) = 1 since all there are unique
paths between any vertices.

• For a cycle, we have κ(Cn) = κ′(Cn) = 2 since you can only go
from a vertex to another by following the cycle in one orientation
or the other.

• These two values are not always the same. For a graph composed
of two cliques13 of size n1 and n2 with 2 vertices in common, we 13 A clique is a synonym for a complete

subgraphhave κ(G) = 2 and κ′(G) = min(n1 − 1, n2 − 1).

Definition 124 (Vertex cut). A subset C ⊆ V is a vertex cut if G[V \ C]
is disconnected. {v} is a vertex cut if and only if v is a cut vertex.

For any vertex cut C, κ(G) ≤ |C| because if G[V \ C] has two
connected components A and B, the vertices u ∈ A and w ∈ B have
at most |C| vertex disjoint paths between them, otherwise they would
still be connected.

Theorem 125 (Menger). Let G be a simple and not complete graph, then

κ(G) = min
C vertex cut

|C|

In the literature, you might find this to
be the definition of connectivity

Definition 126 (Edge cut). A subset F ⊆ E is an edge cut if G′ =
(V, E \ F) is disconnected. {e} is an edge cut if and only if e is a cut
edge.

For any edge cut F, κ′(G) ≤ |F| because if G′ has two connected
components A and B, the vertices u ∈ A and v ∈ B have at most
|F| edge disjoint paths between them, otherwise they would still be
connected.

Theorem 127 (Ford-Fulkerson). Let G be a multigraph, then

κ′(G) = min
F edge cut

|F|

In order to prove these theorems, we will use a prove two lemmas,
one can view these as the "local" versions of the theorems.

Definition 128. Let G = (V, E) be a graph and u 6= w ∈ V such that
{u, w} /∈ E. We will use cG(u, w) to denote the minimum size of a
vertex cut C not containing u nor w such that C disconnects u and w.

Lemma 129. Let G = (V, E) be a simple graph. For any u 6= w ∈ V such
that {u, w} /∈ E, we have cG(u, w) = PG(u, w).
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Proof. We will use induction on |E|, the base case |E| = 0 is trivial.
For the induction step, assume for all graphs with less edges than
G and let u 6= w ∈ V be two non-adjacent vertices. Also, denote
k = cG(u, w). It is clear that PG(u, w) ≤ k because if you remove k
vertices in those disjoint paths, u and w must become disconnected.
The other inequality is less trivial and involves two cases.

u w

1

2

3

4

5

Figure 8: This is an example of a
graph for the first case, the highlighted
nodes are in the intersection of the
neighborhoods and form the only vertex
cut separating u and w

Suppose that every edge in E has an endpoint in {u, w}. The min-
imal vertex cut is the only vertex cut separating u and w, namely,
C = NG(u) ∩ NG(w). This is true because removing these vertices will
disconnect u and w and any other subset of V will either contain u or
w or it will not contain some vertex in C, leaving u and w connected
via that vertex. Also, we clearly have PG(u, w) = |C| = k = cG(u, w)

and we are done.
In the second case, there exists some edge f = {a, b} where f ∩

{u, w} = ∅. Define a new graph H = G − f and observe that
PH(u, w) ≤ PG(u, w) since all the paths in H are paths in G. Also, we
have cG(u, w) ≤ cH(u, w) + 1 since if C is a cut disconnecting u and w
in H, then C ∪ {a} must disconnect u and w as well. We can rewrite
this inequality as cH(u, w) ≥ k− 1 and our induction hypothesis gives
PH(u, w) = cH(u, w) ≥ k− 1 because H has less edges than G. If both
of these are actually equal to k, then we must have PG(u, w) = k and
we are done. Assume otherwise and denote C = {v1, . . . , vk−1} be a
vertex cut disconnecting u and w.

Going back to the graph G, we know that C does not disconnect u
and w because |C| < cG(u, w) = k. This implies that there is a path
from u to w passing through the edge f . Without loss of generality,
say that u, a ∈ U and w, b ∈ W where U and W are components of
H − C. Define the following graphs :

Gu = ((V \U) ∪ {ū}, Eu))

where Eu = {e ∈ E | e ∩U = ∅} ∪ {{ū, y} | x ∈ U, {x, y} ∈ E}
Gw = ((V \W) ∪ {w̄}, Ew))

where Ew = {e ∈ E | e ∩W = ∅} ∪ {{w̄, y} | x ∈W, {x, y} ∈ E}

Note that any vertex cut in Gu that separates ū and w will separate
u and w in G as well. Hence, cGu(u, w) ≥ k. On the other hand, the
vertex cut C = C ∪ {b} separates ū and w in Gu so cGu(ū, w) = k.

We can use the induction hypothesis on Gu because all edges
coming out U are represented by at most one edge per vertex not
in U and at least one edge inside U is removed because u, a ∈ U.
Therefore, we have k internally disjoint paths from ū to w, denoted
P1, . . . , Pk. With a symmetric argument for Gw, we obtain a collection
Q1, . . . , Qk of internally disjoint paths from w̄ to u. Each paths in each
collection must go through C and they are disjoint, so they pass by
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exactly one vertex in C. Without loss of generality, say that Pi and Qi

pass through vi for i ∈ {1, . . . , k− 1} and say Pk and Qk pass through
a and b respectively.

We will construct k internally disjoint paths in G. For i ∈ {1, . . . , k−
1}, the path starting at u, following Qi until vi and then following
Pi until w will be internally disjoint from the path with the same
construction and j 6= i. This gives k− 1 paths. The last one starts at u
and follows Qk until a goes to b with the edge f and follows Pk until
w.

We use this lemma to prove Menger’s theorem.

Proof of Menger. Let G = (V, E) be simple and not complete, so there
exists some vertices which are not adjacent. Pick u 6= w ∈ V such that
PG(u, w) is minimal and denote κ(G) = k. If u and w are not adjacent,
then using the lemma, cG(u, w) = PG(u, w) = k.

Suppose that u and w are adjacent and consider the graph H =

(V, E \ {u, w}). We clearly have PH(u, w) = PG(u, w)− 1 = k− 1 and
from the lemma, we obtain cH(u, w) = k− 1. Let C be a vertex cut of
size k− 1 separating u and w. Assume towards a contradiction that
C = V \ {u, w}, then |C| = |V| − 2 implying that k = |V| − 1 and we
have seen that this implies G is complete, leading to a contradiction.

We can now pick some vertex x ∈ V(H) \ C with x 6= u and x 6= w.
Without loss of generality, in H − C, x is not connected to w, implying
that C ∪ {u} separates x and w. We get cG(x, w) ≤ k, so we found a
vertex cut of size k.

Definition 130. Let G = (V, E) be a graph and u 6= w ∈ V. We will
use c′G(u, w) to denote the minimum size of an edge cut F such that F
disconnects u and w.

Lemma 131. Let G = (V, E) be a multigraph. For any u 6= w ∈ V, we
have c′G(u, w) = P′G(u, w).

We can view this lemma in a different way which somewhat links
this to the next section.

Definition 132 (Boundary). Let X ⊆ V(G), we define the boundary of
X (denote it ∂(X)) as the set of edges touching exactly one vertex of X,
namely, ∂(X) = {e ∈ E | |e ∩ X| = 1}.

Remark 133. Observe that

c′G(u, w) = min
{u}⊆X⊆V\{w}

|∂G(X)| =

In order to prove this result and Ford-Fulkerson’s theorem, we will
develop a more general theory about networks and flows.
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Networks

As usual when starting a new section, we will start with a series of
definitions and observations to get familiar with the objects we will
work with.

Definition 134 (Digraph). A digraph D is a tuple (V, E) where
E ⊆ V × V. The edges are now ordered pairs and contain infor-
mation about the orientation of the edge. It is different from an ori-
ented graph since it could have two edges that go from one vertex to
another and back, namely, for v, w ∈ V, (v, w), (w, v) ∈ E.

Definition 135 (Directed path). A directed path in D is a path P =

{v0, e1, v1, . . . , ek, vk} such that ei = (vi−1, vi). P goes from v0 to vk and
not the opposite.

Definition 136 (Oriented boundaries). Let X ⊆ V, we define the
oriented boundaries of X:

∂+(X) = {(u, w) ∈ E | u ∈ X, w /∈ X} = outgoing edges

∂−(X) = {(u, w) ∈ E | u /∈ X, w ∈ X} = incoming edges

Lemma 137. Let D = (V, E) be a digraph and s 6= t ∈ V, then either
there exists a directed path from s to t or there exists a subset X ⊆ V with
{s} ⊆ X ⊆ V \ {t} such that ∂+(X) = ∅.

Proof. Let X = {x ∈ V | ∃ directed path from s to x}. Clearly
∂+(X) = ∅ as if it were not empty, there would be a directed path
from s to the head of an edge in the boundary, so the head must be
in X which is a contradiction. Also, s ∈ X by the empty path. Now,
either t ∈ X and there exists a directed path from s to t or t /∈ X and
X is the desired subset.

Definition 138 (Flow). Let D = (V, E) be a digraph and s 6= t ∈ V.
A map φ : E → R+

0 is an s, t-flow if ∀x ∈ V \ {s, t}, the following
holds14: 14 This is often called Kirchoff’s law,

you might recognize it from a course in
electromagnetism∑

e∈∂+(x)
φ(e) = ∑

e∈∂−(x)
φ(e)

We define the value of an s, t-flow as follows:

val(φ) = ∑
e∈∂+(s)

φ(e)− ∑
e∈∂−(s)

φ(e) = ∑
e∈∂−(t)

φ(e)− ∑
e∈∂+(t)

φ(e)

Lemma 139. Let D = (V, E) be a digraph, s 6= t be vertices and φ be an
s, t-flow of value k, then ∀{s} ⊆ X ⊆ V \ {t}, we have

∑
e∈∂+(X)

φ(e)− ∑
e∈∂−(X)

φ(e) = k
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Proof. Define the following subset of edges:

E0 = {e ∈ E | |e ∩ X| = 0}
E1 = {e ∈ E | |e ∩ X| = 2}

EH = {(u, w) ∈ E | u /∈ X, w ∈ X}
ET = {(u, w) ∈ E | w /∈ X, u ∈ X}

It is obvious that E = E0 ∪ E1 ∪ EH ∪ ET and that all this sets are
disjoint. Also, note that EH = ∂−(X) and ET = ∂+(X).

k = ∑
e∈∂+(s)

φ(e)− ∑
e∈∂−(s)

φ(e)

= ∑
x∈X

 ∑
e∈∂+(x)

φ(e)− ∑
e∈∂−(x)

φ(e)


= ∑

e∈E0

0 + ∑
e∈E1

0 + ∑
e∈EH

−φ(e) + ∑
e∈ET

φ(e)

= ∑
e∈∂+(X)

φ(e)− ∑
e∈∂−(X)

φ(e)

Definition 140 (Capacity function). Let D = (V, E) be a digraph, a
capacity function is a map c : E→ R+

0 .

Definition 141 (Network). A network is a 5-tuple (V, E, s, t, c) where
(V, E) is a digraph, s 6= t ∈ V are called the source and target(or sink)
of the network and c is a capacity function.

Definition 142 (c-admissibility). An s, t-flow is c-admissible if ∀e ∈
E, φ(e) ≤ c(e).

Remark 143. Although all of the following theory will work when the
range of φ is the positive real numbers, there is some theory about the
maximum of functions in multidimensional spaces that needs to be
used and we do not want to mention it in this class. Therefore, we will
assume that φ is an integral function.

Lemma 144. Let D = (V, E) be a digraph, s 6= t be vertices and φ

be an integral s, t-flow of value k, then there exists a collection of paths
{P1, . . . , Pk} all going from s to t such that every edge e ∈ E belongs to at
most φ(e) paths.

Proof. We prove it by induction on k. When k = 0, the property is
vacuously true.

Suppose the property holds for k − 1, with k ≥ 1. Define D′ =
(V, {e ∈ E, φ(e) > 0}). If there is no directed path from s to t in D′,
by lemma 135, there exists a subset {s} ⊆ X ⊆ V \ {t} such that



lecture notes for math 350 - fall 2017 40

∂+(X) = ∅. However, by lemma 137 and the fact that φ is positive, we
get that k < 0 which contradicts our beginning assumption.

Let Pk be a directed path form s to t in D′ and define the map
ψ : E→N0 as follows:

ψ(e) =

φ(e) e /∈ Pk

φ(e)− 1 e ∈ Pk

Kirchoff’s law still holds for every internal vertex in the path since
we remove 1 from an outgoing edge and 1 from an incoming edge.
Hence, this map is an s, t-flow in D. Moreover, val(ψ) = k− 1 since we
remove 1 from exactly one outgoing edge of s. We can now use the
induction hypothesis to find paths P1, . . . , Pk−1 such that every edge e
in D is in at most k− 1 paths. Adding the last path Pk still maintains
the desired property.

Definition 145 (Augmenting path). An undirected path P = {v0, e1, . . . , e`, v`}
from s to t in a network (V, E, s, t, c) is called augmenting for an s, t-
flow φ if ∀i ∈ {1, . . . , `}, ei = (vi, vi+1) =⇒ φ(e) ≤ c(e) − 1 and
ei = (vi+1, vi) =⇒ φ(e) ≥ 1.

Lemma 146. Let (V, E, s, t, c) be a network, φ be an integral c-admissible
s, t-flow and P be an augmenting path for φ. Then there exists a c-admissible
s, t-flow ψ with val(ψ) ≥ val(φ) + 1.

Proof. Define the following map :

ψ(e) =


φ(e) + 1 if P uses e in the forward direction

φ(e)− 1 if P uses e in the backward direction

φ(e) otherwise

Observe that ∀e ∈ E, 0 ≤ ψ(e) ≤ c(e) by the definition of an aug-
menting path and the map ψ. Let x ∈ V \ {s, t} inside the path P. Say
that x appears in the path in the following sequence vex f w where
v, w ∈ V and e, f ∈ E. We have four cases.

• e = (v, x) and f = (x, w) yields ψ(e) = φ(e) + 1 and ψ( f ) =

φ( f ) + 1

• e = (v, x) and f = (w, x) yields ψ(e) = φ(e) + 1 and ψ( f ) =

φ( f )− 1

• e = (x, v) and f = (x, w) yields ψ(e) = φ(e) − 1 and ψ( f ) =

φ( f ) + 1

• e = (x, v) and f = (w, x) yields ψ(e) = φ(e) − 1 and ψ( f ) =

φ( f )− 1
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All these four cases maintain Kirchoff’s property for x showing that
ψ is an s, t-flow. Moreover, val(ψ) = val(φ) + 1 since we either add 1

to the flow of an outgoing edge or we remove 1 from the flow of an
incoming edge. This finishes the proof of the lemma.

We are now going to show the main result of this section. This is
the network version of the Ford-Fulkerson theorem we have intro-
duced in the last section.

Definition 147 (Capacity of a set). Let (V, E, s, t, c) be a network and
{s} ⊆ X ⊆ V \ {t}. The capacity of the set is denoted cap(X) and
defined

cap(X) = ∑
e∈∂+(X)

c(e)

Theorem 148 (Ford-Fulkerson). Let (V, E, s, t, c) be a network and Φ be
the set of all c-admissible s, t-flows, then, we have the following:

max
φ∈Φ

val(φ) = min
{s}⊆X⊆V\{t}

cap(X)

Proof. For the ≤ side, let {s} ⊆ X ⊆ V \ {t} be an s, t-cut of minimum
capacity k. Clearly, any flow needs to pass through X so it cannot have
a value more than k.

For the ≥ side, let φ be an s, t-flow of maximum value k. Let X =

{x ∈ V | ∃φ-augmenting path from s to x}. By Lemma 144, we know
that there cannot be an augmenting path for φ so t /∈ X. Also, s ∈ X
by the empty path. Moreover, we have that ∀e ∈ ∂+(X), φ(e) = c(e)
and ∀e ∈ ∂−(X), φ(e) = 0, otherwise we would e would extend an
augmenting path outside X. Therefore, we use Lemma 137 to obtain

k = ∑
e∈∂+(X)

c(e) = cap(X)

This shows that k ≥ min{v}⊆X⊆V\{t} cap(X).

In the next section, we go back to undirected graphs.

Proper Vertex Coloring

Recall that a graph G is called bipartite if V(G) = R ∪ B such that
G[R] and G[B] are empty. In this section, we try to generalize this
notion.

Definition 149 (Proper vertex coloring). Let G = (V, E) be a simple
graph. A proper k-vertex coloring of G is a map c : V → {1, . . . , k}
such that ∀v 6= w ∈ V, c(v) 6= c(w), namely there is no monochromatic
edge. The chromatic number of G, denoted χ(G), is the minimum k
such that there exists a proper k-vertex coloring of G.
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Examples 150.

• If B is a bipartite graph with at least one edge, then χ(B) = 2.

• If G has no edges, χ(G) = 1.

• For an even cycle, we have χ(C2`) = 2. For an odd cycle, we have
χ(C2`+1) = 3

• χ(Kn) = n

Proposition 151. Let G be a simple graph, recall that α(G) is the size of the
largest independent set. We have χ(G) ≥ |V(G)|

α(G)
.

Proof. Let c be a proper vertex k-coloring and denote V = X1 ∪ · · · ∪
Xk where Xi = {x ∈ V | c(x) = i}. Clearly, each set Xi is independent,
so we have the following:

|V| =
k

∑
i=1
|Xi| ≤ α(G) · k ≤ α(G) · χ(G)

The inequality follows.

Remark 152. If H ⊆ G and χ(H) ≥ k, then χ(G) ≥ k.

We might ask what makes the chromatic number of G bigger. One
might notice that large cliques imply a large chromatic number and
wonder if the converse is true. In fact, it is not and the following
theorem shows that in a really strong sense.

Definition 153 (Clique number). For a graph G, we define the clique
number of G, and denote ω(G), to be the maximum number ` such
that K` ⊆ G.

It is easy to see that χ(G) ≥ ω(G), but that bound is not that tight
since we can construct a triangle free graph with chromatic number k,
for any k.

Theorem 154. For any k ∈ N, there exists a graph Gk simple graph with
no triangles and χ(Gk) > k.

Proof. Fix some k ∈ N. Let n = Rk(3) and N = (n
2), it is the number

of edges in Kn. Let Gk = (V, E) where V contains all the edges Kn

and E contains all the edges {{a, b}, {c, d}} with a < b = c < d. We
first claim that Gk is triangle-free. Suppose that some vertices {a, b},
{c, d} and {e, f } form a triangle. Without loss of generality, we have
the following two options :

a < b = c < d = e < f = a

a < b = c < d = e < f = b
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Both lead to a contradiction. The second claim is that χ(Gk) > k,
i.e: for any map c : V → {1, . . . , n}, there exists e ∈ E such that
both ends of e have the same color in c. Fix some c and observe that
it is already a coloring of the edges of Kn because these edges are
the vertices of Gk. By the definition of the Ramsey number Rk(3),
there exists a monochromatic triangle in Kn. Namely, there exists
x < y < z ∈ {1, . . . , n} such that c({x, y}) = c({y, z}). This shows
that c is not a proper coloring.

Theorem 155. Let G = (V, E) be a graph without triangles with n = |V|,
then χ(G) ≤

√
2n.

Proof. Without loss of generality, we assume that G is connected
and prove it by induction on n. For the base case n = 1, we have
χ(G) = 1 ≤

√
2. Suppose it holds for values smaller than n, with

n > 1, we consider two cases.
If ∀v ∈ V, deg(v) ≤ b

√
2nc =: k, by Brooks’ theorem, we have

χ(G) ≤ b
√

2nc unless G = Kn or G = Cn when n is odd. For the
complete graph, n must be 2 since otherwise G would not be triangle-
free. If G = K2, we have χ(K2) = 2 ≤

√
4. For the odd cycle, n must be

at least 5 since C3 has a triangle. If G = Cn with n ≥ 5 an odd integer,
we have χ(G) = 3 ≤

√
2n.

If ∃v ∈ V with deg(v) ≥ k + 1 ≥ d
√

2ne. We have that N(v) is
an independent set of size at least k + 1. Denote G′ = G − N(v).

By induction, χ(G′) ≤
√

2(n− d
√

2ne), implying that χ(G) ≤√
2(n− d

√
2ne) + 1. Since you would need just one color for N(v).

Now, our aim is to show
√

2(n− d
√

2ne) + 1 ≤
√

2n. We have the
following equivalences.√

2(n− d
√

2ne) + 1 ≤
√

2n√
2(n−

√
2n) ≤

√
2n− 1

2n− 2
√

2n ≤ 2n− 2
√

2n + 1 (by squaring both sides)

Definition 156 (Maximum degree). We will denote ∆(G) to be the
maximum degree of a vertex in G.

Another easy observation is that χ(g) ≤ ∆(G) + 1, but we can make
this bound tighter with the following theorem.

Theorem 157 (Brooks). Let G be a connected loopless multigraph that is
not complete nor an odd cycle, then χ(G) ≤ ∆(G).

Proof. Pretty long proof that we might not do in class.
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Definition 158 (d-degeneracy). A graph G is called d-degenerate, if
∃v ∈ deg(v) ≤ d and G − v is also degenerate. Equivalently, every
subgraph of G has a vertex of degree less or equal to d.

Proposition 159. If G is d-degenerate, then χ(G) ≤ d + 1.

Proof. We use induction on n = |V|. If n = 1, this is trivial. Now,
assume it holds up to n− 1. Then take a vertex v ∈ V, deg(v) ≤ d, by
induction, you can color G − v with d + 1 colors since G − v is also
d-degenerate. Now, since v has at most d neighbors, there is one color
that was not used in N(v). Thus, we can finish the coloring of G with
that color.

Definition 160. A proper k-edge-coloring of a loopless multigraph
G = (V, E) is a map c : E → {1, . . . , k} such that ∀e, f ∈ E, c(e) 6=
c( f ). Namely, we can decompose E = E1 ∪ · · · Ek where each Ei is
a matching. χ′(G) is the minimum k such that there exists a k-edge
coloring for G.

Examples 161.

• χ′(C2`) = 2

• χ′(C2`+1) = 3

• χ′(G) ≥ maxv∈V(G) deg(v)

Theorem 162 (Vizing). If G is a simple graph, then χ′(G) ≤ ∆(G) + 1. If
G is not simple, then denote µ(G) to be the maximum multiplicity of an edge
in G, we have χ′(G) ≤ ∆(G) + µ(G).

Proof. Later...

Theorem 163 (Konig’s line coloring). If G = (V, E) is a bipartite graph,
then χ′(G) = ∆(G).

Proof. We show this by induction on n = |E|. When |E| = 1, it is
obvious that χ′(G) = 1 = ∆(G). Assume this holds up to n − 1
and we have a bipartite graph G with |E| = n. Pick some edge e =

{u, w} ∈ E and define G′ = G − e. Clearly, G′ is bipartite and
maxv∈V(G′) degG′(v) ≤ ∆(G). Hence, by our induction hypothesis,
there exists a proper edge coloring of G′ using ∆(G) colors. Also,
note that degG′(u), degG′(w) ≤ ∆(G)− 1, namely, there exists colors
αu and αw such that no edge of those colors are incident to u and w
respectively. If αu = αw, extend the coloring of G′ to a coloring of G by
coloring e with αu and we are done.

Suppose that αu 6= αw. Consider the subgraph of G′ with all the
edges colored with αu or αw and call it H. We know that this graph
is composed of cycles and paths and that degH(u) = degH(w) = 1.
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Therefore, u and w can only be the ends of paths in H. We have two
cases.

If u and w are not in the same connected components, then, on the
path of u, change all the edges of color αu to αw and vice-versa. Now,
no edge of color αw is incident to u and we can color e with αw to get
a proper edge coloring of G. If u and w are on the same path P, they
are the ends of that path. P must be of even length because the edges
must alternate color and the two end edges are of different colors.
However, this implies that P + e is an odd cycle contradicting the fact
that G is bipartite.

Theorem 164 (Shannon). If G is a loopless multigraph, χ′(G) ≤ 3d∆(G)
2 e.

Proof. Let k = d∆(G)
2 e, there exists a graph H ⊇ G, that is 2k-regular15. 15 Its construction is easy, create a copy

G and connect parallel edges from
vertices v to their copy until they have
degree 2k

H splits into k 2-factors. We can color each of these with 3 colors, so
we can color H (hence G) with 3k = 3d∆(G)

2 e colors.

Structural graph theory

This section will mostly review properties of planar graphs. There will
be parts where we do not use lots of formalism since introducing it
requires topology notions that are out of the scope of this course.

Definition 165 (Planar graph). A graph G is planar if it has a drawing
in the plane R2 such the edges do not intersect themselves or other
edges except at the vertices (which are points on the plane).

Examples 166.

• Trees are planar graphs. Pick a root arbitrarily, draw it with its
neighbors such that this part of the graph is planar. Now, zoom in
on each neighbor, considering it as the root of the subtree it is the
ancestor to. Draw the subtrees recursively.

• Cycles are planar graphs. Draw a circle and put as many points on
it as there are vertices in the graph.

• Empty graphs are planar. Just draw the vertices on different points
of the plane.

• What about complete graphs. We give planar drawings for K2, K3

and K4, but we will see that K5 is not planar.

That last example raises the following question.

Question 167. How can we show that a graph is not planar ?

We quickly see that proofs by exhaustion are not possible here.
Indeed, although graphs are finite, their drawing is on R2, so there
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is a continuum of possibilities to draw it. Here is a more formal
definition of a drawing.

Definition 168 (Drawing). Let G = (V, E) be a graph. A drawing
or plane graph D for G in R2 is the following list of functions. First,
there is an injective (so that no two vertices touch) map fσ : V → R2

that determines the position of each vertices. Then, for every edge
e = {u, w} ∈ E, there is an injective (so that it is non self-intersecting)
continuous map fe : [0, 1]→ R2 such that fe(0) = fσ(u), fe(1) = fσ(w)

and fe((0, 1)) ∩ Im( fσ) = ∅. In other words, fe defines a non self-
intersecting curve that starts at the position of u and ends at the
position of w and does not cross the position of any other vertex. We
further require that for any two edge e = e′, Im( fe)∩ Im( fe′) ⊆ Im( fσ).
This condition along with the definitions of fe and fe′ states that the
curves may only cross at a common endpoint of both edges.

Seeing how long and involved this definition is, we see why we
introduced this section by saying we were not going to do lots of
formalism. This definition is too heavy and we will not use it in
developing the theory for planar graphs. However, we will use the
next theorem without proof since it helps us defining a region, which
will be key in the following results.

Theorem 169 (Jordan’s curve theorem). Any continuous non self-
intersecting loop in the plane divides the plane in exactly two regions.

Remark 170. If G is a planar graph and H is a subgraph, then H is
planar. Pick a drawing for G and remove all the vertices and edges not
in H, the result is a drawing for H. The converse does not hold as we
have seen that K5 is not planar but K4 is a planar subgraph of K5.

As we have said before, the number of representations is too big for
us to study, therefore, we will instead study properties of drawings
and especially invariants.

Definition 171 (Region). Let G be a planar graph and D its drawing
in R2. A region16 in (G, D) is a maximal subset of the plane S ⊆ R2 16 This is sometimes called a face

such that S is connected in the topological sense17 and S is disjoint 17 Out of the scope for this class but you
should follow your intuition on what
defines a connected region

from all the vertices and all the edges of G.

Definition 172 (Length). The length of a region R in D, denoted `(R),
is the length of the closed walk along all the edges that lie on the
boundary of R.

You can see from example above that we have four regions with
lengths 3, 4,3 and 6. You can try to draw different representations for
this graph and count the number of regions and their lengths. You
will find that there are two invariants. For any drawing D of G, the
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number of regions and the sum of the lengths of the region is the
same. We will continue advancing with small steps in order to prove
these claims.

Definition 173 (The infinite region). The infinite or outer region of a
drawing D of G is the region of infinite measure18. 18 Again, this is out of the scope of this

course, but understand it as the region
of infinite size (not cardinality)Remark 174. Observe that there exists at least one infinite region since

R2 has infinite measure. Also, one can draw a box around a drawing
for G that will contain all the edges and vertices. Since this box has
finite measure, the infinite region is the one that extends outside this
box.

Remark 175. For any edge e ∈ E, one can informally define a "top"
region and a "bottom" region of the edge. These may be the same.

Lemma 176. If the top and bottom regions of an edge are the same, then it
must be a cut edge.

Proof. Proof by drawing.

Theorem 177 (Euler’s formula). Let D be a drawing of G = (V, E) a
connected planar graph, then |V| + Reg(D) − |E| = 2, where Reg(D)

denotes the number of regions in D.

Proof. We show this by induction on |E|. The base case is when G
has the minimal number of edges. Since G is connected, this is when
G is a tree. We know that |V| = |E|+ 1, also, for any drawing, there
can only be one region since there is no closed walk in G. We get
|V|+ Reg(D)− |E| = |V|+ 1− (|V| − 1) = 2.

Suppose that G is not a tree, then it has a cycle C. Pick an arbitrary
edge e ∈ E(C). By the contrapositive of the lemma, the regions
around e are not the same, so removing it from the drawing will
merge two regions, yielding Reg(D − e) = Reg(D) − 1. By the
induction hypothesis, we also have |V(G− e)|+ Reg(D− e)− |E(G−
e)| = 2. In addition, observe that |E(G − e)| = |E(G)| − 1 and this
implies |V(G)|+ Reg(D)− |E(G)| = 2.

One can easily generalize this formula (use induction) to a dis-
connected graph G to obtain |V|+ Reg(D)− |E| = 1 + comp(G). A
corollary to this formula is that we can now use Reg(G) to denote
the number of regions in any drawing of G. Another corollary is the
converse of the lemma.

Corollary 178. If e is a cut edge of G, then e is surrounded by only one
region in any drawing of G.

Proof. The graph G− e has one more component than G, so we have
|V(G)|+ Reg(G)− |E(G)| = 1 + comp(G) and |V(G− e)|+ Reg(G−
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e) − |E(G − e)| = |V(G)| + Reg(G − e) − (|E(G − e)| − 1) = 1 +

comp(G) + 1. Thus, we can infer that Reg(G) = Reg(G− e), namely, e
did not separate two different regions.

Proposition 179. Let G be a planar graph and D be an arbitrary plane
drawing, then

∑
R region in D

`(R) = 2|E(G)|

Proof. We have

∑
R region in D

`(R) = ∑
e∈E(G)

#regions around e = 2|E(G)|

For the second step, argue that for each edge e, if e is not a cut edge,
it sees exactly two regions. If e is a cut edge, it sees the same region
twice but it needs to be counted twice. The proposition trivially
follows.

Corollary 180. Let G be a planar graph and D1 and D2 be two of its plane
drawings, then

∑
R region in D1

`(R) = ∑
R region in D2

`(R)

Theorem 181. Let G = (V, E) be a simple planar graph with n = |V| ≥ 3,
m = |E| and f = Reg(G), then m ≤ 3n− 6.

Corollary 182. K5 is not planar.

This is the main result that we will use to prove that graphs are not
planar, but before proving it, we need a lemma.

Lemma 183. Let G be a connected planar graph with n ≥ 3 vertices. For
any drawing D and any region R in D, `(R) ≥ 3.

Proof. There is no isolated edges or vertices in G but the only way
for a region to have length smaller than 3 is to have a closed walk of
length 2 or 1 on its boundary. This would imply that only one edge
or no edge at all be on the boundary of R, this contradicts our first
statement.

Proof of theorem. Without loss of generality, assume that G is con-
nected (if not, you can add edges and while keeping the upper
bound true). Using the lemma and the last proposition, we have
3 f ≤ ∑ `(R) = 2m, implying that f ≤ 2m

3 . Now, we can plug these
values in Euler’s formula:

n + f + m ≤ n +
2m
3
−m

2 ≤ n− m
3

m ≤ 3n− 6
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This is not a sufficient condition and in fact, we can easily construct
graphs that satisfy it without being planar. For example, add an
isolated vertices to K5, the inequality does not hold anymore but
clearly, the graph is not planar. We could also use this formula to
check if all subgraphs satisfy it and that example would not work.
Although it requires more work, one can still fool this method of
discovering non-planar graph. Consider K5, replace each edge with
a path of length 2 (in other words, add a middle vertex to each edge).
All the subgraphs will pass the test but we can still see that this graph
cannot be planar since K5 is not.

We constructed to non-planar graph from K5 but our only proof of
their planarity was to say that it was obvious from the drawing. We
develop some formal tools to work with that.

Definition 184 (Subdivision). Let G = (V, E) be a planar graph
and e = {u, w} ∈ E. The subdivision of e in G is defined as the
graph G′ = (V′, E′) where V′ = V ∪ {x} and E′ = E \ {e} ∪
{{v, x}, {x, w}}19. For any graph H, we say that G contains a subdivi- 19 We will denote G′ = G sbd e. Also,

observe that all the vertices in G keep
their degree in G′

sion of H if there is a sequence H0, . . . , H` with H0 = H, H` ⊆ G and
where for each i, Hi is a subdivision of some edge in Hi−1.

The statements we said were obvious just above follow from the
following lemma.

Lemma 185. G is planar if and only if G sbd e is planar.

Definition 186 (Complete bipartite graph). The complete bipartite
graphs denoted Ka,b are graphs with one empty graph on a vertices
connected with all the edges to an empty graph on b vertices. Clearly,
K1,b is a tree so it is planar. Moreover, K2,b can be drawn on the plane
by first drawing K1,b as a tree and then drawing a new vertex on the
leaves’ side, connecting it to all the leaves. If a, b ≥ 3, Ka,b is not planar,
although they pass the test of Theorem 173.

Since K3,3 will be important, we do as for K5 and prove it is not
planar.

Proposition 187. K3,3 is not planar.

Proof. K3,3 is bipartite, so it does not contain any odd cycle. In par-
ticular, it is triangle free, implying that for any region R in any of its
drawing, we have `(R) ≥ 4. Thus, we have 2|E| = ∑ `(R) ≥ 4 f , where
f denotes the number of regions again20. Suppose K3,3 is planar, by 20 In the following, we will use f to

denote the number of regions, m to
denote the number of edges and n to
denote the number of vertices

Euler’s formula, we have 2 = n + f −m ≤ n− m
2 ⇔ m ≤ 2n− 4. Since

m = 9 and n = 6, this is a contradiction.
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Although it is really important, the following theorem has a really
long proof which we will not give in class.

Theorem 188 (Kuratowski). G is planar if and only if G contains no
subdivision of K5 or K3,3.

Next, we give a definition related to subdivisions.

Definition 189 (Minors). Let G = (V, E) be a planar graph and
e = {u, w} ∈ E. Define G′ = (V′, E′) with V′ = V \ {u, w} ∪ {x} and
E′ = E \ {e ∈ E | e∩ {u, w} 6= ∅} ∪ {{u, x} | {u, v} ∈ E or {u, w} ∈ E}.
In other words, we contract e into a single vertex x that we make
adjacent to the neighbors of v and w. We call G′ the contraction of e in
G. Moreover, we say that G contains a graph H as a minor if there is a
sequence G0, . . . , G` with G0 = G, G` = H and where for each i, Gi is
a contraction of Gi−1 (we also say that H is a minor of G).

Proposition 190. Let G be a planar graph, e ∈ E an edge and G′ be the
contraction of e, then G′ is planar.

Proof. Take any drawing of G, put the new vertex on the midpoint
of e and pull all the edges coming at the endpoints of e along e, until
they connect with x. Since there are finitely many edges, we can do
this and end up with a plane drawing for G′.21 21 This proof is not really rigorous but

as we said multiple times, a rigorous
proof needs some theory that is out of
the scope of this class

This proposition implies that if G is planar, then any minor of G
must be planar. Hence, we can show the Petersen graph is not planar
by showing it contains K5 as a minor. We will see that this is links to
Kuratowski’s theorem in a really nice way.

Theorem 191 (Kuratowski-Wagner). G is planar if and only if G does not
contain K5 nor K3,3 as a minor.

Again, we will not do the proof of this theorem in class and we will
go straight to the last section of this course.

Colorings of planar graphs

Recall the map coloring problem. Given a political map, is it possible
to color it using only four colors such that no adjacent territories
are colored with the same color. We can formulate this in a more
formal way, using what we have learned until this point. Given a
planar graph G with a drawing D, is it possible to color the regions
using only four colors such that no regions of the same color share a
boundary edge.

In order to use what we already know from vertex colorings, we
will reformulate once again. Construct a graph G∗ = (V∗, E∗) where
each region is represented by a vertex and regions sharing a border
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are adjacent. We want to know if χ(G∗) ≤ 4. First, we observe that G∗

is also planar. Second, we give a theorem that makes the following
proofs easier, however we do not give the proof of it.

Theorem 192. Every planar graph can be drawn using straight lines only.

Next, our goal is to introduce the beast that is the four color the-
orem. The first proof of this theorem was the first accepted proof
that used computers. In short, they considered above a thousand of
different configurations that were verified computationally and then
deduced the result for any planar graph. Although, the number of
different cases that need to be verified was greatly reduced over the
years, the proof is still quite arduous, so we will not state it here.

Theorem 193 (Four color theorem). Let G be a planar graph, then
χ(G) ≤ 4.

Surprisingly, proving the weaker five and six color theorem is
way easier and accessible to a student in this class. We start with the
simplest.

Theorem 194 (Six color theorem). Let G be a planar graph, then χ(G) ≤
6.

Proof. We claim that there exists a vertex v ∈ V(G) of degree
less or equal to 5. This implies that G is 5-degenerate since remov-
ing vertices maintains the planarity. We have already seen that
a 5-degenerate graph can be colored with six color, so this shows
χ(G) ≤ 6.

It remains to prove our claim. Suppose that no vertices is of degree
five or less, then 2m = ∑v∈V deg(v) ≥ 6n. This implies m ≥ 3n,
but G is planar, so we have a contradiction (recall that m ≤ 3n− 6 is
necessary).

Theorem 195 (Five color theorem). Let G be a planar graph, then χ(G) ≤
5.

Proof. We will use induction on n = |V|. If n ≤ 5, the result is trivial.
Suppose that it holds up to n − 1 with n ≥ 6, we start considering
two general cases. If G is disconnected, then apply induction on each
connected components, if ∃v ∈ V, deg(v) ≤ 4, then use induction
on G− v and color v with the color not already used by its neighbors.
Suppose we are not in any of both cases, then by the claim in the
proof of the six color theorem, there is a vertex v ∈ V of degree 5. Let
N(v) = {w1, . . . , w5} and ei = {v, wi} for i ∈ {1, . . . , 5}. Since G is
planar, no subgraph of G is isomorphic to K5, in particular, none of
its subgraphs is isomorphic to K6. This means that there exists i < j
such that {wi, wj} /∈ E. Let G′ be the contraction of ei and ej in G and
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call x to be the vertex resulting of the contraction of v, wi and wj. We
can use induction to color G′ with five colors with a proper vertex
coloring c.

Without loss of generality, c(x) = 1. Expand the coloring c to a
coloring c′ of G by keeping the same color for all the vertices in G
and G′. We still need to color v, wi and wj. Since the neighbors of
wi and wj were adjacent to x in G′, none of them are colored with 1,
hence, we can put c′(wi) = c′(wj) = 1 and still have a proper coloring.
Lastly, v has five neighbors including wi and wj which have the same
color. Thus, there is at least one color left for c′(v) such that c′ is still
proper.

We continue giving some important results, some with proofs,
some without.

Theorem 196. Let G be a K5 minor-free graph, then χ(G) ≤ 4.

Theorem 197. Let G be a K4 minor-free graph, then χ(G) ≤ 3.

Theorem 198. Let G be a K3 minor-free graph, then χ(G) ≤ 2.

Proof. Observe that K3 is the smallest cycle, so if G contains a cycle,
then it contains G as a minor. Our assumption then implies thtat G
has no cycle, namely, it is a forest and it is bipartite, so χ(G) ≤ 2.

Theorem 199. Let G be a K4 minor-free graph, then m ≤ 2n− 3, where
m = |E| and n = |V|.

Proof. We use induction on n. If n = 2, the result is trivial. Now,
suppose it holds up to n− 1, where n ≥ 3. If G is 3-connected, take
two arbitrary vertices u, w ∈ V. There exists three vertex-disjoint
paths P1, P2 and P3 that join them. Also, we know from Menger’s
theorem that G− u− w is connected. Take Q to be a path of shortest
length in G − u− w between two vertices x ∈ V(P1) and y ∈ V(P2).
Now, clearly, the subgraph P1 ∪ P2 ∪ P3 ∪Q is a subdivision of K4. This
contradicts the fact that G is K4 minor-free.

If G is disconnected, just use induction on each connected com-
ponents and observe that adding the components together will not
change the inequality. If G is connected but has a cut vertex v. De-
note G1 to be a component of G − v and G2 to be the rest. We use
induction on G1 and G2 and then combine the inequalities to get
m ≤ 2n− 6 + 2 = 2n− 4.

Finally, if G is 2-connected and {u, w} ⊆ V is a vertex cut, let C1

be a connected component of G − u− w and C2 be the rest. Denote
G1 = C1 + u + w + {u, w} and G2 = C2 + u + w + {u, w}. In
order to use induction on them, we need to check if G1 and G2 are K4

minor-free. Without loss of generality, suppose that G1 contains K4
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as a minor. Since C1 + u + w does not contain it (it is a subgraph of
G), then there must be two paths in G1 from u to w that are disjoint
from {u, w}, this contradicts the fact that {u, w} is a vertex cut. Now,
we use induction on G1 and G2 and combine the results to obtain
m + 1 ≤ 2n− 6 + 4⇔ m ≤ 2n− 3.
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