
Dao Chen Yuan MATH 350 Class Notes December 13, 2020

1 Graphs

Definition 1.1. A graph G is a pair of sets (V (G), E(G)) where

• V (G) is the set of vertices

• E(G) is the set of edges such that each edge has one or two vertices as ends. More

formally, E(G) is equipped with a function φG : E(G) → {{u, v} : u, v ∈ V (G), u 6=
v} ∪ {{u} : u ∈ V (G)}. For e ∈ E(G), φG(e) is then called the ends of e

Definition 1.2. A loop is an edge with one end.

Definition 1.3. A pair of (distinct) edges with the same ends are parallel.

Definition 1.4. A graph is simple if it has no loops or parallel edges.

Definition 1.5. An edge joins its ends.

Definition 1.6. An edge e is incident to a vertex v if v is an end of e.

Definition 1.7. The degree of v ∈ V (G) is the number of edges of G incident to v. Notation:

deg(v) or degG(v).

Theorem 1.1 (Handshaking Lemma). For any graph G,
∑

v∈V (G) degG(v) = 2|E(G)|.

Definition 1.8. Two (distinct) vertices are adjacent (neighbors) if they are joined by an

edge.

Definition 1.9. The null graph is the smallest graph (i.e. G = (V (G), E(G)) where V (G) =

∅ = E(G) is the null graph)

Definition 1.10. The simple graph on n vertices with every pair of vertices adjacent is called

complete and is denoted by Kn.

Definition 1.11. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

We write V ⊆ G.

Definition 1.12. Let H1, H2 ⊆ G. Then H1 ∪H2 where V (H1 ∪H2) = V (H1)∪ V (H2) and

E(H1 ∪H2) = E(H1)∪E(H2) is a subgraph of G. We call H1 ∪H2 the union of H1 and H2.

Definition 1.13. Let H1, H2 ⊆ G. Then H1 ∩H2 where V (H1 ∩H2) = V (H1)∩ V (H2) and

E(H1 ∩ H2) = E(H1) ∩ E(H2) is a subgraph of G. We call H1 ∩ H2 the intersection of H1

and H2.
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Definition 1.14. Two graphs G and H are isomorphic if they are the same up to relabelling

vertices or, formally, if ∃ψ : V (G) ∪ E(G) → V (H) ∪ E(H), ψ(V (G)) = V (H), ψ(E(G)) =

E(H), ψ bijective, φH(ψ(e)) = φG(e)∀e ∈ E(G).

Definition 1.15. A path on n vertices, denoted Pn, is a graph with vertex set {v1, . . . , vn}
and edge set {e1, . . . , en−1} such that ei joins vi and vi+1 for every 1 ≤ i ≤ n− 1. We say the

path has ends v1 and vn. We say H ⊆ G is a path in G if H and some path are isomorphic

Definition 1.16. A cycle on n vertices, Cn, has vertex set {v1, . . . , vn}, edge set {e1, . . . , en}
such that ei has ends vi and vi+1 for every 1 ≤ i ≤ n− 1 and en has ends v1 and vn. We say

H ⊆ G is a cycle in G if H and some cycle are isomorphic.

Definition 1.17. The length of a path or cycle is the number of edges in it.

Definition 1.18. A walk in a graph G is a non-empty alternating sequence of vertices and

edges of G, v0e1v1e2v2 . . . ekvk, such that ei has ends vi−1 and vi for 1 ≤ i ≤ k. We say the

walk has ends v0 and vk.

Definition 1.19. A walk v0e1v1e2v2 . . . ekvk has length k, the number of edges in the se-

quence.

Definition 1.20. A walk is closed if its ends are the same.

2 Connectivity

Definition 2.1. For u, v ∈ V (G), u 6= v, u is connected to v if there exists a walk in G with

ends u and v.

Lemma 2.1. If there exists a walk in G with ends u, v ∈ V (G) then there exists a path with

ends u and v.

Definition 2.2. A graph G is connected if any u, v ∈ V (G), u 6= v are connected.

Lemma 2.2. A graph G is not connected if and only if there exists a partition (X, Y ),

X, Y 6= ∅ of V (G) such that no edge of G has one end in X and the other in Y .

Lemma 2.3. If H1, H2 ⊆ G are connected and V (H1)∩V (H2) 6= ∅ then H1∪H2 is connected.

Definition 2.3. A (connected) component of a graph G is a maximal connected subgraph

of G.
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Lemma 2.4. Every v ∈ V (G) belongs to a unique component.

Lemma 2.5. H ⊆ G is a component of G if and only if H is connected and E(H) contains

all e ∈ E(G) with at least one end in H.

Definition 2.4. For a graph G, comp(G) is the number of components of G (well-defined

by Lemma 2.4).

Definition 2.5. For a graph G, e ∈ E(G), G \ e where V (G \ e) = V (G) and E(G \ e) =

E(G) \ {e} is a graph.

Definition 2.6. For a graph G, v ∈ V (G), G \ v where V (G\e) = V (G)\{v} and E(G\e) =

E(G) \ {e ∈ E(G) : v ∈ φG(e)} is a graph.

Definition 2.7. For a graph G, H ⊆ G, G \H where V (G \ H) = V (G) \ V (H) and

E(G \H) = E(G) \ (E(H) ∪ {e ∈ E(G) : φG(e) ∩ V (H) 6= ∅}) is a graph.

Definition 2.8. Let G be connected. e ∈ E(G) is a cut edge of G if e is not an edge of any

cycle in G.

Lemma 2.6. Let e ∈ E(G) have ends u, v ∈ V (G). Then exactly one of the following holds:

• e is a cut edge, u, v belong to different components of G\e, comp(G\e) = comp(G)+1;

• e is not a cut edge, u, v belong to the same component of G\e, comp(G) = comp(G\e).

3 Trees and Forests

Definition 3.1. A forest is a graph with no cycles (⇔ every edge in a forest is a cut edge).

Definition 3.2. A tree is a non-null connected forest.

Lemma 3.1. Let F be a non-null forest. Then comp(F ) = |V (F )| − |E(F )|.

Definition 3.3. A leaf in a graph is a vertex of degree one.

Lemma 3.2. Let T be a tree with |V (T )| ≥ 2. Let X be the set of leaves of T and let Y be

the set of vertices of degree ≥ 3. Then |X| ≥ |Y |+ 2.

Remark. T has at least 2 leaves.
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Lemma 3.3. If a tree has exactly 2 leaves u, v, it is a path with ends u, v.

Lemma 3.4. Let v be a leaf in a tree T . Then T \ v is a tree.

Lemma 3.5. Let v be a leaf in a graph G. If G \ v is a tree then G is a tree.

Lemma 3.6. Let T be a tree, u, v ∈ V (T ) then there exists unique path in T with ends u, v.

4 Spanning Trees

Definition 4.1. Let G be a graph. A tree T is a spanning tree of G if T ⊆ G, V (T ) = V (G).

Lemma 4.1. Let G be a connected non-null graph. Let H ⊆ G chosen minimal such that

V (H) = V (G), H connected. Then H is a spanning tree of G.

Lemma 4.2. Let G be a connected non-null graph. Let H ⊆ G chosen maximal such that H

has no cycles. Then H is a spanning tree of G.

Definition 4.2. Let T be a spanning tree in G, let f ∈ E(G) \ E(T ). A fundamental cycle

of f with respect to T is a cycle C ⊆ G such that f ∈ E(C) and C \ f ⊆ T (C \ f is a path

in T ).

Lemma 4.3. Let T be a spanning tree in G. Let f ∈ E(G) \ E(T ). Then there exists a

unique fundamental cycle of f with respect to T .

Lemma 4.4. Let T be a spanning tree in G. Let f ∈ E(G) \E(T ), let C be the fundamental

cycle of f with respect to T . Let T ′ be the graph obtained from T be adding f and deleting

some e ∈ E(C). Then T ′ is a spanning tree of G.

Definition 4.3. Let G be a graph, let w : E(G) → R+. Given a subgraph H of G define

w(H) =
∑

e∈E(H) w(e). A spanning tree T of G is the minimal spanning tree of (G,w)

(MST(G,w)) if w(T ) is minimal among all spanning trees of G.

Corollary 4.5. Let G, T, f be as in Lemma 4.4. Let w : E(G) → R+. If T is MST(G,w)

then w(f) ≥ w(e).

Theorem 4.6. Let G be a graph. Let w : E(G)→ R+, such that w(e) 6= w(f) for any e, f ∈
E(G). Let T be an MST(G,w) and let E(T ) = {e1, . . . , ek} be such that w(e1) < · · · < w(ek).

Then for every 1 ≤ i ≤ k, ei is the edge of G with minimal weight among all edge f where

f /∈ {e1, . . . , ei−1} and where {e1, . . . , ei−1, f} does not contain the edge set of a cycle.
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Theorem 4.7. Consider Kruskal’s algorithm, where

• Input: G connected non-null graph; w : E(G)→ R+;

• For i = 1, . . . , |V (G)| − 1 let ei ∈ E(G) be chosen with w(ei) minimal among {f : f /∈
{e1, . . . , ei−1}, {e1, . . . , ei−1, f} does not contain the edge set of a cycle};

• Output: A tree T with V (T ) = V (G), E(T ) = {e1, . . . , e|V (G)|−1}.

This algorithm outputs MST(G,w).

Theorem 4.8 (Cayley’s formula). The complete graph on n vertices has nn−2 spanning trees.

5 Euler Tours and Hamiltonian Cycles

Lemma 5.1. Let G be a graph, E(G) 6= ∅ and G has no leaves. Then G contains a cycle.

Lemma 5.2. Let G be a graph such that every vertex of G has even degree. Then there exists

cycles C1, . . . , Ck such that (E(C1), . . . E(Ck)) is a partition of E(G), i.e. every edge of G

belongs to exactly one of Ci, 1 ≤ i ≤ k.

Definition 5.1. Let G be a graph. An Euler trail of G is a walk v0e1v1 . . . ekvk such that

{e1, . . . , ek} = E(G) and ei 6= ej∀i 6= j. If v1 = vk then the walk is a Euler tour.

Theorem 5.3 (Euler). If G is a connected graph such that the degree of every vertex of G

is even then G has an Euler tour.

Corollary 5.4. If G is a connected graph such that G contains at most two vertices of odd

degree then G has an Euler trail.

Definition 5.2. A cycle C in G is Hamiltonian if V (C) = V (G).

Lemma 5.5. Let G be a graph. If there exists X ⊆ V (G), X 6= ∅ such that G \X has more

components than |X| then G has no Hamiltonian cycle.

Theorem 5.6 (Dirac-Posa). Let G be a simple graph of n ≥ 3 vertices. Suppose for every

pair of non-adjacent vertices u, v ∈ V (G), deg(u) + deg(v) ≥ n. Then G has a Hamiltonian

cycle.

Corollary 5.7. Let G be a simple graph with n ≥ 3 vertices. Suppose that either:
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1. deg(v) ≥ n
2
∀v ∈ V (G), or

2. |E(G)| ≥
(
n
2

)
− n+ 3.

Then G has a Hamiltonian cycle.

6 Bipartite Graphs

Definition 6.1. A bipartition of a graph G is a partition (A,B) of V (G) such that every

edge of G has exactly one end in A and the other in B.

Definition 6.2. A graph is bipartite if it admits a bipartition.

Lemma 6.1. Trees are bipartite.

Theorem 6.2. Let G be a graph. Then the following are equivalent:

1. G is bipartite

2. G contains no closed walk of odd length

3. G contains no odd cycle (cycle with odd number of vertices)

7 Matching in Bipartite Graphs

Definition 7.1. A matching M on a graph G is a collection of non-loop edges of G such that

every vertex is incident to at most one edge in M . The matching number is the maximum

size of a matching in G, denoted ν(G).

Definition 7.2. X ⊆ V (G) is a vertex cover in G if every edge of G has an end in X. The

minimum size of a vertex cover in G is denoted τ(G).

Lemma 7.1. Let G be loopless graph. Then ν(G) ≤ τ(G) ≤ 2ν(G).

Definition 7.3. Let M be matching in graph G. A path P in G is M -alternating if the

edges of P alternate between edges of M and E(G) \M (⇔ if every internal vertex of P is

incident to an edge of E(P ) ∩M).

Definition 7.4. An M -alternating path P is M -augmenting if |V (P )| ≥ 2 and the ends of

P are not incident to edges of M .
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Lemma 7.2. A matching M in G has maximum size (|M | = ν(G)) if and only if there does

not exist an M-augmenting path in G.

Theorem 7.3 (Konig). If G is bipartite then ν(G) = τ(G).

Theorem 7.4. Let d ≥ 1 be an integer, let G be bipartite graph such that degG(v) = d∀v ∈
V (G). Then G has perfect matching, i.e. every vertex of G is incident to an edge in M .

Definition 7.5. For a set S ⊆ V (G) let N(S) denote the set of all vertices of G adjacent to

at least one vertex in S.

Theorem 7.5 (Hall). Let G be a bipartite graph with bipartition (A,B). Then G has

matching M covering A (i.e. every vertex of A is incident to an edge of M) if and only

if |N(S)| ≥ |S| for every S ⊆ A.

8 Separations and Menger’s Theorem

Definition 8.1. A separation of G is a pair (A,B) such that A ∪ B = V (G), no edge of G

has one end in B \ A, the other in A \B. The order of separation is |A ∩B|.

Remark. s, t ∈ V (G) not connected⇔ there exists separation (A,B) of order 0 where s ∈ A,

t ∈ B.

Theorem 8.1 (Menger). Let s, t ∈ V (G) be a pair of distinct, non-adjacent vertices of G

and let k ≥ 1 be an integer. Then exactly one of the following holds:

1. there exists paths P1, . . . , Pk in G with ends s, t and otherwise pairwise vertex disjoint;

2. there exists a separation (A,B) of G such that s ∈ A \B, t ∈ B \ A of order less than

k.

Theorem 8.2. Let Q,R ⊆ V (G), k ≥ 1 integer. Then exactly one of the following holds:

1. there exists pairwise disjoint paths P1, . . . , Pk in G each with one end in Q, the other

in R;

2. there exists a separation (A,B) of G of order less than k such that Q ⊆ A, R ⊆ B.

Corollary 8.3. Let G be a k-connected graph, s, t ∈ V (G) distinct. Then there exist paths

P1, . . . , Pk from s to t pairwise disjoint except for their ends.
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Definition 8.2. Let X ⊆ V (G), a cut in G corresponding to X, δ(X), is the collection of

all edges of G with one end in X and the other in V (G) \X.

Remark. Every path from s ∈ X to t /∈ X has an edge in δ(X).

Definition 8.3. A line graph L(G) of a graph G has vertex set E(G) and e, f ∈ V (L(G)) =

E(G) are adjacent in L(G) if and only if they share an end in G.

Theorem 8.4 (Menger for edge disjoint paths). Let s, t ∈ V (G) be distinct. Let k ≥ 1 be an

integer. Then exactly one of the following holds:

1. There exists P1, . . . , Pk paths in G each with ends s, t such that E(Pi)∩E(Pj) = ∅ for

i 6= j

2. There exists X ⊆ V (G) such that s ∈ X, t ∈ V (G) \X, |δ(X) < k|.

9 Directed Graphs and Network Flows

Definition 9.1. A directed graph or a digraph is a graph in which for every edge e, one of

its ends is chosen as the head of e and the other as the tail of e. e is said to be directed from

its tail to its head.

Definition 9.2. A directed path from u to v is a path from u to v in which every edge is

traversed from its tail to its head as we follow the path from u to v.

Definition 9.3. For X ⊆ V (G) let δ+(X) be the set of all edges of G with tail in X and

head in V (G) \ X. Let δ−(X)= δ+(V (G) \ X). For v ∈ V (G) let δ+(v)=δ+({v}) and

δ−(v)=δ−({v}).

Lemma 9.1. Let G be a digraph. Let s, t ∈ V (G). Then there does not exist a directed

path in G from s to t if and only if there eixsts X ⊆ V (G) such that s ∈ X, t ∈ V (t) \ X,

δ+(X) = ∅.

Definition 9.4. Let G be a digraph, s, t ∈ V (G) distinct. A function φ : E(G)→ R+ is an

(s, t)-flow on G if ∑
e∈δ−(v)

φ(e) =
∑

e∈δ+(v)

φ(e)
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for every v ∈ V (G) \ {s, t}. The value of φ is∑
e∈δ−(s)

φ(e)−
∑

e∈δ+(s)

φ(e)

Lemma 9.2. Let φ be an (s, t)-flow on a digraph G with value k. Then for any X ⊆ V (G)

such that s ∈ X, t ∈ V (G) \X, we have∑
e∈δ+(X)

φ(e)−
∑

e∈δ−(X)

φ(e) = k

Definition 9.5. A flow φ : E(G)→ R+ is integral if φ(e) ∈ Z+ for every e ∈ E(G).

Lemma 9.3. Let φ be an integral (s, t)-flow on a digraph G with value k ≥ 0. Then there

exist directed paths P1, . . . , Pk from s to t such that every edge of G belongs to at most φ(e)

of these paths.

Definition 9.6. Let c : E(G)→ Z+ be a capacity function. An (s, t)-flow φ is c-admissible

if φ(e) ≤ c(e) for every e ∈ E(G).

Definition 9.7. Given graph G and capacity function c, a path P in G from s to v is

φ-augmenting for an (s, t)-flow φ if

• φ(e) ≤ c(e) − 1 if e ∈ E(P ) is traversed in the forward direction as we go from s to v

along P , and

• φ(e) ≥ 1 if e ∈ E(P ) is traversed in the backward direction.

Lemma 9.4. Let φ be an integral c-admissible (s, t)-flow on G of value k. If there exists a

φ-augmenting path P from s to t then there exists an integral c-admissible (s, t)-flow on G

of value k + 1.

Theorem 9.5 (Max flow min cut, Ford-Fulkerson). Let k ≥ 1 be an integer and let c be a

capacity function. Then exactly one of the following holds:

1. There exists an integral c-admissible (s, t)-flow of value at least k

2. There exists X ⊆ V (G), s ∈ X, t /∈ X such that∑
e∈δ+(X)

c(e) < k
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10 Independent Sets, Cliques and Ramsey Theorem

Definition 10.1. A set S ⊆ V (G) is independent if no edge of G has both ends in S. α(G),

the independence number, is the maximum size of an independent set.

Remark. No v ∈ S independent set can be incident to a loop.

Definition 10.2. A set L ⊆ E(G) is an edge covering of G if every vertex of G is incident to

an edge of L. ρ(G) is the minimum size of an edge covering in G (only well-defined if every

vertex of G is incident to at least one edge).

Remark. ρ(G) ≥ α(G) and ρ(G) ≥ |V (G)|
2

Lemma 10.1. α(G) + τ(G) = |V (G)| for any graph G.

Theorem 10.2 (Gallai). Let G be a simple graph such that every vertex of G is incident to

an edge. Then ν(G) + ρ(G) = |V (G)|.

Corollary 10.3. Let G be a simple bipartite graph such that every vertex is incident to an

edge. Then α(G) = ρ(G).

Definition 10.3. Let G be a simple graph. The complement of G is the graph G such that

V (G) = V (G) and a pair of vertices is adjacent in G if and only if it is non-adjacent in G.

Definition 10.4. A clique X ⊆ V (G) is a set of pairwise adjacent vertices. ω(G), the clique

number, is the maximum size of a clique in G, or, equivalently, the maximum t such that Kt

is a subgraph of G

Remark. If G is simple then X is a clique in G ⇔ X is independent in G.

Definition 10.5. Given integer s, t ≥ 1, the Ramsey number R(s, t) is the minimal N such

that every simple graph G with |V (G)| = N either contains an independent set of size s or

a clique of size t (or both).

Remark. R(s, t) = R(t, s), R(1, t) = 1 and R(2, t) = t.

Theorem 10.4 (Ramsey, Erdos-Szekeres). R(s, t) exists for all s, t ≥ 1 and

R(s, t) ≤ R(s− 1, t) +R(s, t− 1)

for s, t ≥ 2.
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Corollary 10.5. For s, t ≥ 1,

R(s, t) ≤
(
s+ t− 2

s− 1

)
Lemma 10.6. If (

N

s

)
21−(s

2) < 1

then there exists a simple graph G with |V (G)| = N and no clique or independent set of size

s (i.e. R(s, s) > N).

Theorem 10.7 (Erdos). For s ≥ 2, R(s, s) ≥ 2
s
2 = (

√
2)s.

11 Vertex Coloring

Definition 11.1. Let G be a graph and S a set with |S| = k. We say that c : V (G)→ S is

a (proper) k-coloring of G if for every e ∈ E(G) with ends u, v we have c(u) 6= c(v).

Definition 11.2. The chromatic number χ(G) of a graph G is the minimum k such that there

exists a k-coloring of G. If G has a loop then no k-coloring of G is possible, so χ(G) =∞.

Remark. G is 1-colorable ⇔ G is edgeless; G is 2-colorable ⇔ G is bipartite.

Definition 11.3. The set S in the definition of k-coloring is the set of colors. The set of all

vertices of a given color is the color class of that color (formally {v ∈ V (G) : c(v) = s} for

some s ∈ S).

Lemma 11.1. Let G be a loopless graph. Then

χ(G) ≥ ω(G)

and

χ(G) ≥
⌈
|V (G)|
α(G)

⌉
Definition 11.4. A graph G is k-degenerate if every non-null subgraph of G contains a

vertex of degree in the subgraph at most k (i.e. for every H ⊆ G non-null there exists

v ∈ V (H) : degH(v) ≤ k).

Remark. G is 1-degenerate ⇔ G is a forest.

Lemma 11.2. If G is loopless and k-degenerate then χ(G) ≤ k + 1.
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Definition 11.5. ∆(G) denotes the maximum degree of a vertex in G.

Remark. Every graph is ∆(G)-degenerate.

Corollary 11.3. If G is loopless then χ(G) ≤ ∆(G) + 1

Theorem 11.4 (Brooks). Let G be a connected loopless graph such that G is not complete

and G is not an odd cycle. Then χ(G) ≤ ∆(G).

12 Edge Coloring

Definition 12.1. Let G be a loopless graph. c : E(G)→ S with |S| = k is a k-edge coloring

of G if c(e) 6= c(f) for any pair of distinct e, f ∈ E(G) such that e, f share an end. The

edge coloring number (or edge chromatic number) χ′(G) is the minimum k such that G ad-

mits a k-edge coloring.

Lemma 12.1.

∆(G) ≤ χ′(G) ≤ 2∆(G)− 1

for any loopless graph G with ∆(G) ≥ 1.

Definition 12.2. A graph G is k-regular if degG(v) = k for every v ∈ V (G).

Lemma 12.2. Let G be a graph with ∆(G) ≤ k. Then there exists a k-regular graph H such

that G is a subgraph of H. Moreover, if G is loopless (resp. bipartite, simple) then H be can

be chosen to be loopless (resp. bipartite, simple).

Theorem 12.3 (Konig). If G is bipartite then χ′(G) = ∆(G).

Definition 12.3. A 2-factor in a loopless graph G is a F ⊆ E(G) such that every vertex of

G is incident to exactly 2 edges of F .

Lemma 12.4. Let G be a loopless 2k-regular graph. Then E(G) can be partitioned in k

2-factors.

Theorem 12.5 (Shannon). Let G be a loopless graph. Then χ′(G) ≤ 3
⌈

∆(G)
2

⌉
.

Remark. If G simple then a stronger result exists: χ′(G) ≤ ∆(G) + 1 by Vizing.
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13 Graph Minors and Hadwiger’s Conjecture

Definition 13.1. Let e be a non-loop edge of G with ends u and v. We say that G′ is a

graph obtained from G by contracting e if G′ is obtained by deleting e and identifying u, v

to a single vertex, called a new vertex.

Definition 13.2. A graph H is a minor of G if H can be obtained from G by repeatedly

deleting vertices and/or deleting edges and/or contracting edges.

Remark. Every graph is a minor of itself and the minor relation is transitive: if J is a

minor of H and H a minor of G then J is a minor of G.

Remark. A graph has no K2 minor ⇔ it has no K2 subgraph ⇔ all edges are loops. A graph

has no C1 minor ⇔ it is a forest. A graph has no K3 minor ⇔ it has no cycle of length 3 or

more ⇔ it is a forest with added loops and parallel edges.

Definition 13.3. A graph G is a subdivision of a graph H if G is obtained from H by

replacing edges by internally vertex disjoint paths (i.e. by replacing e ∈ E(H) with ends u, v

by paths P1, . . . , Pk from u to v vertex disjoint except at the ends).

Remark. If G is a subdivision of H then H (or a graph isomorphic to H) is a minor of G.

Lemma 13.1. If G is 3-connected then G has a K4 minor.

Lemma 13.2. Let G be a simple graph with no K4 minor. Let X be a clique in G with

|X| ≤ 2 and X 6= V (G). Then there exists v ∈ V (G) \X such that degG(v) ≤ 2.

Theorem 13.3 (Hadwiger’s conjecture for t = 3). If G is a loopless graph with no K4 minor

then χ(G) ≤ 3.

14 Planar Graphs

Definition 14.1. A (planar) drawing of a graph G in the plane represents vertices of G as

distinct points in the plane R2 and edges of G as curves which join the points corresponding

to their ends, such that these curves do not intersect themselves or each other.

Definition 14.2. A graph G is planar if it admits a planar drawing.

13
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Definition 14.3. The points of the plane which do not belong to the drawing of G are

divided into regions, where two points belong to the same region if they can be joined by a

curve which does not intersect the drawing.

Remark. The Jordan curve theorem states that any closed simple curve (a continuous in-

jective function φ : [0, 1]→ R2) separates the plane into two regions.

Lemma 14.1. Let G be a graph drawn in the plane. Let e ∈ E(G). Then the regions on

different sides of e are the same if and only if e is a cut-edge of G.

Definition 14.4. Given a planar graph G, let Reg(G) denote the number of regions in any

drawing of G in the plane.

Theorem 14.2 (Euler’s formula). Let G be a planar non-null graph. Then

|V (G)| − |E(G)|+ Reg(G) = 1 + comp(G)

Remark. Reg(G) is independent on the drawing. If G is connected then |V (G)| − |E(G)|+
Reg(G) = 2.

Definition 14.5. The length of a region of a drawing of G is the number of edges on its

boundary, with edges such that this region lies on both sides of them counted twice.

Lemma 14.3. Let G be a connected simple graph drawn in the plane, with |E(G)| ≥ 2. Then

the length of every region of G is at least 3, and if it is 3 then the boundary is a cycle of

length 3.

Lemma 14.4. If G is a simple planar graph, |E(G)| ≥ 2 then |E(G)| ≤ 3|V (G)| − 6. If G

contains no length 3 cycles then |E(G)| ≤ 2|V (G)| − 4.

Definition 14.6. Km,n called complete bipartite graph is a simple bipartite graph that ad-

mits a bipartition (A,B) with |A| = m, |B| = n and every vertex of A is adjacent to every

vertex of B.

Remark. |E(Km,n)| = mn; |E(K3,3)| = 9 > 2|V (K3,3)| − 4 = 8 so K3,3 is non planar.

Corollary 14.5. Let G be a simple palanr graph, |E(G)| ≥ 2. Then∑
v∈V (G)

(6− deg(v)) ≥ 12

Corollary 14.6. If G is a simple non-null planar graph then degG(v) ≤ 5 for some v ∈ V (G)

(thus G is 5-degenerate and χ(G) ≤ 6).

14
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15 Kuratowski’s Theorem

Lemma 15.1. Let G be a 2-connected loopless graph drawn in the plane. Then every region

is bounded by a cycle.

Lemma 15.2. Let C be a cycle, X, Y ⊆ V (C), |V (C)| ≥ 2. Then at least one of the following

holds:

1. There exist z1, z2 ∈ V (C) distinct and two paths P,Q with ends z1 and z2 such that

P ∪Q = C, X ⊆ V (P ), Y ⊆ V (Q)

2. There exists distinct x1, x2 ∈ X, y1, y2 ∈ Y such that x1, y1, x2, y2 appear on C in this

order

3. X = Y and |X| = |Y | = 3.

Theorem 15.3 (Kuratowski-Wagner). A graph G is non-planar if and only if either K5 or

K3,3 is a minor of G.

Theorem 15.4 (Kuratowski). A graph G is non-planar if and only if G contains a subdivision

of K5 or K3,3 as a subgraph.

Remark. There is a theorem that extends Kuratowski’s theorem to the projective plane due

to Archdeacon: there is a list of 35 graphs such that a graph G can be drawn in the projective

plane if and only if it contains none of them as minors (equivalently, if G does not contain

as subgraph a subvision of one of 103 graphs).

Remark. There is a theorem due to Robertson and Seymour that states for any surface Σ

there exists a finite list H1, . . . , Hk of graphs such that G can be drawn on Σ if and only if it

contains no Hi as minor.

16 The Four Color Theorem

Theorem 16.1 (Heawood). If G is planar and loopless then χ(G) ≤ 5.

Definition 16.1. A drawing of G in the plane is a triangulation if the boundary of every

region is a triangle (cycle of length 3).

Remark. Maximal planar simple graphs correspond to triangulations.
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Definition 16.2. Let G be a connected graph drawn in the plane. The graph G∗ drawn in

the plane is the dual of G if

• Every region of G contains exactly one vertex of G∗,

• every edge of G is crosed by exactly one of G∗ and the drawings of G and G∗ are

otherwise disjoint, and

• |E(G)| = |E(G∗)|

Theorem 16.2 (Tait). Let G be a planar triangulation and let G∗ be its dual. Then χ(G) ≤
4⇔ χ′(G∗) = 3.

Remark. This shows that the four color theorem is equivalent to the statement ”every 3-

regular 2-connected planar graph is 3-edge colorable”.

Remark. Consider this theorem due to Kaufman: for any pair of ”bracketings” of the product

u1 × · · · × um there exists a choice of un ∈ {ı̂, ̂, k̂} for every 1 ≤ n ≤ m such that the

corresponding products are the same and non-zero. This theorem is equivalent to the four

color theorem.
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