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1 Graphs

Definition 1.1. A graph G is a pair of sets (V(G), E(G)) where

e V(G) is the set of vertices

e FE(G) is the set of edges such that each edge has one or two vertices as ends. More
formally, F(G) is equipped with a function ¢¢ : E(G) — {{u,v} : u,v € V(G),u #
v}U{{u}:u e V(G)}. For e € E(G), ¢g(e) is then called the ends of e

Definition 1.2. A loop is an edge with one end.

Definition 1.3. A pair of (distinct) edges with the same ends are parallel.
Definition 1.4. A graph is simple if it has no loops or parallel edges.
Definition 1.5. An edge joins its ends.

Definition 1.6. An edge e is incident to a vertex v if v is an end of e.

Definition 1.7. The degree of v € V(@) is the number of edges of GG incident to v. Notation:
deg(v) or degg(v).
Theorem 1.1 (Handshaking Lemma). For any graph G, 3_ v g dega(v) = 2|E(G)|.

Definition 1.8. Two (distinct) vertices are adjacent (neighbors) if they are joined by an

edge.

Definition 1.9. The null graph is the smallest graph (i.e. G = (V(G), E(G)) where V(G) =
@ = E(G) is the null graph)

Definition 1.10. The simple graph on n vertices with every pair of vertices adjacent is called

complete and is denoted by K,.

Definition 1.11. A graph H is a subgraph of a graph G if V(H) C V(G) and E(H) C E(G).
We write V C G.

Definition 1.12. Let Hy, H, C G. Then Hy U Hy where V(H; U Hy) = V(H;) UV (Hs) and
E(H,UH,) = E(H,)U E(H,) is a subgraph of G. We call H; U H, the union of H; and H,.

Definition 1.13. Let Hy, H, C G. Then Hy N Hy where V(H; N Hy) = V(H;) NV (Hs) and
E(H,N Hy) = E(Hy) N E(H,) is a subgraph of G. We call H; N Hy the intersection of H;
and H,.
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Definition 1.14. Two graphs G and H are isomorphic if they are the same up to relabelling
vertices or, formally, if 3 : V(G)U E(G) - V(H)U E(H), v(V(G)) = V(H), v(E(G)) =
E(H), ¢ bijective, ¢ (¥(e)) = pa(e)Ve € E(G).

Definition 1.15. A path on n vertices, denoted P,, is a graph with vertex set {vy,...,v,}

and edge set {eq,...,e,_1} such that e; joins v; and v;4; for every 1 < i < n—1. We say the

path has ends v; and v,,. We say H C G is a path in GG if H and some path are isomorphic

Definition 1.16. A cycle on n vertices, C,,, has vertex set {vy,...,v,}, edge set {ey,...,e,}
such that e; has ends v; and v;;1 for every 1 <7 <n —1 and e, has ends v; and v,. We say

H C G is acyclein G if H and some cycle are isomorphic.
Definition 1.17. The length of a path or cycle is the number of edges in it.

Definition 1.18. A walk in a graph G is a non-empty alternating sequence of vertices and
edges of G, vgejvieavs . .. exug, such that e; has ends v;_; and v; for 1 < i < k. We say the

walk has ends vy and vy,.

Definition 1.19. A walk vpejvieqvs . .. exv has length k, the number of edges in the se-

quence.

Definition 1.20. A walk is closed if its ends are the same.

2 Connectivity

Definition 2.1. For u,v € V(G),u # v, u is connected to v if there exists a walk in G with

ends v and v.

Lemma 2.1. If there exists a walk in G with ends u,v € V(QG) then there exists a path with

ends u and v.
Definition 2.2. A graph G is connected if any u,v € V(G),u # v are connected.

Lemma 2.2. A graph G is not connected if and only if there exists a partition (X,Y),
XY # @ of V(G) such that no edge of G has one end in X and the other in'Y.

Lemma 2.3. If H, Hy C G are connected and V (H,)NV (Hs) # & then HiUH, is connected.

Definition 2.3. A (connected) component of a graph G is a maximal connected subgraph
of G.
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Lemma 2.4. Every v € V(QG) belongs to a unique component.

Lemma 2.5. H C G is a component of G if and only if H is connected and E(H) contains
all e € E(G) with at least one end in H.

Definition 2.4. For a graph G, comp(G) is the number of components of G (well-defined
by Lemma 2.4).

Definition 2.5. For a graph G, e € E(G), G\ e where V(G \ ¢) = V(G) and E(G \ e) =
E(G)\ {e} is a graph.

Definition 2.6. For a graph G, v € V(G), G \ v where V(G\e) = V(G)\{v} and E(G\e) =
E(G)\{e € E(G) :v € ¢g(e)} is a graph.

Definition 2.7. For a graph G, H C G, G\ H where V(G \ H) = V(G) \ V(H) and
E(G\H)=E(G)\(E(H)U{e€ E(G) : ¢pcle) NV (H) # @}) is a graph.

Definition 2.8. Let GG be connected. e € E(G) is a cut edge of G if e is not an edge of any
cycle in G.

Lemma 2.6. Let e € E(G) have ends u,v € V(G). Then exactly one of the following holds:
e c is a cut edge, u,v belong to different components of G\ e, comp(G'\ e) = comp(G)+1;

e ¢ is not a cut edge, u,v belong to the same component of G\ e, comp(G) = comp(G \ e).

3 Trees and Forests

Definition 3.1. A forest is a graph with no cycles (< every edge in a forest is a cut edge).
Definition 3.2. A tree is a non-null connected forest.

Lemma 3.1. Let F be a non-null forest. Then comp(F') = |V(F)| — |E(F)|.

Definition 3.3. A leaf in a graph is a vertex of degree one.

Lemma 3.2. Let T be a tree with |V (T')| > 2. Let X be the set of leaves of T and let Y be
the set of vertices of degree > 3. Then | X| > |Y| + 2.

Remark. T has at least 2 leaves.
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Lemma 3.3. If a tree has exactly 2 leaves u, v, it is a path with ends u,v.
Lemma 3.4. Let v be a leaf in a tree T. Then T \ v is a tree.
Lemma 3.5. Let v be a leaf in a graph G. If G\ v is a tree then G is a tree.

Lemma 3.6. Let T be a tree, u,v € V(T) then there exists unique path in T with ends u,v.

4 Spanning Trees

Definition 4.1. Let G be a graph. A tree T is a spanning tree of G if T C G, V(T') = V(G).

Lemma 4.1. Let G be a connected non-null graph. Let H C G chosen minimal such that
V(H)=V(G), H connected. Then H is a spanning tree of G.

Lemma 4.2. Let G be a connected non-null graph. Let H C G chosen mazimal such that H

has no cycles. Then H is a spanning tree of G.

Definition 4.2. Let T" be a spanning tree in G, let f € E(G) \ E(T). A fundamental cycle
of f with respect to T"is a cycle C' C G such that f € E(C) and C'\ f CT (C\ f is a path
inT).

Lemma 4.3. Let T be a spanning tree in G. Let f € E(G)\ E(T). Then there ezists a

unique fundamental cycle of f with respect to T'.

Lemma 4.4. Let T be a spanning tree in G. Let f € E(G)\ E(T), let C be the fundamental
cycle of f with respect to T. Let T' be the graph obtained from T be adding f and deleting
some e € E(C). Then T" is a spanning tree of G.

Definition 4.3. Let G be a graph, let w : E(G) — Ry. Given a subgraph H of G define
w(H) = ZeeE(H)w(e). A spanning tree T of G is the minimal spanning tree of (G,w)

(MST(G,w)) if w(T) is minimal among all spanning trees of G.

Corollary 4.5. Let G, T, f be as in Lemma 4.4. Let w: E(G) — Ry. If T is MST(G,w)
then w(f) > w(e).

Theorem 4.6. Let G be a graph. Let w: E(G) — R, such that w(e) # w(f) for anye, f €
E(G). Let T be an MST(G,w) and let E(T) = {e1,...,exr} be such that w(ey) < --- < w(ey).
Then for every 1 < i < k, e; is the edge of G with minimal weight among all edge f where
fé¢{er,...,ei1} and where {e1,...,e;_1, [} does not contain the edge set of a cycle.

4
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Theorem 4.7. Consider Kruskal’s algorithm, where
e Input: G connected non-null graph; w: E(G) — R, ;

o Fori=1,....|V(G)| =1 let e; € E(G) be chosen with w(e;) minimal among {f : f ¢

{e1,...,ei_1},{e1,...,ei_1, f} does not contain the edge set of a cycle};
o Output: A tree T with V(T) = V(G), E(T) = {e1,....ev@)-1}-
This algorithm outputs MST(G,w).

Theorem 4.8 (Cayley’s formula). The complete graph on n vertices has n™ 2 spanning trees.

5 Euler Tours and Hamiltonian Cycles

Lemma 5.1. Let G be a graph, E(G) # @ and G has no leaves. Then G contains a cycle.

Lemma 5.2. Let G be a graph such that every vertex of G has even degree. Then there exists
cycles Cy,...,Cy such that (E(CY),... E(Cy)) is a partition of E(G), i.e. every edge of G
belongs to exactly one of C;,1 <1 < k.

Definition 5.1. Let G be a graph. An Euler trail of G is a walk vgeqv; ... epv, such that
{e1,...,ex} = E(G) and e; # ¢;Vi # j. If vy = v, then the walk is a Euler tour.

Theorem 5.3 (Euler). If G is a connected graph such that the degree of every vertex of G

15 even then G has an Euler tour.

Corollary 5.4. If G is a connected graph such that G contains at most two vertices of odd
degree then G has an Euler trail.

Definition 5.2. A cycle C in G is Hamiltonian if V(C) = V(G).

Lemma 5.5. Let G be a graph. If there exists X C V(G), X # @ such that G\ X has more

components than | X| then G has no Hamiltonian cycle.

Theorem 5.6 (Dirac-Posa). Let G be a simple graph of n > 3 wvertices. Suppose for every
pair of non-adjacent vertices u,v € V(G), deg(u) + deg(v) > n. Then G has a Hamiltonian

cycle.

Corollary 5.7. Let G be a simple graph with n > 3 vertices. Suppose that either:

5
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1. deg(v) > 5Vv € V(G), or
2. [E(G)| > (5) —n+3.

Then G has a Hamiltonian cycle.

6 Bipartite Graphs

Definition 6.1. A bipartition of a graph G is a partition (A, B) of V(G) such that every
edge of GG has exactly one end in A and the other in B.

Definition 6.2. A graph is bipartite if it admits a bipartition.
Lemma 6.1. Trees are bipartite.
Theorem 6.2. Let G be a graph. Then the following are equivalent:
1. G 1is bipartite
2. G contains no closed walk of odd length

3. G contains no odd cycle (cycle with odd number of vertices)

7 Matching in Bipartite Graphs

Definition 7.1. A matching M on a graph G is a collection of non-loop edges of G such that

every vertex is incident to at most one edge in M. The matching number is the maximum

size of a matching in G, denoted v(G).

Definition 7.2. X C V(G) is a vertex cover in G if every edge of G has an end in X. The

minimum size of a vertex cover in G is denoted 7(G).
Lemma 7.1. Let G be loopless graph. Then v(G) < 7(G) < 2v(G).

Definition 7.3. Let M be matching in graph G. A path P in G is M-alternating if the
edges of P alternate between edges of M and E(G) \ M (<& if every internal vertex of P is
incident to an edge of E(P) N M).

Definition 7.4. An M-alternating path P is M-augmenting if |V (P)| > 2 and the ends of
P are not incident to edges of M.
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Lemma 7.2. A matching M in G has mazimum size (|M| = v(Q)) if and only if there does

not exist an M -augmenting path in G.
Theorem 7.3 (Konig). If G is bipartite then v(G) = 7(G).

Theorem 7.4. Let d > 1 be an integer, let G be bipartite graph such that degq(v) = dVv €
V(G). Then G has perfect matching, i.e. every vertex of G is incident to an edge in M.

Definition 7.5. For a set S C V(G) let N(S) denote the set of all vertices of G adjacent to

at least one vertex in S.

Theorem 7.5 (Hall). Let G be a bipartite graph with bipartition (A, B). Then G has
matching M covering A (i.e. every verter of A is incident to an edge of M) if and only
if IN(S)| > |S| for every S C A.

8 Separations and Menger’s Theorem

Definition 8.1. A separation of G is a pair (A, B) such that AU B = V(G), no edge of G
has one end in B\ A, the other in A\ B. The order of separation is |A N B).

Remark. s,t € V(G) not connected < there exists separation (A, B) of order 0 where s € A,
teB.

Theorem 8.1 (Menger). Let s,t € V(G) be a pair of distinct, non-adjacent vertices of G
and let k > 1 be an integer. Then exactly one of the following holds:

1. there exists paths Py, ..., Py in G with ends s,t and otherwise pairwise vertex disjoint;

2. there ezists a separation (A, B) of G such that s € A\ B, t € B\ A of order less than
k.

Theorem 8.2. Let Q, R C V(G), k > 1 integer. Then exactly one of the following holds:

1. there exists pairwise disjoint paths Py, ..., P, in G each with one end in @), the other
m R;

2. there ezists a separation (A, B) of G of order less than k such that Q C A, R C B.

Corollary 8.3. Let G be a k-connected graph, s,t € V(G) distinct. Then there exist paths

Py, ..., P, from s tot pairwise disjoint except for their ends.

7
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Definition 8.2. Let X C V(G), a cut in G corresponding to X, 6(X), is the collection of
all edges of G with one end in X and the other in V(G) \ X.

Remark. FEvery path from s € X tot ¢ X has an edge in 6(X).

Definition 8.3. A line graph L(G) of a graph G has vertex set E(G) and e, f € V(L(G)) =
E(G) are adjacent in L(G) if and only if they share an end in G.

Theorem 8.4 (Menger for edge disjoint paths). Let s,t € V(G) be distinct. Let k > 1 be an
integer. Then exactly one of the following holds:

1. There exists Py, ..., P, paths in G each with ends s,t such that E(P;) N E(P;) = & for
i F ]

2. There ezists X C V(G) such that s € X, t € V(G)\ X, |6(X) < k|

9 Directed Graphs and Network Flows

Definition 9.1. A directed graph or a digraph is a graph in which for every edge e, one of

its ends is chosen as the head of e and the other as the tail of e. e is said to be directed from
its tail to its head.

Definition 9.2. A directed path from u to v is a path from w to v in which every edge is

traversed from its tail to its head as we follow the path from u to v.

Definition 9.3. For X C V(G) let §7(X) be the set of all edges of G with tail in X and

head in V(G) \ X. Let 6~ (X)= 6"(V(G) \ X). For v € V(G) let 6" (v)=6"({v}) and
o (v)=0"({v}).

Lemma 9.1. Let G be a digraph. Let s,t € V(G). Then there does not exist a directed
path in G from s to t if and only if there eixzsts X C V(G) such that s € X, t € V() \ X,
X)) =2.

Definition 9.4. Let G be a digraph, s,t € V(@) distinct. A function ¢ : E(G) — R" is an

(s,t)-flow on G if
Yoode)= Y ¢le)

e€d—(v) ecdt(v)
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for every v € V(G) \ {s,t}. The value of ¢ is
Y dle)— Y dle)

e€d—(s) e€dt(s)

Lemma 9.2. Let ¢ be an (s,t)-flow on a digraph G with value k. Then for any X C V(G)
such that s € X, t € V(G) \ X, we have

Y odle)— > dle) =k

e€dt(X) ecd(X)
Definition 9.5. A flow ¢ : E(G) — R, is integral if ¢(e) € Z for every e € E(G).

Lemma 9.3. Let ¢ be an integral (s,t)-flow on a digraph G with value k > 0. Then there
exist directed paths Py, ..., Py from s to t such that every edge of G belongs to at most ¢(e)
of these paths.

Definition 9.6. Let ¢ : E(G) — Z, be a capacity function. An (s,t)-flow ¢ is c-admissible
if ¢p(e) < c(e) for every e € E(G).

Definition 9.7. Given graph G and capacity function ¢, a path P in G from s to v is
¢p-augmenting for an (s, t)-flow ¢ if

o ¢(e) <c(e)—1if e € E(P) is traversed in the forward direction as we go from s to v

along P, and
o ¢(e) > 1if e € E(P) is traversed in the backward direction.

Lemma 9.4. Let ¢ be an integral c-admissible (s,t)-flow on G of value k. If there exists a
¢-augmenting path P from s to t then there exists an integral c-admissible (s,t)-flow on G
of value k + 1.

Theorem 9.5 (Max flow min cut, Ford-Fulkerson). Let k > 1 be an integer and let ¢ be a
capacity function. Then exactly one of the following holds:

1. There exists an integral c-admissible (s,t)-flow of value at least k

2. There exists X CV(G), s€ X, t ¢ X such that

Z cle) <k

e€st+(X)

9
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10 Independent Sets, Cliques and Ramsey Theorem

Definition 10.1. A set S C V(@) is independent if no edge of G has both ends in S. «(G),

the independence number, is the maximum size of an independent set.

Remark. No v € S independent set can be incident to a loop.

Definition 10.2. A set L C E(G) is an edge covering of G if every vertex of G is incident to

an edge of L. p(G) is the minimum size of an edge covering in G (only well-defined if every

vertex of G is incident to at least one edge).

Remark. p(G) > a(G) and p(G) > |V(2G)|
Lemma 10.1. o(G) + 7(G) = |V(G)] for any graph G.

Theorem 10.2 (Gallai). Let G be a simple graph such that every vertez of G is incident to
an edge. Then v(G) + p(G) = |[V(G)].

Corollary 10.3. Let G be a simple bipartite graph such that every vertex is incident to an
edge. Then a(G) = p(G).

Definition 10.3. Let G be a simple graph. The complement of G is the graph G such that
V(G) = V(G) and a pair of vertices is adjacent in G if and only if it is non-adjacent in G.

Definition 10.4. A clique X C V(@) is a set of pairwise adjacent vertices. w(G), the clique
number, is the maximum size of a clique in G, or, equivalently, the maximum ¢ such that K,

is a subgraph of GG
Remark. If G is simple then X is a clique in G < X is independent in G.

Definition 10.5. Given integer s,t¢ > 1, the Ramsey number R(s,t) is the minimal N such

that every simple graph G with |V(G)| = N either contains an independent set of size s or

a clique of size t (or both).

Remark. R(s,t) = R(t,s), R(1,t) =1 and R(2,t) =t.

Theorem 10.4 (Ramsey, Erdos-Szekeres). R(s,t) exists for all s,t > 1 and
R(s,t) < R(s—1,t) + R(s,t — 1)

for s, t > 2.

10
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Corollary 10.5. For s,t > 1,
s+1—2
R(s,t) <
so= (7707

Lemma 10.6. If

then there exists a simple graph G with |V (G)| = N and no clique or independent set of size
s (i.e. R(s,s)> N).

N|®

Theorem 10.7 (Erdos). For s > 2, R(s,s) > 2

= (Va)"

11 Vertex Coloring

Definition 11.1. Let G be a graph and S a set with |S| = k. We say that ¢: V(G) — S is
a (proper) k-coloring of G if for every e € E(G) with ends u, v we have c¢(u) # c(v).

Definition 11.2. The chromatic number x(G) of a graph G is the minimum £ such that there

exists a k-coloring of G. If G has a loop then no k-coloring of G is possible, so x(G) = oc.
Remark. G is 1-colorable < G is edgeless; G is 2-colorable < G is bipartite.

Definition 11.3. The set S in the definition of k-coloring is the set of colors. The set of all
vertices of a given color is the color class of that color (formally {v € V(G) : ¢(v) = s} for

some s € 5).

Lemma 11.1. Let G be a loopless graph. Then

X(G) =z w(@)

" NOE [%}

Definition 11.4. A graph G is k-degenerate if every non-null subgraph of G contains a
vertex of degree in the subgraph at most k (i.e. for every H C G non-null there exists
veV(H) :degy(v) < k).

Remark. G is 1-degenerate < G is a forest.

Lemma 11.2. If G is loopless and k-degenerate then x(G) < k + 1.

11
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Definition 11.5. A(G) denotes the maximum degree of a vertex in G.

Remark. Fvery graph is A(G)-degenerate.
Corollary 11.3. If G is loopless then x(G) < A(G) +1

Theorem 11.4 (Brooks). Let G be a connected loopless graph such that G is not complete
and G is not an odd cycle. Then x(G) < A(G).

12 Edge Coloring

Definition 12.1. Let G be a loopless graph. ¢ : E(G) — S with |S| = k is a k-edge coloring
of G if c¢(e) # ¢(f) for any pair of distinct e, f € E(G) such that e, f share an end. The

edge coloring number (or edge chromatic number) x'(G) is the minimum & such that G ad-

mits a k-edge coloring.

Lemma 12.1.

A(G) < X(G) <2A(G) -1
for any loopless graph G with A(G) > 1.
Definition 12.2. A graph G is k-regular if deg.(v) = k for every v € V(G).

Lemma 12.2. Let G be a graph with A(G) < k. Then there exists a k-regular graph H such
that G is a subgraph of H. Moreover, if G is loopless (resp. bipartite, simple) then H be can

be chosen to be loopless (resp. bipartite, simple).
Theorem 12.3 (Konig). If G is bipartite then x'(G) = A(G).

Definition 12.3. A 2-factor in a loopless graph G is a F' C E(G) such that every vertex of
G is incident to exactly 2 edges of F.

Lemma 12.4. Let G be a loopless 2k-reqular graph. Then E(G) can be partitioned in k

2-factors.

Theorem 12.5 (Shannon). Let G be a loopless graph. Then x'(G) < 3 [#W

Remark. If G simple then a stronger result exists: X'(G) < A(G) + 1 by Vizing.

12
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13 Graph Minors and Hadwiger’s Conjecture

Definition 13.1. Let e be a non-loop edge of G with ends u and v. We say that G’ is a
graph obtained from G by contracting e if G’ is obtained by deleting e and identifying u, v

to a single vertex, called a new vertex.

Definition 13.2. A graph H is a minor of G if H can be obtained from G by repeatedly

deleting vertices and/or deleting edges and/or contracting edges.

Remark. Fvery graph is a minor of itself and the minor relation is transitive: if J is a

manor of H and H a minor of G then J is a minor of G.

Remark. A graph has no Ky minor < it has no Ky subgraph < all edges are loops. A graph
has no C7 minor < it is a forest. A graph has no K3 minor < it has no cycle of length 3 or

more < it 1s a forest with added loops and parallel edges.

Definition 13.3. A graph G is a subdivision of a graph H if GG is obtained from H by
replacing edges by internally vertex disjoint paths (i.e. by replacing e € E(H) with ends u, v
by paths Py, ..., P, from u to v vertex disjoint except at the ends).

Remark. If G is a subdivision of H then H (or a graph isomorphic to H) is a minor of G.
Lemma 13.1. If G is 3-connected then G has a K4 minor.

Lemma 13.2. Let G be a simple graph with no Ky minor. Let X be a clique in G with
| X| <2 and X # V(G). Then there ezists v € V(G) \ X such that degq(v) < 2.

Theorem 13.3 (Hadwiger’s conjecture for t = 3). If G is a loopless graph with no K, minor
then x(G) < 3.

14 Planar Graphs

Definition 14.1. A (planar) drawing of a graph G in the plane represents vertices of G as

distinct points in the plane R? and edges of G as curves which join the points corresponding

to their ends, such that these curves do not intersect themselves or each other.

Definition 14.2. A graph G is planar if it admits a planar drawing.

13
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Definition 14.3. The points of the plane which do not belong to the drawing of G are
divided into regions, where two points belong to the same region if they can be joined by a

curve which does not intersect the drawing.

Remark. The Jordan curve theorem states that any closed simple curve (a continuous in-

jective function ¢ : [0,1] — R?) separates the plane into two regions.

Lemma 14.1. Let G be a graph drawn in the plane. Let e € E(G). Then the regions on

different sides of e are the same if and only if e is a cut-edge of G.

Definition 14.4. Given a planar graph G, let Reg(G) denote the number of regions in any
drawing of G in the plane.

Theorem 14.2 (Euler’s formula). Let G be a planar non-null graph. Then
V(G)| — |E(G)| + Reg(G) = 1+ comp(G)

Remark. Reg(G) is independent on the drawing. If G is connected then |V (G)| — |E(G)| +
Reg(G) = 2.

Definition 14.5. The length of a region of a drawing of G is the number of edges on its

boundary, with edges such that this region lies on both sides of them counted twice.

Lemma 14.3. Let G be a connected simple graph drawn in the plane, with |E(G)| > 2. Then
the length of every region of G is at least 3, and if it is 3 then the boundary is a cycle of
length 3.

Lemma 14.4. If G is a simple planar graph, |E(G)| > 2 then |E(G)| < 3|V(G)| —6. If G
contains no length 3 cycles then |E(G)| < 2|V(G)| — 4.

Definition 14.6. K,,,, called complete bipartite graph is a simple bipartite graph that ad-

mits a bipartition (A, B) with |A] = m, |B| = n and every vertex of A is adjacent to every

vertex of B.
Remark. |E(K,,,)| =mn; |[E(Ks3)| =9 > 2|V (Ks3)| —4 =8 so K33 is non planar.
Corollary 14.5. Let G be a simple palanr graph, |E(G)| > 2. Then

> (6 deg(v)) > 12

veV(Q)

Corollary 14.6. If G is a simple non-null planar graph then degg(v) <5 for some v € V(G)
(thus G is 5-degenerate and x(G) < 6).
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15 Kuratowski’s Theorem

Lemma 15.1. Let G be a 2-connected loopless graph drawn in the plane. Then every region

18 bounded by a cycle.

Lemma 15.2. Let C be a cycle, X, Y CV(C), |V(C)| > 2. Then at least one of the following
holds:

1. There exist z1,z, € V(C) distinct and two paths P,Q with ends z; and zy such that
PUQ=C, XCV(P),Y CV(Q)

2. There exists distinct x1,x9 € X, y1,y2 € Y such that x1,y1, T2, ys appear on C' in this

order
3. X =Y and | X|=|Y|=3.

Theorem 15.3 (Kuratowski-Wagner). A graph G is non-planar if and only if either Ks or

K33 is a minor of G.

Theorem 15.4 (Kuratowski). A graph G is non-planar if and only if G contains a subdivision
of K5 or K33 as a subgraph.

Remark. There is a theorem that extends Kuratowski’s theorem to the projective plane due
to Archdeacon: there is a list of 35 graphs such that a graph G can be drawn in the projective
plane if and only if it contains none of them as minors (equivalently, if G does not contain

as subgraph a subvision of one of 103 graphs).

Remark. There is a theorem due to Robertson and Seymour that states for any surface ¥
there exists a finite list Hy, ..., Hy of graphs such that G can be drawn on X if and only if it

contains no H; as minor.

16 The Four Color Theorem

Theorem 16.1 (Heawood). If G is planar and loopless then x(G) < 5.

Definition 16.1. A drawing of GG in the plane is a triangulation if the boundary of every
region is a triangle (cycle of length 3).

Remark. Maximal planar simple graphs correspond to triangulations.

15
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Definition 16.2. Let G be a connected graph drawn in the plane. The graph G* drawn in
the plane is the dual of G if

e Every region of GG contains exactly one vertex of G*,

e every edge of GG is crosed by exactly one of G* and the drawings of G and G* are
otherwise disjoint, and

o |E(G)] = [E(GY)]

Theorem 16.2 (Tait). Let G be a planar triangulation and let G* be its dual. Then x(G) <
4 x'(G*) =3.

Remark. This shows that the four color theorem is equivalent to the statement "every 3-

reqular 2-connected planar graph is 3-edge colorable”.

Remark. Consider this theorem due to Kaufman: for any pair of “bracketings” of the product
Uy X -+ X Uy, there ezists a choice of u, € {i,7, l%} for every 1 < n < m such that the
corresponding products are the same and non-zero. This theorem is equivalent to the four

color theorem.
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