MATH 254: ANALYSIS I (THEOREMS, DEFINITIONS, AND RESULTS FROM THE CLASS)

SHEREEN ELAIDI

Abstract. The purpose of this document is to summarise Analysis 1 (Math 254).

Contents

1. Introduction 1
1.1. Countability of Finite Sets 2
1.2. Supremum and Infimum 3
2. Point-Set Topology 5
3. Sequences 7
3.1. Some Results on Convergent Sequences 7
3.2. Monotone Sequences 7
3.3. Subsequences 8
3.4. Cauchy Sequences 9
3.5. Divergence to $\pm \infty$ 9
4. Limits of Functions 9
4.1. Continuity 10
5. Differentiation 11
5.1. Applications of the Mean Value Theorem 12

1. Introduction

Random things we proved to get a handle on how to prove things:

- $\cap_{x \in[0,1]}[0, x]=\{0\}$.
- $2^{n}<n$!
- Let X and Y be sets. Consider the following family of sets:

$$
\left\{V_{i} \mid i \in I, V_{i} \subseteq Y\right\}
$$

then, $f^{-1}\left(\cup_{i \in I} V_{i}\right)=\cup_{i \in I} f^{-1}\left(V_{i}\right)$.

- $5^{n}-1$ is divisible by $4 \forall n \geq 1$.
- Bernoulli's Inequality: $\forall n \in \mathbb{N}, x \in \mathbb{R}, x \geq-1$, one has:

$$
\begin{equation*}
(1+x)^{n} \geq 1+n x \tag{1}
\end{equation*}
$$

- Every non-empty subset of the natural numbers has a smallest element.

Definition 1 (Cartesian Product). Let A and B be two sets. Then, their Cartesian Product is defined as:

$$
\begin{equation*}
A \times B:=\{(a, b) \mid a \in A \wedge b \in B\} \tag{2}
\end{equation*}
$$

Definition 2 (Function). Let D, E be sets. A function f from D to E is a subset of the cartesian product $D \times E$ such that $\forall x \in D, \exists_{1} t \in E$ such that $(x, y) \in f$. In symbols, we define:

$$
\begin{equation*}
f(A):=\{f(x) \mid x \in A\} \tag{3}
\end{equation*}
$$

[^0]Proposition 3 (Properties of Functions). Let $f: D \rightarrow E$ be a function and let $A, B \subseteq D$. Then, consider the following:

- $f(A \cup B)=f(A) \cup f(B)$ [well behaved with respect to unions]
- $f(A \cap B) \subseteq f(A) \cap f(B)$.

Definition 4 (Pre-Image). Let $f: D \rightarrow E, A \subseteq E$. Then, the pre-image is defined as:

$$
\begin{equation*}
f^{-1}(A):=\{x \in D \mid f(x) \in A\} \tag{4}
\end{equation*}
$$

Proposition 5. Let $f: D \rightarrow E, A, B \subseteq E$. Then:

- $f^{-1}(A \cup B)=f^{-1}(A) \cup f^{-1}(B)$
- $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$

Definition 6 (Injective). Let $f: D \rightarrow E . f$ is said to be injective if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.
Definition 7 (Surjective). Let $f: D \rightarrow E . f$ is said to be surjective if $\forall y \in E, \exists x \in D$ such that $f(x)=y$.
Definition 8 (Bijective). $f: D \rightarrow E$ is called bijective if it is surjective and injective.
Definition 9. If $f: D \rightarrow E$ is bijective, then we can define the inverse function $f^{-1}: E \rightarrow D$ as follows:

$$
\begin{equation*}
f^{-1}(y):=x \tag{5}
\end{equation*}
$$

where x is a uniquely determined point in D with $f(x)=y$.

1.1. Countability of Finite Sets.

Definition 10 (Cardinality). Let $S=\left\{a_{1}, \ldots, a_{n}\right\}$. Then, the cardinality of S, in symbols $|S|$, is the number of elements in a set S.
Theorem 11. Let A, B be finite sets. Then, $|A| \leq|B| \Longleftrightarrow$ there exists a function $f: A \rightarrow B$ which is injective.
Theorem 12. Let A, B be finite sets. Then, $|A| \geq|B| \Longleftrightarrow \exists$ a surjective map from $A \rightarrow B$.
Theorem 13. Let A, B be finite sets. Then, $|A|=|B| \Longleftrightarrow \exists$ a bijective map $f: A \rightarrow B$.
Definition 14. Let A and B be sets, not necessarily finite. We then say that A and B have the same cardinality, in symbols,

$$
\begin{equation*}
|A|=|B| \tag{6}
\end{equation*}
$$

if \exists a bijective map $f: A \rightarrow B$.
Theorem 15 (Cantor's Theorem). Let A and B be sets. If $|A| \leq|B|$ and if $|B| \leq|A|$, then $|A|=|B|$.
Definition 16 (Countability). We say that a set A with $|A|=|\mathbb{N}|$ is countably infinite. A set which is either finite or countably infinite is called countable.
Theorem 17 (Arithmetic-Geometric Inequality). $\forall n \geq 1$ and for all $x_{1}, \ldots, x_{n}>0$, the following holds:

$$
\begin{equation*}
\frac{x_{1}+\ldots+x_{n}}{n} \geq \sqrt[n]{x_{1} x_{2} \cdots x_{n}} \tag{7}
\end{equation*}
$$

Lemma 18. Let $n \in \mathbb{N}$ and let $x_{1}, \ldots, x_{n}>0$. If $x_{1} \cdots x_{n}=1$, then:

$$
\begin{equation*}
x_{1}+\ldots+x_{n} \geq n \tag{8}
\end{equation*}
$$

Theorem 19. Let $S \subseteq \mathbb{N}$. Then, there are only two possibilities:
(1) S is finite.
(2) S is countably infinite.

Lemma 20. Let $a_{1}<a_{2}<\cdots$ be a strictly increasing sequence of natural numbers. Then, we can say something about the growth rate:

$$
\begin{equation*}
a_{n} \geq n \tag{9}
\end{equation*}
$$

$\forall n \in \mathbb{N}$.

Theorem 21. Let $f: \mathbb{N} \rightarrow S$ be surjective. Then, S is countable.
Theorem 22 (Cantor). The set \mathbb{Q} of all rational numbers is countably infinite.
Theorem 23. \mathbb{R} is uncountable (i.e, \mathbb{R} is infinite and there does not exist a bijection from \mathbb{N} to \mathbb{R}.
Definition 24 (Absolute Value). Let $x \in \mathbb{R}$. Then, the absolute value of x is defined as:

$$
|x|:= \begin{cases}x & \text { if } x \geq 0 \tag{10}\\ -x & \text { if } x<0\end{cases}
$$

Note that $|x|$ is used to measure distances.
Proposition 25 (Properties of Absolute Value). (1) $\forall x \in \mathbb{R},|x| \geq 0$ and $|x|=0 \Longleftrightarrow x=0$.
(2) $\forall x, y \in \mathbb{R},|x y|=|x||y|$. Especially, $|-x|=|x|$, in this case you would simply set $y=-1$.
(3) $\forall x \in \mathbb{R},-|x| \leq x \leq|x|$.
(4) Let $a>0, x \in \mathbb{R}$. Then, $|x| \leq a \Longleftrightarrow-a \leq x \leq a$.

Theorem 26 (Triangle Inequality). Let $x, y \in \mathbb{R}$. Then:
(1) $|x+y| \leq|x|+|y|$
(2) $|x-y| \geq\|x|-| y\|$
(3) Especially,
(a) $|x-y| \geq|x|-|y|$
(b) $|x-y| \geq|y|-|x|$

Corollary 27. We also have,
(1) $|x-y| \leq|x|+|y|$
(2) $|x+y| \geq|x|-|y|$ and $|x+y| \geq|y|-|x|$.

Corollary 28 (Generalisation of the Triangle Inequality).

$$
\begin{equation*}
\left|x_{1}+x_{2}+\ldots+x_{n}\right| \leq\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right| \tag{11}
\end{equation*}
$$

Definition 29. ε-neighbourhood Let $x \in \mathbb{R}$ and let $\varepsilon>0$ be fixed. Then, the $\underline{\varepsilon}$-neighbourhood of x, $V_{\varepsilon}(x)$, to be:

$$
\begin{aligned}
V_{\varepsilon}(x) & :=] x-\varepsilon, x+\varepsilon[\\
& =\{y \in \mathbb{R}| | y-x \mid<\varepsilon\}
\end{aligned}
$$

Theorem 30. Let $x, y \in \mathbb{R}$, where $x \neq y$. Then, " x and y can be separated by neighbourhoods", i.e., \exists a $\varepsilon>0$ such that $V_{\varepsilon}(x) \cap V_{\varepsilon}(y) \neq \varnothing$.

1.2. Supremum and Infimum.

Definition 31 (Bounded From Above). Let $S \subseteq \mathbb{R}, S \neq \varnothing$. We say that S is bounded from above if \exists a $u \in \mathbb{R}$ such that $\forall s \in S s \leq u$.
Definition 32 (Bounded from Below). Let $S \subseteq \mathbb{R}, S \neq \varnothing$. We say that S is bounded from below if \exists a $u \in \mathbb{R}$ such that $\forall s \in S, u \leq s$.

Definition 33 (Supremum/Least Upper Bound). Let $S \subseteq \mathbb{R}, S \neq \varnothing . u \in \mathbb{R}$ is called a supremum or least upper bound, denoted by $\sup S$, if:
(1) u is an upper bound for S.
(2) If v is any other upper bound for S, then $u \leq v$.

If $u=\sup S \in S$, then we say that u is the maximum element of S.
Definition 34 (Infimum/Greatest Lower Bound). Let $S \subseteq \mathbb{R}, S \neq \varnothing . u \in \mathbb{R}$ is called a infimum or greatest lower bound, denoted by $\inf S$, if:
(1) u is a lower bound.
(2) If v is an arbitrary lower bound of S, then $v \leq u$.

If $u=\inf S \in S$, then we say that u is the minimum element of S.
[Begin Tutorial]
Proposition 35. If X_{1}, \ldots, X_{n+1} are countable sets, then so is $X_{1} \times \cdots \times X_{n+1}$.
Definition 36 (Power Set). Let X be a set, possibly empty. Then, the power set of X, denoted $\mathcal{P}(X)$, is defined as the set of all subsets of X :

$$
\begin{equation*}
\mathcal{P}(X):=\{A \mid A \subseteq X\} \tag{12}
\end{equation*}
$$

Theorem 37 (Cantor's Theorem). Let X be a set. Then, there does not exist a surjection $X \rightarrow \mathcal{P}(X)$, which means that $|X|<|\mathcal{P}(X)|$
Corollary 38 (Russel's Paradox). The set of all sets does not exist.
Proposition 39. A binary sequence is a list of points

$$
a_{1}, a_{2}, \ldots, a_{n}, \ldots
$$

such that each $a_{i} \in\{0,1\}$. Let \mathcal{B} be the set of all binary sequences. Then, \mathcal{B} is uncountable.

[End Tutorial]

Theorem 40. Let S be a non-empty and bounded set from above, with supremum $\sup S$. Define:

$$
a+S:=\{a+s \mid s \in S\}
$$

Then, $a+S$ has a supremum which is given by:

$$
\begin{equation*}
\sup (a+S)=a+\sup S \tag{13}
\end{equation*}
$$

Theorem 41. Let $S \neq \varnothing, S \subseteq \mathbb{R}, S$ bounded from above with supremum $\sup S$. Let $k>0$ and define:

$$
k \cdot s:=\{k s \mid s \in S\}
$$

Then,

- If $k>0, k \cdot S$ is bounded from above and

$$
\begin{equation*}
\sup k \cdot S=k \cdot \sup S \tag{14}
\end{equation*}
$$

- if $k<0$, then $k \cdot S$ is bounded from below and

$$
\begin{equation*}
\inf k \cdot S=k \cdot \sup S \tag{15}
\end{equation*}
$$

AXIOM: we assume \mathbb{R} is complete. This means that every non-empty subset $S \subseteq \mathbb{R}$ which is bounded from above has a supremum in \mathbb{R}.

Theorem 42 (Archimedean Property of \mathbb{R}). Let $x \in \mathbb{R}, x>0$. Then, $\exists n \in \mathbb{N}$ such that $n \geq x$.
Theorem 43. Let $x<y, x, y \in \mathbb{R}$. Then, $\exists r \in \mathbb{Q}$ such that $x<r<y$. I.e., this means that the rational numbers are dense in \mathbb{R}.
Theorem 44. The irrational numbers are dense in \mathbb{R}.
Definition 45. Let $I_{1},, I_{2}, I_{3}, \ldots$ be intervals with the following property:

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq \ldots
$$

Then, we call the $I_{1}, I_{2}, I_{3}, \ldots$ a nested sequence of intervals.
Theorem 46 (Nested Interval Property). Let $I_{1} \supseteq I_{2} \supseteq I_{3} \cdots$ be a nested sequence of non-empty, closed and bounded (we call this compact) intervals, then:

$$
\begin{equation*}
\bigcap_{n \in \mathbb{N}} I_{n} \neq \varnothing \tag{16}
\end{equation*}
$$

THE NESTED INTERVAL PROPERTY IS IN FACT EQUIVALENT TO COMPLETNEESS.

Corollary 47. \mathbb{R} is uncountable.

[Begin Tutorial]

COMPLETENESS PROPERTY OF \mathbb{R} : Let X be a non-empty subset of \mathbb{R} that is bounded from above. Then, X has a least upper bound, denoted by $\sup X$.
Proposition 48. Let $X \subseteq \mathbb{R}$.
(1) if X has a supremum, then X is non-empty and bounded from above.
(2) if X has an infimum, then X is non-empty and bounded from below.

Proposition 49. Let X be a non-empty set and let s be an upper bound for X in \mathbb{R}. Then, the following statements are equivalent:
(1) $s=\sup S$
(2) $\forall \varepsilon>0, \exists x_{\varepsilon} \in X$ such that:

$$
\begin{equation*}
s-\varepsilon<x_{\varepsilon} \leq s \tag{17}
\end{equation*}
$$

Proposition 50. Let X be a non-empty set and let v be a lower bound for X in \mathbb{R}. Then, the following statements are equivalent:
(1) $v=\inf S$
(2) $\forall \varepsilon>0, \exists x_{\varepsilon} \in X$ such that:

$$
\begin{equation*}
v \leq x_{\varepsilon}<v+\varepsilon \tag{18}
\end{equation*}
$$

A useful application of the Archimedean property: $\forall \varepsilon>0$, one has that \exists an $m \in \mathbb{N}$ such that $0<\frac{1}{m}<\varepsilon$. Theorem 51 (Characterisation of Intervals). Let $S \subseteq \mathbb{R}$ contain at least two points and assume that S satisfies the property:

$$
\begin{equation*}
x, y \in S \text { and } x<y \Rightarrow[x, y] \subseteq S \tag{19}
\end{equation*}
$$

then S is an interval.
Proposition 52 (Algebraic Properties of Sup and Inf). Let A, B be non-empty subsets of \mathbb{R} that are bounded from above. Suppose that both $x, y \in[0, \infty[$. Then:
(1) $\sup (A \cdot B)=\sup (A) \sup (B)$, where $A \cdot B:=\{a b \mid a \in A, b \in B\}$.

[End Tutorial]

2. Point-Set Topology

Definition 53 (Open). A set $U \subseteq \mathbb{R}$ is called open if $\forall x \in U, \exists \varepsilon>0$ such that $V_{\varepsilon}(x) \subseteq U$.
Definition 54 (Closed). A set $A \subseteq \mathbb{R}$ is called closed if its complement, $\mathbb{R} \backslash A$, is open.
Theorem 55. $\forall x \in \mathbb{R}, \forall \varepsilon>0, V_{\varepsilon}(x)$ is open.
Theorem 56. Open intervals are open "seems self-evident, but still requires proof."
Theorem 57. All closed intervals are closed.
Theorem 58. Let J be an arbitrary index set and let U_{j} be open, $U_{j} \subseteq \mathbb{R}, \forall j \in J$. Then, the union is open:

$$
\begin{equation*}
U:=\bigcup_{j \in J} U_{j} \tag{20}
\end{equation*}
$$

Remark 59. Arbitrary intersections of open sets are, in general, not open.
Theorem 60. The finite intersection of open sets are open, i.e., if $U_{1}, \ldots, U_{n} \subseteq \mathbb{R}$ are open, then:

$$
\begin{equation*}
U:=\bigcap_{i=1}^{n} U_{i}=U_{1} \cap U_{2} \cap \cdots U_{n} \tag{21}
\end{equation*}
$$

is open.

Theorem 61. The arbitrary intersection of closed sets are closed, i.e., if J is some index set, and if A_{j} is closed for each $j \in J$, then:

$$
\begin{equation*}
A:=\bigcap_{j \in J} A_{j} \tag{22}
\end{equation*}
$$

is closed.
Theorem 62. Finite unions of closed sets are closed.
Theorem 63. \varnothing and \mathbb{R} are the only subsets of \mathbb{R} that are both open and closed.
Definition 64 (Boundary Point). Let $U \subseteq \mathbb{R}, x \in \mathbb{R}$ is called a boundary point of U if, $\forall \varepsilon>0$, $V_{\varepsilon}(x) \cap U \neq \varnothing$ and $V_{\varepsilon}(x) \cap(\mathbb{R} \backslash U) \neq \varnothing$
Definition 65. The set of all boundary points of a subset $U \subseteq \mathbb{R}$ is called the boundary of U, denoted ∂U.
Theorem 66. Let $S \subseteq \mathbb{R}$ and $U \subseteq S, U$ open. Then, $U \cap \partial S=\varnothing$.
Theorem 67. Let $S \subseteq \mathbb{R}$. Then, $\partial S=\partial(\mathbb{R} \backslash S)$.
Theorem 68. Let $S \subseteq \mathbb{R}$. Then, ∂S is closed.
Theorem 69. Let $S \subseteq \mathbb{R}$. Then,
(1) S is open $\Longleftrightarrow S$ contains none of its boundary points, i.e.,

$$
\begin{equation*}
S \cap \partial S=\varnothing \quad \text { or } \quad \partial S \subseteq \mathbb{R} \backslash S \tag{23}
\end{equation*}
$$

(2) S is closed $\Longleftrightarrow S$ contains all of its boundary points, i.e.:

$$
\begin{equation*}
\partial S \subseteq S \tag{24}
\end{equation*}
$$

Definition 70 (Interior). Let $S \subseteq \mathbb{R}$. Then, the interior $\operatorname{int}(S)$ is defined as:

$$
\begin{equation*}
\operatorname{int}(S):=\bigcup_{U \subseteq S, U \text { open }} U \tag{25}
\end{equation*}
$$

By definition, the interior is the largest open set contained in S.
Definition 71 (Closure). Let $S \subseteq \mathbb{R}$. The closure, denote $\bar{S}:=\operatorname{cl}(S)$ is:

$$
\begin{equation*}
\bar{S}:=\bigcap_{A \supseteq S} A \tag{26}
\end{equation*}
$$

which is closed since arbitrary intersections of closed sets are closed. By definition, the closure is the smallest closed set containing S.
Proposition 72. (1) S open $\Longleftrightarrow \operatorname{int}(S)=S$.
(2) S closed $\Longleftrightarrow \bar{S}=S$.
(3) $S \subseteq T \Rightarrow \bar{S} \subseteq \bar{T}$ and $\operatorname{int}(S) \subseteq \operatorname{int}(T)$.
[Begin Tutorial]
Theorem 73 (Characterisation of Intervals). Let $I \subseteq \mathbb{R}$ containing at least two points. Assume that I satisfies the following property: if $x, y \in I$ with $x<y$, then $[x, y] \subseteq I$. Then, we say that I is an interval.
[End Tutorial]
Proposition 74. Properties:
(1) If $S \subseteq T, S$ open, then $S \subseteq \operatorname{int}(T)$.
(2) If $S \subseteq T, T$ closed, then $\bar{S} \subseteq T$.
(3) $\overline{\bar{S}}=\bar{S}$.
(4) $\operatorname{int}(\operatorname{int}(S))=\operatorname{int}(S)$.
(a) CAUTION! In general, $\partial(\partial S) \neq \partial S$ in general.
(5) $\operatorname{int}(S) \cup \partial S=\bar{S}$.

Theorem 75 (Characterisation of Open intervals in \mathbb{R}). A subset $S \subseteq \mathbb{R}$ is open $\Longleftrightarrow S$ is the countable union of open intervals.

3. SEQUENCES

Definition 76. An infinite sequence is a function $f: \mathbb{N} \rightarrow \mathbb{R}$ for which $n \mapsto f(n)=a_{n}$.
Definition 77. Let $\left(a_{n}\right)$ be a sequence, $L \in \mathbb{R}$. We say that $\left(a_{n}\right)$ converges to L, or that the limit of $\left(a_{n}\right)$ is L, if:

$$
\begin{equation*}
\forall \varepsilon>0, \exists N \in \mathbb{N} \text {, s.t. } \forall n \geq N,\left|a_{n}-L\right|<\varepsilon \tag{27}
\end{equation*}
$$

Theorem 78. Let (a_{n}) be a sequence. If (a_{n}) converges, then the limit is uniquely determined.

3.1. Some Results on Convergent Sequences.

Theorem 79. Every convergent sequence is bounded.
Theorem 80. Let $\left(a_{n}\right),\left(b_{n}\right)$ be convergent sequences with $a:=\lim \left(a_{n}\right)$ and $b:=\lim \left(b_{n}\right)$. Then,
(1) $\left(a_{n}+b_{n}\right)$ is convergent and $\lim \left(a_{n}+b_{n}\right)=a+b$.
(2) $\left(a_{n} \cdot b_{n}\right)$ is convergent and $\lim \left(a_{n} \cdot b_{n}\right)=a \cdot b$.

Corollary 81. (1) Let $c \in \mathbb{R},\left(a_{n}\right)$ convergent with $a=\lim \left(a_{n}\right)$. Then, $c\left(a_{n}\right)$ is convergent with $\lim \left(c \cdot a_{n}\right)=c a$.
(2) $\left(a_{n}\right),\left(b_{n}\right)$ convergent with $a=\lim \left(a_{n}\right), b=\lim \left(b_{n}\right)$. Then, $\left(a_{n}-b_{n}\right)$ is convergent and $\lim \left(a_{n}-b_{n}\right)=$ $a-b$.
Theorem 82. Let $\left(b_{n}\right)$ be convergent, $b:=\lim \left(b_{n}\right)$ such that $\forall n \in \mathbb{N}, b_{n} \neq 0$ and $b \neq 0$. Then, $\left(1 / b_{n}\right)$ converges and its limit is $1 / b$.
Theorem 83. Let $\left(a_{n}\right),\left(b_{n}\right)$ be convergent sequences with $a:=\lim \left(a_{n}\right), b:=\lim \left(b_{n}\right)$ and $\forall n \in \mathbb{N}, b_{n} \neq 0$. Then, $\left(a_{n} / b_{n}\right)$ converges and $\lim \left(a_{n} / b_{n}\right)=(a / b)$.
Theorem 84 (Convergence Criterion). Let (a_{n}) be a sequence, $\left(b_{n}\right)$ a convergent non-negative sequence with $\lim \left(b_{n}\right)=0$, and let $c>0$. If $\exists k \in \mathbb{N}$ such that $\forall n \geq k,\left|a_{n}-a\right| \leq c \dot{b}_{n}$, then $\left(a_{n}\right)$ converges and $\lim \left(a_{n}\right)=a$.
Theorem 85. Let $\left(x_{n}\right)$ be a sequence such that $\exists k \in \mathbb{N}, \forall n \geq k, x_{n} \geq 0$. If (x_{n}) converges, then $x:=\lim \left(x_{n}\right) \geq 0$.
Corollary 86. Let $\left(x_{n}\right),\left(y_{n}\right)$ be convergent sequences with $k \in \mathbb{N}$ such that $x_{n} \leq y_{n} \forall n \geq k$. Then, $\lim \left(x_{n}\right) \leq \lim \left(y_{n}\right)$.
Corollary 87. Let $\left(x_{n}\right)$ be a convergent sequence such that $\exists k \in \mathbb{N}$ such that $\forall n \geq k, a \leq x_{n} \leq b, a, b \in \mathbb{R}$. Then, $a \leq \lim \left(x_{n}\right) \leq b$.
Theorem 88 (Squeeze Theorem). Let $\left(a_{n}\right),\left(b_{n}\right),\left(x_{n}\right)$ be sequences with $\exists k \in \mathbb{N}$ such that $\forall n \geq k$, we have $a_{n} \leq x_{n} \leq b_{N}$. Furthermore, let (a_{n}) and (b_{n}) converge to the same limit x. Then,
(1) $\left(x_{n}\right)$ converges and
(2) $\lim \left(x_{n}\right)=x$.

Theorem 89. Assume that $\left(a_{n}\right)$ is bounded and that $\left(b_{n}\right)$ converges to zero. Then, $\left(a_{n} \cdot b_{n}\right)$ converges to zero.

3.2. Monotone Sequences.

Definition 90 (Increasing, strictly increasing, eventually increasing). Let (x_{n}) be a sequence. Then,
(1) $\left(x_{n}\right)$ is increasing if $x_{1} \leq x_{2} \leq \ldots$
(2) $\left(x_{n}\right)$ is strictly increasing if $x_{1}<x_{2}<\ldots$
(3) $\left(x_{n}\right)$ is eventually increasing if $\exists k \in \mathbb{N}$ such that $x_{k} \leq x_{k+1} \leq x_{k+2} \leq \ldots$

Definition 91 (Monotone). A sequence $\left(x_{n}\right)$ is called monotone if it is increasing or decreasing.
Theorem 92 (Monotone Sequence Theorem). Let (x_{n}) be a monotone sequence.
(1) $\left(x_{n}\right)$ converges \Longleftrightarrow it is bounded.
(2) If $\left(x_{n}\right)$ is bounded and increasing, then

$$
\begin{equation*}
\lim \left(x_{n}\right)=\sup \left\{x_{n} \mid n \in \mathbb{N}\right\} \tag{28}
\end{equation*}
$$

(3) if $\left(x_{n}\right)$ is bounded and decreasing, then

$$
\begin{gather*}
\lim \left(x_{n}\right)=\inf \left\{x_{n} \mid n \in \mathbb{N}\right\} \tag{29}\\
{[\text { Begin Tutorial }]}
\end{gather*}
$$

Proposition 93. Let $\left(x_{n}\right) \rightarrow x \in \mathbb{R}$ be a sequence. Then, $\left(\left|x_{n}\right|\right) \rightarrow|x|$.
Theorem 94. Let $a>1$. Then, $\lim \left(1 / a^{n}\right)=0$.
Theorem 95. Let $a \in]-1,1\left[\right.$. Then, $\lim \left(a^{n}\right)=0$.
Theorem 96. Let $\left(x_{n}\right)$ be with $x_{n}>0$. If

$$
\begin{equation*}
L=\lim \left(\frac{x_{n+1}}{x_{n}}\right) \tag{30}
\end{equation*}
$$

exists and $L<1$, then $\lim \left(x_{n}\right)=0$.
Definition 97 (Series). Let $\left(x_{n}\right)$ be a sequence in \mathbb{R} or \mathbb{C}. For $N \in \mathbb{N}$, define:

$$
\begin{equation*}
S_{N}:=\sum_{n=1}^{N} x_{n} \tag{31}
\end{equation*}
$$

Thus, $\left(S_{n}\right)$ is a sequence in \mathbb{R} or \mathbb{C}. If $\lim _{N \rightarrow \infty} S_{N}=: S$ exists, we write $\sum_{n=1}^{\infty} x_{n}$.
Definition 98 (Converge, Series). We say that $\sum_{n=1}^{\infty}\left|x_{n}\right|=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|x_{n}\right|$ exists \Longleftrightarrow the sequence of partial sums is bounded.
Example 99. $\lim \left(2^{n} / n!\right)=0$.
Example 100. $\lim \left(n!/ n^{n}\right)=0$.

[End Tutorial]

3.3. Subsequences.

Definition 101. Let $n_{1}<n_{2}<n_{3}<\ldots$ be natural numbers. Let $\left(x_{n}\right)$ be a sequence and consider:

$$
\begin{equation*}
\left(x_{n_{k}}\right)=\left(x_{n_{1}}, x_{n_{2}}, \ldots .\right) \tag{32}
\end{equation*}
$$

The $\left(x_{n_{k}}\right)$ is a subsequence of $\left(x_{n}\right)$.
Theorem 102. Let $\left(x_{n}\right) \rightarrow x$ and let $\left(x_{n_{k}}\right)$ be a subsequence. Then, $\left(x_{n_{k}}\right)$ converges to x.
Corollary 103. Let $\left(x_{n}\right)$ be a sequence. Then, $\left(x_{n}\right)$ converges \Longleftrightarrow all subsequences of $\left(x_{n}\right)$ converge to the same limit.
Example 104. $\lim (1+a / n)^{n}=e^{a}$.
Example 105. $\lim (\sqrt[n]{a})=1$ for $a>1, n \in \mathbb{N}$.
Example 106. $\lim (\sqrt[n]{n})=1$.
Definition 107 (Accumulation Point). Let $\left(x_{n}\right)$ be a sequence. A point $x \in \mathbb{R}$ is called an accumulation point of x_{n} if \exists a subsequence $\left(x_{n_{k}}\right)$ of x_{n} that converges to x.
Theorem 108. Let $\left(x_{n}\right)$ be a sequence, $x \in \mathbb{R}$ an accumulation point of $\left(x_{n}\right) \Longleftrightarrow \forall \varepsilon>0, V_{\varepsilon}(x)$ contains infinitely many points of $\left(x_{n}\right)$.
Theorem 109 (Bolzano-Weierstrass Theorem). Let $\left(x_{n}\right)$ be a bounded sequence in \mathbb{R}. Then, $\left(x_{n}\right)$ has a convergent subsequence i.e., $\left(x_{n}\right)$ has at least one accumulation point.
Definition 110 (Limit Superior). Let $\left(x_{n}\right)$ be bounded. The greatest accumulation point of $\left(x_{n}\right)$ is called the limit superior of $\left(x_{n}\right): x^{*}:=\lim \sup \left(x_{n}\right)$.

Definition 111 (Limit inferior). Let $\left(x_{n}\right)$ be bounded. The smallest accumulation point of $\left(x_{n}\right)$ is called the limit inferior of $\left(x_{n}\right): x_{*}:=\liminf \left(x_{n}\right)$.
Theorem 112. Let $\left(x_{n}\right)$ be bounded. Let $v_{m}:=\sup \left(x_{1}, \ldots, x_{m}\right)$. Then,

$$
\begin{aligned}
\lim \left(v_{m}\right) & =\lim \left(\sup \left\{x_{n} \mid n \geq m\right\}\right) \\
& =\lim \sup \left(x_{n}\right)
\end{aligned}
$$

and

$$
\liminf \left(x_{n}\right)=\lim \left(\inf \left\{x_{n} \mid n \geq m\right\}\right)
$$

3.4. Cauchy Sequences.

Definition 113 (Cauchy Sequence). A sequence $\left(x_{n}\right)$ is called a Cauchy sequence if $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\forall m, n \geq N$, one has

$$
\begin{equation*}
\left|x_{n}-x_{m}\right|<\varepsilon \tag{33}
\end{equation*}
$$

Theorem 114. A sequence in \mathbb{R} converges \Longleftrightarrow it is a Cauchy Sequence.
Theorem 115. Every Cauchy Sequence is bounded.
Definition 116 (Contractive Sequence). A sequence $\left(x_{n}\right)$ is contractive if \exists a $0<c<1$ such that $\forall n \in \mathbb{N}$,

$$
\begin{equation*}
\left|x_{n+2}-x_{n+1}\right| \leq c\left|x_{n+1}-x_{n}\right| \tag{34}
\end{equation*}
$$

Theorem 117. Every contractive sequence is Cauchy, and thus converges.

3.5. Divergence to $\pm \infty$.

Definition 118. Let $\left(x_{n}\right)$ be a sequence.
(1) $\left(x_{n}\right)$ diverges to ∞ if $\forall M \in \mathbb{R}, \exists N \in \mathbb{N}$ such that $\forall n \geq N, x_{n}>M$.
(2) $\left(x_{n}\right)$ diverges to $-\infty$ if $\forall M \in \mathbb{R}, \exists N \in \mathbb{N}$ such that $\forall n \geq N, x_{n}<M$.

Theorem 119. An increasing sequence diverges to $+\infty \Longleftrightarrow$ it is unbounded. Similarly, a decreasing sequence diverges to $-\infty \Longleftrightarrow$ it is unbounded.

[Begin Tutorial]

Theorem 120. Let $F \subseteq \mathbb{R}, F \neq \varnothing$. Then, TFAE:
(1) F is closed.
(2) If x_{n} is a sequence in F and $x=\lim \left(x_{n}\right)$, then $x \in F$.

Proposition 121. Let $\left(x_{n}\right)$ be a bounded sequence. Then, $\lim \left(x_{n}\right)$ exists $\Longleftrightarrow\left(x_{n}\right)$ has only one accumulation point.
Proposition 122. Let $\left(x_{n}\right)$ be bounded, Then, $\lim \left(x_{n}\right)$ exists $\Longleftrightarrow \lim \sup \left(x_{n}\right)=\liminf \left(x_{n}\right)$.

[End Tutorial]

4. Limits of Functions

Definition 123. Let $f: A \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a function. Let $c, L \in \mathbb{R}$. We say that the limit of f as x approaches c is L, in symbols, $\lim _{x \rightarrow x} f(x)=L$, if \forall sequences $\left(x_{n}\right) \in A$ with $\lim \left(x_{n}\right)=c, \overline{\lim \left(f\left(x_{n}\right)\right)=L}$.
Definition 124 (Cluster Point). Let $A \subseteq \mathbb{R}$. c is called a cluster point of A if either of the two equivalent definitions hold:
(1) There exists a sequence $\left(x_{n}\right) \in A \backslash\{c\}$ such that $\lim \left(x_{n}\right)=c$.
(2) $\forall \varepsilon>0, V_{\varepsilon}^{*}(c) \cap A \neq \varnothing$.

Theorem 125. Let $A \subseteq \mathbb{R}, c$ a cluster point of A. Let $f: A \rightarrow \mathbb{R}$. If $\lim _{x \rightarrow c}(f(x))$ exists, then it is uniquely determined.

Definition 126. A point $c \in A$ which is not a cluster point is called an isolated point, i.e., c is isolated if $\exists \varepsilon>0$ such that $V_{\varepsilon}^{*}(c) \cap A \neq \varnothing$.
Theorem 127. Let $A \subseteq \mathbb{R}, c$ a cluster point of A. Then, $c \in \bar{A}=A \cup \partial A$.
Definition $128(\varepsilon-\delta$ definition of a limit). Let $f: A \rightarrow \mathbb{R}, c$ a cluster point of $A, L \in \mathbb{R}$. We say that $\lim _{x \rightarrow c} f(x)=L$ if:

$$
\begin{equation*}
\forall \varepsilon>0, \exists \delta>0 \text { s.t. } \forall x \in A, 0<|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon \tag{35}
\end{equation*}
$$

Definition 129 (Topological Definition of a Limit). Two equivalent definitions:
(1) $\forall \varepsilon>0, \exists \delta>0$ such that $\forall x \in V_{\delta}^{*}(c), f(x) \in V_{\varepsilon}(L)$.
(2) $\forall \varepsilon>0, \exists \delta>0$. such that $f\left(V_{\delta}^{*}(c)\right) \subseteq V_{\varepsilon}(L)$.

Theorem 130. The sequential definition and the $\varepsilon-\delta$ definition of a limit are equivalent.
Theorem 131 (Sequential Criterion for the non-existence of a limit). $f: A \rightarrow \mathbb{R}, c$ a cluster point of A. Then,
(1) Let $\left(x_{n}\right)$ be a sequence in $A \backslash\{c\}$ with $\lim \left(x_{n}\right)=c$. If $\left(f\left(x_{n}\right)\right)$ diverges, then $\lim _{x \rightarrow c} f(x)$ does not exist.
(2) Let $\left(x_{n}\right),\left(y_{n}\right)$ be sequences in $A \backslash\{c\}$ with $\lim \left(x_{n}\right)=c=\lim \left(y_{n}\right)$. If $\left(f\left(x_{n}\right)\right)$ and $\left(f\left(y_{n}\right)\right)$ both converge but have different limits, then $\lim _{x \rightarrow c} f(x)$ does not exist.
Theorem 132 (Limit Laws). Let $f, g: A \subseteq \mathbb{R} \rightarrow \mathbb{R}, c$ a cluster point of A such that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exists. Then:
(1) $\lim _{x \rightarrow c}[a f(x)+b g(x)]=a \lim _{x \rightarrow c} f(x)+b \lim _{x \rightarrow c} g(x)$.
(2) $\lim _{x \rightarrow c}[f(x) g(x)]=\lim _{x \rightarrow c} f(x) \lim _{x \rightarrow c} g(x)$
(3) $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$

4.1. Continuity.

Definition 133 (Continuous). Let $f: A \rightarrow \mathbb{R}, c$ a cluster point of $A, c \in A$. We say that f is continuous at c if:

$$
\begin{equation*}
\lim _{x \rightarrow c} f(x)=f(c) \tag{36}
\end{equation*}
$$

Theorem 134. Let $f: A \rightarrow \mathbb{R}, c$ a cluster point of $A, a, b \in \mathbb{R}$ such that $a \leq f(x) \leq b \forall x \in A$. If $\lim _{x \rightarrow c} f(x)$ exist, then it holds that

$$
\begin{equation*}
a \leq \lim _{x \rightarrow c} f(x) \leq b \tag{37}
\end{equation*}
$$

Theorem 135 (Squeeze Theorem). Let f, g, h be functions from $A \rightarrow \mathbb{R}$, let c be a cluster point of A such that $\lim _{x \rightarrow c} g(x)=L=\lim _{x \rightarrow c} h(x)$ and $g(x) \leq f(x) \leq h(x) \forall x \in A$. Then, $\lim _{x \rightarrow c} f(x)$ exists and equals L.
Theorem 136. Let $f: A \rightarrow \mathbb{R}, c$ a cluster point of A. Then, $\lim _{x \rightarrow c} f(x)$ exists \Longleftrightarrow both one-sided limits exist and are equal.
Definition 137 (Sequential Definition of Continuity). $\lim _{x \rightarrow c} f(x)=f(c)$ if $\forall\left(x_{n}\right)$ in $A \backslash\{c\}$ with $\lim \left(x_{n}\right)=c$, it follows that $\lim \left(f\left(x_{n}\right)\right)=f(c)$.
Theorem 138. Let $f, g: A \rightarrow \mathbb{R}$ be continuous, c a cluster point, $c \in A, f, g$ continuous at c. Then:
(1) $f+g$ is continuous at c.
(2) $f-g$ is continuous at c
(3) $f \cdot g$ is continuous at c.
(4) f / g is continuous at c, provided $g(x) \neq 0 \forall x \in A$.

Theorem 139. Let $f: A \rightarrow \mathbb{R}, g: B \rightarrow \mathbb{R}, f(A) \subseteq B, f$ continuous at $c \in A, g$ continuous at $d:=f(c)$. Then, $g \circ f: A \rightarrow \mathbb{R}$ is continuous at c.

Theorem 140 (Location of Roots Theorem). Let $I:=[a, b], f: I \rightarrow \mathbb{R}$ be continuous such that $f(a)>0$ and $f(b)<0$ or vice versa. Then, $\exists c \epsilon] a, b[$ such that $f(c)=0$.

Theorem 141 (Intermediate Value Theorem). Let $f: I \rightarrow \mathbb{R}, f$ continuous on I. Let $a, b \in I$ with $f(a)<f(b)$ and let d be a point in between. Then, \exists a c between a and b with $f(c)=d$.
Theorem 142 (Preservation of Intervals). Let $f: A \rightarrow \mathbb{R}$ continuous, $I \subseteq A$. Then, $f(I)$ is an interval.
Definition 143 (Open Cover). Let $S \subseteq \mathbb{R}, \mathcal{C}:=\left\{U_{i} \mid i \in I\right\}$ a collection of open sets such that $S \subseteq \bigcup_{i \in I} U_{i}$. Then, we say that \mathcal{C} is an open cover for S.
Theorem 144 (Heine-Borel). A subset $S \subseteq \mathbb{R}$ is compact \Longleftrightarrow every open cover of S has a finite sub-cover.
Theorem 145. Let $A \subseteq \mathbb{R}$ be compact, $f: A \rightarrow \mathbb{R}$ locally bounded on A. Then, f is bounded on A.
Theorem 146 (Topological Characterisation of Continuity). Let $f: A \rightarrow \mathbb{R} ; f$ is continuous on $A \Longleftrightarrow$ the pre-image under f of every open set is open in A.
Definition 147 (Relatively Open). $W \subseteq \mathbb{R}$ is called open in A if there exists an open set $U \subseteq \mathbb{R}$ such that $W=A \cap U$.
Theorem 148. Let $f: A \rightarrow \mathbb{R}$ be continuous and let A be compact. Then, $f(A)$ is compact.
Corollary 149. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Then, $f([a, b])$ is a compact interval.
Theorem 150 (Min-Max Theorem). Let $f: A \rightarrow \mathbb{R}$ be continuous; A compact. Then, f has at least one minimum and one maximum.

Definition 151 (Uniformly Continuous). A function $f: A \rightarrow \mathbb{R}$ is uniformly continuous on A if $\forall \varepsilon>0$, $\exists \delta=\delta(\varepsilon)>0$ such that $\forall u, x \in A$ such that $|x-u|<\delta$ implies $|f(x)-f(u)|<\varepsilon$.
Theorem 152 (Two-Sequence Criterion for Non-Uniform Continuity). Let $f: A \rightarrow \mathbb{R}$. If $\exists \varepsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(u_{n}\right)$ in A such that $\lim \left(x_{n}-u_{n}\right)=0$ but $\left|f\left(x_{n}\right)-f\left(u_{n}\right)\right| \geq \varepsilon_{0}$ for all $n \in \mathbb{N}$, then f is not uniformly continuous.
Theorem 153. Let $f: A \rightarrow \mathbb{R}$ be uniformly continuous. Let $\left(x_{n}\right)$ be a Cauchy sequence in A. Then, $\left(f\left(x_{n}\right)\right)$ is also a Cauchy sequence.
Theorem 154. Let $f: A \rightarrow \mathbb{R}, f$ continuous, A compact. Then, f is uniformly continuous on A.
Definition 155. $f: A \rightarrow \mathbb{R}$ is called a Lipschitz Function or is said to be Lipschitz Continuous or is said to satisfy a Lipschitz Condition if $\exists k>0$ such that $|f(x)-f(u)| \leq k|x-u|$ for all $u, x \in A$.
Theorem 156. Let $f: A \rightarrow \mathbb{R}$. If f is Lipschitz continuous on A, then f is uniformly continuous on A.

5. Differentiation

Definition 157. Let $I \subseteq \mathbb{R}$ be an interval and let $f: I \rightarrow \mathbb{R}$. Let $c \in I$. We say that f is differentiable at a if the following limit exists:

$$
\begin{equation*}
f^{\prime}(c):=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \tag{38}
\end{equation*}
$$

Theorem 158 (Caratheodory). Let $f: I \rightarrow \mathbb{R}, c \in I, f$ is differentiable at $c \Longleftrightarrow$ there exists a $\varphi: I \rightarrow \mathbb{R}$ which is continuous at c such that $f(x)=f(c)+f(x)(x-c)$. In that case, $\varphi(c)=f^{\prime}(c)$.
Theorem 159 (Chain Rule). Let $f: I \rightarrow \mathbb{R}, g: J \rightarrow \mathbb{R} . f(I) \subseteq J, c \in I, d:=f(c)$. Assume f is differentiable at c, g differentiable at d. Then, $g \circ f: I \rightarrow \mathbb{R}$ is differentiable at c and:

$$
\begin{equation*}
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c) \tag{39}
\end{equation*}
$$

Theorem 160 (Fermat's Theorem). Let $f: I \rightarrow \mathbb{R}, c \in I, c \notin \partial I, f$ differentiable at c. Let f have a local extremum at c. Then, $f^{\prime}(c)=0$.

Theorem 161 (Rolle's Theorem). Let $f:[a, b] \rightarrow \mathbb{R}, f$ continuous on $[a, b]$ and differentiable on the open interval $] a, b[$. Let $f(c)=f(b)=0$. Then, \exists a $c \in] a, b\left[\right.$ such that $f^{\prime}(c)=0$.
Theorem 162 (Mean Value Theorem). Let $f:[a, b] \rightarrow \mathbb{R}, f$ continuous on $[a, b], f$ differentiable on $] a, b[$. Then, \exists a $c \epsilon] a, b[$ such that

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \tag{40}
\end{equation*}
$$

5.1. Applications of the Mean Value Theorem.

Theorem 163. Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable. Then, $f^{\prime} \equiv 0$ on $[a, b] \Longleftrightarrow f$ is constant on $[a, b]$.
Corollary 164. Let $f, g:[a, b] \rightarrow \mathbb{R}$ differentiable such that $f^{\prime} \equiv g^{\prime}$ on $[a, b]$. Then, \exists a $c \in \mathbb{R}$ such that $g=f+c$.

Theorem 165. Let $f:[a, b] \rightarrow \mathbb{R}, f$ differentiable. Then, f is increasing on $[a, b] \Longleftrightarrow f^{\prime}(x) \geq 0$ $\forall x \in[a, b]$.
Theorem 166. Let $f: I \rightarrow \mathbb{R}$ be differentiable. Then, f is Lipschitz continuous on $I \Longleftrightarrow f^{\prime}$ is bounded on I.

[^0]: Date: 8 June 2020.

