MATH 254: ANALYSIS I (THEOREMS, DEFINITIONS, AND RESULTS FROM THE CLASS)

SHEREEN ELAIDI

ABSTRACT. The purpose of this document is to summarise Analysis 1 (Math 254).

Contents

1. Introduction	1
1.1. Countability of Finite Sets	2
1.2. Supremum and Infimum	3
2. Point-Set Topology	5
3. Sequences	7
3.1. Some Results on Convergent Sequences	7
3.2. Monotone Sequences	7
3.3. Subsequences	8
3.4. Cauchy Sequences	9
3.5. Divergence to $\pm \infty$	9
4. Limits of Functions	9
4.1. Continuity	10
5. Differentiation	11
5.1. Applications of the Mean Value Theorem	12

1. INTRODUCTION

Random things we proved to get a handle on how to prove things:

- $\cap_{x \in [0,1]} [0,x] = \{0\}.$
- $2^n < n!$
- Let X and Y be sets. Consider the following family of sets:

$$\{V_i \mid i \in I, V_i \subseteq Y\}$$

then, $f^{-1}(\cup_{i \in I} V_i) = \cup_{i \in I} f^{-1}(V_i)$.

- $5^n 1$ is divisible by $4 \forall n \ge 1$.
- Bernoulli's Inequality: $\forall n \in \mathbb{N}, x \in \mathbb{R}, x \ge -1$, one has:

$$(1) 1+x)^n \ge 1+nx \tag{1}$$

• Every non-empty subset of the natural numbers has a smallest element.

(

Definition 1 (Cartesian Product). Let A and B be two sets. Then, their <u>Cartesian Product</u> is defined as:

$$A \times B \coloneqq \{(a,b) \mid a \in A \land b \in B\}$$

$$\tag{2}$$

Definition 2 (Function). Let D, E be sets. A <u>function</u> f from D to E is a subset of the cartesian product $D \times E$ such that $\forall x \in D$, $\exists_1 t \in E$ such that $(x, y) \in f$. In symbols, we define:

$$f(A) \coloneqq \{f(x) \mid x \in A\} \tag{3}$$

Date: 8 June 2020.

Fall 2018

Proposition 3 (Properties of Functions). Let $f: D \to E$ be a function and let $A, B \subseteq D$. Then, consider the following:

- $f(A \cup B) = f(A) \cup f(B)$ [well behaved with respect to unions]
- $f(A \cap B) \subseteq f(A) \cap f(B)$.

Definition 4 (Pre-Image). Let $f: D \to E, A \subseteq E$. Then, the **pre-image** is defined as:

$$f^{-1}(A) \coloneqq \{x \in D \mid f(x) \in A\}$$
 (4)

Proposition 5. Let $f: D \rightarrow E, A, B \subseteq E$. Then:

- $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
- $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

Definition 6 (Injective). Let $f: D \to E$. f is said to be **injective** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition 7 (Surjective). Let $f: D \to E$. f is said to be <u>surjective</u> if $\forall y \in E, \exists x \in D$ such that f(x) = y. **Definition 8** (Bijective). $f: D \to E$ is called **bijective** if it is surjective and injective.

Definition 9. If $f: D \to E$ is bijective, then we can define the <u>inverse</u> function $f^{-1}: E \to D$ as follows: $f^{-1}(y) \coloneqq x$ (5)

where x is a uniquely determined point in D with f(x) = y.

1.1. Countability of Finite Sets.

Definition 10 (Cardinality). Let $S = \{a_1, ..., a_n\}$. Then, the <u>cardinality</u> of S, in symbols |S|, is the number of elements in a set S.

Theorem 11. Let A, B be finite sets. Then, $|A| \leq |B| \iff$ there exists a function $f : A \to B$ which is injective.

Theorem 12. Let A, B be finite sets. Then, $|A| \ge |B| \iff \exists$ a surjective map from $A \to B$.

Theorem 13. Let A, B be finite sets. Then, $|A| = |B| \iff \exists$ a bijective map $f : A \rightarrow B$.

Definition 14. Let A and B be sets, not necessarily finite. We then say that A and B have the same cardinality, in symbols,

$$|A| = |B| \tag{6}$$

if \exists a bijective map $f: A \rightarrow B$.

Theorem 15 (Cantor's Theorem). Let A and B be sets. If $|A| \leq |B|$ and if $|B| \leq |A|$, then |A| = |B|.

Definition 16 (Countability). We say that a set A with $|A| = |\mathbb{N}|$ is **countably infinite**. A set which is either finite or countably infinite is called **countable**.

Theorem 17 (Arithmetic-Geometric Inequality). $\forall n \ge 1$ and for all $x_1, ..., x_n > 0$, the following holds:

$$\frac{1+\dots+x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n} \tag{7}$$

Lemma 18. Let $n \in \mathbb{N}$ and let $x_1, ..., x_n > 0$. If $x_1 \cdots x_n = 1$, then:

 $x_{\underline{i}}$

$$x_1 + \dots + x_n \ge n \tag{8}$$

Theorem 19. Let $S \subseteq \mathbb{N}$. Then, there are only two possibilities:

- (1) S is finite.
- (2) S is countably infinite.

Lemma 20. Let $a_1 < a_2 < \cdots$ be a strictly increasing sequence of natural numbers. Then, we can say something about the growth rate:

$$a_n \ge n \tag{9}$$

Theorem 22 (Cantor). The set \mathbb{Q} of all rational numbers is countably infinite.

Theorem 23. \mathbb{R} is uncountable (i.e., \mathbb{R} is infinite and there does not exist a bijection from \mathbb{N} to \mathbb{R} .

Definition 24 (Absolute Value). Let $x \in \mathbb{R}$. Then, the <u>absolute value</u> of x is defined as:

$$|x| \coloneqq \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$
(10)

Note that |x| is used to measure distances.

Proposition 25 (Properties of Absolute Value). (1) $\forall x \in \mathbb{R}, |x| \ge 0 \text{ and } |x| = 0 \iff x = 0.$

- (2) $\forall x, y \in \mathbb{R}, |xy| = |x||y|$. Especially, |-x| = |x|, in this case you would simply set y = -1.
 - (3) $\forall x \in \mathbb{R}, -|x| \le x \le |x|.$
 - (4) Let $a > 0, x \in \mathbb{R}$. Then, $|x| \le a \iff -a \le x \le a$.

Theorem 26 (Triangle Inequality). Let $x, y \in \mathbb{R}$. Then:

- (1) $|x+y| \le |x|+|y|$
- (2) $|x y| \ge ||x| |y||$
- (3) Especially,
 - (a) $|x y| \ge |x| |y|$
 - (b) $|x y| \ge |y| |x|$

Corollary 27. We also have,

- (1) $|x y| \le |x| + |y|$
- (2) $|x+y| \ge |x| |y|$ and $|x+y| \ge |y| |x|$.

Corollary 28 (Generalisation of the Triangle Inequality).

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$$
(11)

Definition 29. ε -neighbourhood Let $x \in \mathbb{R}$ and let $\varepsilon > 0$ be fixed. Then, the ε -neighbourhood of x, $V_{\varepsilon}(x)$, to be:

$$V_{\varepsilon}(x) \coloneqq]x - \varepsilon, x + \varepsilon[$$

= {y \in \mathbb{R} | |y - x| < \varepsilon}

Theorem 30. Let $x, y \in \mathbb{R}$, where $x \neq y$. Then, "x and y can be separated by neighbourhoods", i.e., $\exists a \\ \varepsilon > 0$ such that $V_{\varepsilon}(x) \cap V_{\varepsilon}(y) \neq \emptyset$.

1.2. Supremum and Infimum.

Definition 31 (Bounded From Above). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. We say that S is **bounded from above** if \exists a $u \in \mathbb{R}$ such that $\forall s \in S \ s \leq u$.

Definition 32 (Bounded from Below). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. We say that S is **bounded from below** if \exists a $u \in \mathbb{R}$ such that $\forall s \in S, u \leq s$.

Definition 33 (Supremum/Least Upper Bound). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. $u \in \mathbb{R}$ is called a <u>supremum</u> or least upper bound, denoted by sup S, if:

- (1) u is an upper bound for S.
- (2) If v is any other upper bound for S, then $u \leq v$.

If $u = \sup S \in S$, then we say that u is the <u>maximum element</u> of S.

Definition 34 (Infimum/Greatest Lower Bound). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. $u \in \mathbb{R}$ is called a <u>infimum</u> or greatest lower bound, denoted by $\inf S$, if:

- (1) u is a lower bound.
- (2) If v is an arbitrary lower bound of S, then $v \leq u$.

If $u = \inf S \in S$, then we say that u is the <u>minimum element of S</u>.

[Begin Tutorial]

Proposition 35. If $X_1, ..., X_{n+1}$ are countable sets, then so is $X_1 \times \cdots \times X_{n+1}$.

Definition 36 (Power Set). Let X be a set, possibly empty. Then, the **power set of** X, denoted $\mathcal{P}(X)$, is defined as the set of all subsets of X:

$$\mathcal{P}(X) \coloneqq \{A \mid A \subseteq X\} \tag{12}$$

Theorem 37 (Cantor's Theorem). Let X be a set. Then, there does not exist a surjection $X \to \mathcal{P}(X)$, which means that $|X| < |\mathcal{P}(X)|$

Corollary 38 (Russel's Paradox). The set of all sets does not exist.

Proposition 39. A binary sequence is a list of points

$$a_1, a_2, \ldots, a_n, \ldots$$

such that each $a_i \in \{0, 1\}$. Let \mathcal{B} be the set of all binary sequences. Then, \mathcal{B} is uncountable.

[End Tutorial]

Theorem 40. Let S be a non-empty and bounded set from above, with supremum sup S. Define:

 $a + S \coloneqq \{a + s \mid s \in S\}$

Then, a + S has a supremum which is given by:

$$\sup\left(a+S\right) = a + \sup S \tag{13}$$

Theorem 41. Let $S \neq \emptyset$, $S \subseteq \mathbb{R}$, S bounded from above with supremum sup S. Let k > 0 and define:

$$k \cdot s \coloneqq \{ks \mid s \in S\}$$

Then,

• If k > 0, $k \cdot S$ is bounded from above and

$$\sup k \cdot S = k \cdot \sup S \tag{14}$$

• if k < 0, then $k \cdot S$ is bounded from below and

$$\inf k \cdot S = k \cdot \sup S \tag{15}$$

AXIOM: we assume \mathbb{R} is complete. This means that every non-empty subset $S \subseteq \mathbb{R}$ which is bounded from above has a supremum in \mathbb{R} .

Theorem 42 (Archimedean Property of \mathbb{R}). Let $x \in \mathbb{R}$, x > 0. Then, $\exists n \in \mathbb{N}$ such that $n \ge x$.

Theorem 43. Let $x < y, x, y \in \mathbb{R}$. Then, $\exists r \in \mathbb{Q}$ such that x < r < y. I.e., this means that the rational numbers are <u>dense</u> in \mathbb{R} .

Theorem 44. The irrational numbers are dense in \mathbb{R} .

Definition 45. Let $I_1, I_2, I_3, ...$ be intervals with the following property:

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$

Then, we call the I_1, I_2, I_3, \dots a **nested sequence** of intervals.

Theorem 46 (Nested Interval Property). Let $I_1 \supseteq I_2 \supseteq I_3 \cdots$ be a nested sequence of non-empty, closed and bounded (we call this compact) intervals, then:

$$\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset \tag{16}$$

THE NESTED INTERVAL PROPERTY IS IN FACT EQUIVALENT TO COMPLETNEESS.

Math 254: Analysis I

Corollary 47. \mathbb{R} is uncountable.

[Begin Tutorial]

COMPLETENESS PROPERTY OF \mathbb{R} : Let X be a non-empty subset of \mathbb{R} that is bounded from above. Then, X has a least upper bound, denoted by $\sup X$.

Proposition 48. Let $X \subseteq \mathbb{R}$.

- (1) if X has a supremum, then X is non-empty and bounded from above.
- (2) if X has an infimum, then X is non-empty and bounded from below.

Proposition 49. Let X be a non-empty set and let s be an upper bound for X in \mathbb{R} . Then, the following statements are equivalent:

(1)
$$s = \sup S$$

(2) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in X$ such that:

$$s - \varepsilon < x_{\varepsilon} \le s \tag{17}$$

Proposition 50. Let X be a non-empty set and let v be a lower bound for X in \mathbb{R} . Then, the following statements are equivalent:

(1) $v = \inf S$

(2) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in X$ such that:

$$v \le x_{\varepsilon} < v + \varepsilon \tag{18}$$

A useful application of the Archimedean property: $\forall \varepsilon > 0$, one has that \exists an $m \in \mathbb{N}$ such that $0 < \frac{1}{m} < \varepsilon$.

Theorem 51 (Characterisation of Intervals). Let $S \subseteq \mathbb{R}$ contain at least two points and assume that S satisfies the property:

$$x, y \in S \text{ and } x < y \implies [x, y] \subseteq S$$
 (19)

then S is an interval.

Proposition 52 (Algebraic Properties of Sup and Inf). Let A, B be non-empty subsets of \mathbb{R} that are bounded from above. Suppose that both $x, y \in [0, \infty[$. Then:

(1) $\sup(A \cdot B) = \sup(A) \sup(B)$, where $A \cdot B \coloneqq \{ab \mid a \in A, b \in B\}$.

[End Tutorial]

2. POINT-SET TOPOLOGY

Definition 53 (Open). A set $U \subseteq \mathbb{R}$ is called **open** if $\forall x \in U, \exists \varepsilon > 0$ such that $V_{\varepsilon}(x) \subseteq U$.

Definition 54 (Closed). A set $A \subseteq \mathbb{R}$ is called <u>closed</u> if its complement, $\mathbb{R} \setminus A$, is open.

Theorem 55. $\forall x \in \mathbb{R}, \forall \varepsilon > 0, V_{\varepsilon}(x)$ is open.

Theorem 56. Open intervals are open "seems self-evident, but still requires proof."

Theorem 57. All closed intervals are closed.

Theorem 58. Let J be an arbitrary index set and let U_j be open, $U_j \subseteq \mathbb{R}$, $\forall j \in J$. Then, the union is open:

$$U \coloneqq \bigcup_{j \in J} U_j \tag{20}$$

Remark 59. Arbitrary intersections of open sets are, in general, not open.

Theorem 60. The finite intersection of open sets are open, i.e., if $U_1, ..., U_n \subseteq \mathbb{R}$ are open, then:

$$U \coloneqq \bigcap_{i=1}^{n} U_i = U_1 \cap U_2 \cap \cdots \cup U_n \tag{21}$$

is open.

Theorem 61. The arbitrary intersection of closed sets are closed, i.e., if J is some index set, and if A_j is closed for each $j \in J$, then:

$$A \coloneqq \bigcap_{j \in J} A_j \tag{22}$$

is closed.

Theorem 62. Finite unions of closed sets are closed.

Theorem 63. \emptyset and \mathbb{R} are the only subsets of \mathbb{R} that are both open and closed.

Definition 64 (Boundary Point). Let $U \subseteq \mathbb{R}$, $x \in \mathbb{R}$ is called a **boundary point of** U if, $\forall \varepsilon > 0$, $V_{\varepsilon}(x) \cap U \neq \emptyset$ and $V_{\varepsilon}(x) \cap (\mathbb{R} \setminus U) \neq \emptyset$

Definition 65. The set of all boundary points of a subset $U \subseteq \mathbb{R}$ is called the **boundary** of U, denoted ∂U .

Theorem 66. Let $S \subseteq \mathbb{R}$ and $U \subseteq S$, U open. Then, $U \cap \partial S = \emptyset$.

Theorem 67. Let $S \subseteq \mathbb{R}$. Then, $\partial S = \partial(\mathbb{R} \setminus S)$.

Theorem 68. Let $S \subseteq \mathbb{R}$. Then, ∂S is closed.

Theorem 69. Let $S \subseteq \mathbb{R}$. Then,

(1) S is open \iff S contains *none* of its boundary points, i.e.,

$$S \cap \partial S = \emptyset$$
 or $\partial S \subseteq \mathbb{R} \setminus S$ (23)

(2) S is closed \iff S contains all of its boundary points, i.e.:

$$\partial S \subseteq S \tag{24}$$

Definition 70 (Interior). Let $S \subseteq \mathbb{R}$. Then, the <u>interior</u> int(S) is defined as:

$$\operatorname{int}(S) \coloneqq \bigcup_{U \subseteq S, U \text{open}} U \tag{25}$$

By definition, the interior is the largest open set contained in S.

Definition 71 (Closure). Let $S \subseteq \mathbb{R}$. The <u>closure</u>, denote $\overline{S} \coloneqq cl(S)$ is:

$$\overline{S} := \bigcap_{A \supseteq S} A \tag{26}$$

which is closed since arbitrary intersections of closed sets are closed. By definition, the closure is the smallest closed set containing S.

Proposition 72. (1) S open \iff int(S) = S.

(2) S closed $\iff \overline{S} = S$.

(3) $S \subseteq T \Rightarrow \overline{S} \subseteq \overline{T}$ and $int(S) \subseteq int(T)$.

[Begin Tutorial]

Theorem 73 (Characterisation of Intervals). Let $I \subseteq \mathbb{R}$ containing at least two points. Assume that I satisfies the following property: if $x, y \in I$ with x < y, then $[x, y] \subseteq I$. Then, we say that I is an interval.

[End Tutorial]

Proposition 74. Properties:

- (1) If $S \subseteq T$, S open, then $S \subseteq int(T)$.
- (2) If $S \subseteq T$, T closed, then $\overline{S} \subseteq T$.
- (3) $\overline{S} = \overline{S}$.
- (4) $\operatorname{int}(\operatorname{int}(S)) = \operatorname{int}(S)$.
 - (a) CAUTION! In general, $\partial(\partial S) \neq \partial S$ in general.
- (5) $\operatorname{int}(S) \cup \partial S = \overline{S}$.

Theorem 75 (Characterisation of Open intervals in \mathbb{R}). A subset $S \subseteq \mathbb{R}$ is open $\iff S$ is the countable union of open intervals.

3. Sequences

Definition 76. An infinite sequence is a function $f : \mathbb{N} \to \mathbb{R}$ for which $n \mapsto f(n) = a_n$.

Definition 77. Let (a_n) be a sequence, $L \in \mathbb{R}$. We say that (a_n) <u>converges</u> to L, or that the <u>limit</u> of (a_n) is L, if:

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } \forall n \ge N, |a_n - L| < \varepsilon$$
(27)

Theorem 78. Let (a_n) be a sequence. If (a_n) converges, then the limit is uniquely determined.

3.1. Some Results on Convergent Sequences.

Theorem 79. Every convergent sequence is bounded.

Theorem 80. Let (a_n) , (b_n) be convergent sequences with $a := \lim(a_n)$ and $b := \lim(b_n)$. Then,

- (1) $(a_n + b_n)$ is convergent and $\lim(a_n + b_n) = a + b$.
- (2) $(a_n \cdot b_n)$ is convergent and $\lim(a_n \cdot b_n) = a \cdot b$.
- **Corollary 81.** (1) Let $c \in \mathbb{R}$, (a_n) convergent with $a = \lim(a_n)$. Then, $c(a_n)$ is convergent with $\lim(c \cdot a_n) = ca$.
 - (2) $(a_n), (b_n)$ convergent with $a = \lim(a_n), b = \lim(b_n)$. Then, $(a_n b_n)$ is convergent and $\lim(a_n b_n) = a b$.

Theorem 82. Let (b_n) be convergent, $b := \lim(b_n)$ such that $\forall n \in \mathbb{N}$, $b_n \neq 0$ and $b \neq 0$. Then, $(1/b_n)$ converges and its limit is 1/b.

Theorem 83. Let (a_n) , (b_n) be convergent sequences with $a := \lim(a_n)$, $b := \lim(b_n)$ and $\forall n \in \mathbb{N}$, $b_n \neq 0$. Then, (a_n/b_n) converges and $\lim(a_n/b_n) = (a/b)$.

Theorem 84 (Convergence Criterion). Let (a_n) be a sequence, (b_n) a convergent non-negative sequence with $\lim(b_n) = 0$, and let c > 0. If $\exists k \in \mathbb{N}$ such that $\forall n \ge k$, $|a_n - a| \le c\dot{b}_n$, then (a_n) converges and $\lim(a_n) = a$.

Theorem 85. Let (x_n) be a sequence such that $\exists k \in \mathbb{N}, \forall n \ge k, x_n \ge 0$. If (x_n) converges, then $x := \lim(x_n) \ge 0$.

Corollary 86. Let (x_n) , (y_n) be convergent sequences with $k \in \mathbb{N}$ such that $x_n \leq y_n \quad \forall n \geq k$. Then, $\lim(x_n) \leq \lim(y_n)$.

Corollary 87. Let (x_n) be a convergent sequence such that $\exists k \in \mathbb{N}$ such that $\forall n \ge k, a \le x_n \le b, a, b \in \mathbb{R}$. Then, $a \le \lim(x_n) \le b$.

Theorem 88 (Squeeze Theorem). Let (a_n) , (b_n) , (x_n) be sequences with $\exists k \in \mathbb{N}$ such that $\forall n \ge k$, we have $a_n \le x_n \le b_N$. Furthermore, let (a_n) and (b_n) converge to the same limit x. Then,

- (1) (x_n) converges and
- (2) $\lim(x_n) = x$.

Theorem 89. Assume that (a_n) is bounded and that (b_n) converges to zero. Then, $(a_n \cdot b_n)$ converges to zero.

3.2. Monotone Sequences.

Definition 90 (Increasing, strictly increasing, eventually increasing). Let (x_n) be a sequence. Then,

- (1) (x_n) is increasing if $x_1 \le x_2 \le \dots$
- (2) (x_n) is strictly increasing if $x_1 < x_2 < \dots$
- (3) (x_n) is eventually increasing if $\exists k \in \mathbb{N}$ such that $x_k \leq x_{k+1} \leq x_{k+2} \leq \dots$

Definition 91 (Monotone). A sequence (x_n) is called <u>monotone</u> if it is increasing or decreasing.

Theorem 92 (Monotone Sequence Theorem). Let (x_n) be a monotone sequence.

(1) (x_n) converges \iff it is bounded.

(2) If (x_n) is bounded and increasing, then

$$\lim(x_n) = \sup\{x_n \mid n \in \mathbb{N}\}$$
(28)

(3) if (x_n) is bounded and decreasing, then

$$\lim(x_n) = \inf\{x_n \mid n \in \mathbb{N}\}$$
(29)

[Begin Tutorial]

Proposition 93. Let $(x_n) \to x \in \mathbb{R}$ be a sequence. Then, $(|x_n|) \to |x|$.

Theorem 94. Let a > 1. Then, $\lim(1/a^n) = 0$.

Theorem 95. Let $a \in]-1, 1[$. Then, $\lim(a^n) = 0$.

Theorem 96. Let (x_n) be with $x_n > 0$. If

$$L = \lim\left(\frac{x_{n+1}}{x_n}\right) \tag{30}$$

exists and L < 1, then $\lim(x_n) = 0$.

Definition 97 (Series). Let (x_n) be a sequence in \mathbb{R} or \mathbb{C} . For $N \in \mathbb{N}$, define:

$$S_N \coloneqq \sum_{n=1}^N x_n \tag{31}$$

Thus, (S_n) is a sequence in \mathbb{R} or \mathbb{C} . If $\lim_{N\to\infty} S_N = S$ exists, we write $\sum_{n=1}^{\infty} x_n$.

Definition 98 (Converge, Series). We say that $\sum_{n=1}^{\infty} |x_n| = \lim_{N \to \infty} \sum_{n=1}^{N} |x_n|$ exists \iff the sequence of partial sums is bounded.

Example 99. $\lim (2^n/n!) = 0.$

Example 100. $\lim(n!/n^n) = 0.$

[End Tutorial]

3.3. Subsequences.

Definition 101. Let $n_1 < n_2 < n_3 < \dots$ be natural numbers. Let (x_n) be a sequence and consider:

$$(x_{n_k}) = (x_{n_1}, x_{n_2}, \dots) \tag{32}$$

The (x_{n_k}) is a subsequence of (x_n) .

Theorem 102. Let $(x_n) \to x$ and let (x_{n_k}) be a subsequence. Then, (x_{n_k}) converges to x.

Corollary 103. Let (x_n) be a sequence. Then, (x_n) converges \iff all subsequences of (x_n) converge to the *same* limit.

Example 104. $\lim (1 + a/n)^n = e^a$.

Example 105. $\lim(\sqrt[n]{a}) = 1$ for $a > 1, n \in \mathbb{N}$.

Example 106. $\lim(\sqrt[n]{n}) = 1$.

Definition 107 (Accumulation Point). Let (x_n) be a sequence. A point $x \in \mathbb{R}$ is called an **accumulation point** of x_n if \exists a subsequence (x_{n_k}) of x_n that converges to x.

Theorem 108. Let (x_n) be a sequence, $x \in \mathbb{R}$ an accumulation point of $(x_n) \iff \forall \varepsilon > 0, V_{\varepsilon}(x)$ contains infinitely many points of (x_n) .

Theorem 109 (Bolzano-Weierstrass Theorem). Let (x_n) be a bounded sequence in \mathbb{R} . Then, (x_n) has a convergent subsequence i.e., (x_n) has at least one accumulation point.

Definition 110 (Limit Superior). Let (x_n) be bounded. The greatest accumulation point of (x_n) is called the **limit superior** of (x_n) : $x^* := \limsup(x_n)$.

Definition 111 (Limit inferior). Let (x_n) be bounded. The smallest accumulation point of (x_n) is called the <u>limit inferior</u> of (x_n) : $x_* := \liminf(x_n)$.

Theorem 112. Let (x_n) be bounded. Let $v_m \coloneqq \sup(x_1, ..., x_m)$. Then,

$$\lim(v_m) = \lim(\sup\{x_n \mid n \ge m\})$$
$$= \limsup(x_n)$$

and

$$\liminf(x_n) = \liminf(\inf\{x_n \mid n \ge m\})$$

3.4. Cauchy Sequences.

Definition 113 (Cauchy Sequence). A sequence (x_n) is called a <u>Cauchy sequence</u> if $\forall \varepsilon > 0, \exists N \in \mathbb{N}$ such that $\forall m, n \ge N$, one has

$$|x_n - x_m| < \varepsilon \tag{33}$$

Theorem 114. A sequence in \mathbb{R} converges \iff it is a Cauchy Sequence.

Theorem 115. Every Cauchy Sequence is bounded.

Definition 116 (Contractive Sequence). A sequence (x_n) is <u>contractive</u> if $\exists a \ 0 < c < 1$ such that $\forall n \in \mathbb{N}$,

$$|x_{n+2} - x_{n+1}| \le c|x_{n+1} - x_n| \tag{34}$$

Theorem 117. Every contractive sequence is Cauchy, and thus converges.

3.5. Divergence to $\pm \infty$.

Definition 118. Let (x_n) be a sequence.

- (1) (x_n) diverges to ∞ if $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N, x_n > M$.
- (2) (x_n) diverges to $-\infty$ if $\forall M \in \mathbb{R}$, $\exists N \in \mathbb{N}$ such that $\forall n \ge N, x_n < M$.

Theorem 119. An increasing sequence diverges to $+\infty \iff$ it is unbounded. Similarly, a decreasing sequence diverges to $-\infty \iff$ it is unbounded.

[Begin Tutorial]

Theorem 120. Let $F \subseteq \mathbb{R}$, $F \neq \emptyset$. Then, TFAE:

(1) F is closed.

(2) If x_n is a sequence in F and $x = \lim(x_n)$, then $x \in F$.

Proposition 121. Let (x_n) be a bounded sequence. Then, $\lim(x_n)$ exists $\iff (x_n)$ has only one accumulation point.

Proposition 122. Let (x_n) be bounded, Then, $\lim(x_n)$ exists $\iff \limsup(x_n) = \liminf(x_n)$.

[End Tutorial]

4. Limits of Functions

Definition 123. Let $f : A \subseteq \mathbb{R} \to \mathbb{R}$ be a function. Let $c, L \in \mathbb{R}$. We say that the **limit of** f as x approaches c is L, in symbols, $\lim_{x\to x} f(x) = L$, if \forall sequences $(x_n) \in A$ with $\lim(x_n) = c$, $\overline{\lim(f(x_n))} = L$.

Definition 124 (Cluster Point). Let $A \subseteq \mathbb{R}$. *c* is called a <u>cluster point</u> of *A* if either of the two equivalent definitions hold:

- (1) There exists a sequence $(x_n) \in A \setminus \{c\}$ such that $\lim(x_n) = c$.
- (2) $\forall \varepsilon > 0, V_{\varepsilon}^{*}(c) \cap A \neq \emptyset.$

Theorem 125. Let $A \subseteq \mathbb{R}$, c a cluster point of A. Let $f : A \to \mathbb{R}$. If $\lim_{x\to c} (f(x))$ exists, then it is uniquely determined.

if $\exists \varepsilon > 0$ such that $V_{\varepsilon}^*(c) \cap A \neq \emptyset$.

Theorem 127. Let $A \subseteq \mathbb{R}$, c a cluster point of A. Then, $c \in \overline{A} = A \cup \partial A$.

Definition 128 ($\varepsilon - \delta$ definition of a limit). Let $f : A \to \mathbb{R}$, c a cluster point of A, $L \in \mathbb{R}$. We say that $\lim_{x\to c} f(x) = L$ if:

$$\forall \varepsilon > 0, \exists \delta > 0 \ s.t. \ \forall x \in A, \ 0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon$$

$$(35)$$

Definition 129 (Topological Definition of a Limit). Two equivalent definitions:

- (1) $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall x \in V_{\delta}^{*}(c), f(x) \in V_{\varepsilon}(L)$.
- (2) $\forall \varepsilon > 0, \exists \delta > 0$. such that $f(V_{\delta}^{*}(c)) \subseteq V_{\varepsilon}(L)$.

Theorem 130. The sequential definition and the $\varepsilon - \delta$ definition of a limit are equivalent.

Theorem 131 (Sequential Criterion for the non-existence of a limit). $f : A \to \mathbb{R}$, c a cluster point of A. Then,

- (1) Let (x_n) be a sequence in $A \setminus \{c\}$ with $\lim(x_n) = c$. If $(f(x_n))$ diverges, then $\lim_{x\to c} f(x)$ does not exist.
- (2) Let (x_n) , (y_n) be sequences in $A \setminus \{c\}$ with $\lim(x_n) = c = \lim(y_n)$. If $(f(x_n))$ and $(f(y_n))$ both converge but have different limits, then $\lim_{x\to c} f(x)$ does not exist.

Theorem 132 (Limit Laws). Let $f, g : A \subseteq \mathbb{R} \to \mathbb{R}$, c a cluster point of A such that $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exists. Then:

- (1) $\lim_{x\to c} \left[af(x) + bg(x) \right] = a \lim_{x\to c} f(x) + b \lim_{x\to c} g(x).$
- (2) $\lim_{x \to c} [f(x)g(x)] = \lim_{x \to c} f(x) \lim_{x \to c} g(x)$
- (3) $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$

4.1. Continuity.

Definition 133 (Continuous). Let $f : A \to \mathbb{R}$, c a cluster point of A, $c \in A$. We say that f is <u>continuous at c</u> if:

$$\lim_{x \to c} f(x) = f(c) \tag{36}$$

Theorem 134. Let $f : A \to \mathbb{R}$, c a cluster point of A, $a, b \in \mathbb{R}$ such that $a \leq f(x) \leq b \forall x \in A$. If $\lim_{x\to c} f(x)$ exist, then it holds that

$$a \le \lim_{x \to \infty} f(x) \le b \tag{37}$$

Theorem 135 (Squeeze Theorem). Let f, g, h be functions from $A \to \mathbb{R}$, let c be a cluster point of A such that $\lim_{x\to c} g(x) = L = \lim_{x\to c} h(x)$ and $g(x) \leq f(x) \leq h(x) \quad \forall x \in A$. Then, $\lim_{x\to c} f(x)$ exists and equals L.

Theorem 136. Let $f : A \to \mathbb{R}$, c a cluster point of A. Then, $\lim_{x\to c} f(x)$ exists \iff both one-sided limits exist and are equal.

Definition 137 (Sequential Definition of Continuity). $\lim_{x\to c} f(x) = f(c)$ if $\forall (x_n)$ in $A \setminus \{c\}$ with $\lim(x_n) = c$, it follows that $\lim(f(x_n)) = f(c)$.

Theorem 138. Let $f, g: A \to \mathbb{R}$ be continuous, c a cluster point, $c \in A$, f, g continuous at c. Then:

- (1) f + g is continuous at c.
- (2) f g is continuous at c
- (3) $f \cdot g$ is continuous at c.
- (4) f/g is continuous at c, provided $g(x) \neq 0 \quad \forall x \in A$.

Theorem 139. Let $f : A \to \mathbb{R}$, $g : B \to \mathbb{R}$, $f(A) \subseteq B$, f continuous at $c \in A$, g continuous at $d \coloneqq f(c)$. Then, $g \circ f : A \to \mathbb{R}$ is continuous at c. **Theorem 141** (Intermediate Value Theorem). Let $f : I \to \mathbb{R}$, f continuous on I. Let $a, b \in I$ with f(a) < f(b) and let d be a point in between. Then, $\exists a c$ between a and b with f(c) = d.

Theorem 142 (Preservation of Intervals). Let $f : A \to \mathbb{R}$ continuous, $I \subseteq A$. Then, f(I) is an interval.

Definition 143 (Open Cover). Let $S \subseteq \mathbb{R}$, $\mathcal{C} \coloneqq \{U_i \mid i \in I\}$ a collection of open sets such that $S \subseteq \bigcup_{i \in I} U_i$. Then, we say that \mathcal{C} is an **open cover** for S.

Theorem 144 (Heine-Borel). A subset $S \subseteq \mathbb{R}$ is compact \iff every open cover of S has a finite sub-cover.

Theorem 145. Let $A \subseteq \mathbb{R}$ be compact, $f : A \to \mathbb{R}$ locally bounded on A. Then, f is bounded on A.

Theorem 146 (Topological Characterisation of Continuity). Let $f : A \to \mathbb{R}$; f is continuous on $A \iff$ the pre-image under f of every open set is open in A.

Definition 147 (Relatively Open). $W \subseteq \mathbb{R}$ is called <u>open in A</u> if there exists an open set $U \subseteq \mathbb{R}$ such that $W = A \cap U$.

Theorem 148. Let $f: A \to \mathbb{R}$ be continuous and let A be compact. Then, f(A) is compact.

Corollary 149. Let $f:[a,b] \to \mathbb{R}$ be continuous. Then, f([a,b]) is a compact interval.

Theorem 150 (Min-Max Theorem). Let $f : A \to \mathbb{R}$ be continuous; A compact. Then, f has at least one minimum and one maximum.

Definition 151 (Uniformly Continuous). A function $f : A \to \mathbb{R}$ is **uniformly continuous** on A if $\forall \varepsilon > 0$, $\exists \delta = \delta(\varepsilon) > 0$ such that $\forall u, x \in A$ such that $|x - u| < \delta$ implies $|f(x) - f(u)| < \varepsilon$.

Theorem 152 (Two-Sequence Criterion for Non-Uniform Continuity). Let $f : A \to \mathbb{R}$. If $\exists \varepsilon_0 > 0$ and two sequences (x_n) and (u_n) in A such that $\lim(x_n - u_n) = 0$ but $|f(x_n) - f(u_n)| \ge \varepsilon_0$ for all $n \in \mathbb{N}$, then f is not uniformly continuous.

Theorem 153. Let $f : A \to \mathbb{R}$ be uniformly continuous. Let (x_n) be a Cauchy sequence in A. Then, $(f(x_n))$ is also a Cauchy sequence.

Theorem 154. Let $f: A \to \mathbb{R}$, f continuous, A compact. Then, f is uniformly continuous on A.

Definition 155. $f : A \to \mathbb{R}$ is called a Lipschitz Function or is said to be Lipschitz Continuous or is said to satisfy a Lipschitz Condition if $\exists k > 0$ such that $|f(x) - f(u)| \le k|x - u|$ for all $u, x \in A$.

Theorem 156. Let $f : A \to \mathbb{R}$. If f is <u>Lipschitz continuous</u> on A, then f is uniformly continuous on A.

5. Differentiation

Definition 157. Let $I \subseteq \mathbb{R}$ be an interval and let $f : I \to \mathbb{R}$. Let $c \in I$. We say that f is <u>differentiable</u> at a if the following limit exists:

$$f'(c) \coloneqq \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 (38)

Theorem 158 (Caratheodory). Let $f: I \to \mathbb{R}$, $c \in I$, f is differentiable at $c \iff$ there exists a $\varphi: I \to \mathbb{R}$ which is continuous at c such that f(x) = f(c) + f(x)(x - c). In that case, $\varphi(c) = f'(c)$.

Theorem 159 (Chain Rule). Let $f : I \to \mathbb{R}$, $g : J \to \mathbb{R}$. $f(I) \subseteq J$, $c \in I$, $d \coloneqq f(c)$. Assume f is differentiable at c, g differentiable at d. Then, $g \circ f : I \to \mathbb{R}$ is differentiable at c and:

$$(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$$
(39)

Theorem 160 (Fermat's Theorem). Let $f: I \to \mathbb{R}$, $c \in I$, $c \notin \partial I$, f differentiable at c. Let f have a local extremum at c. Then, f'(c) = 0.

Theorem 161 (Rolle's Theorem). Let $f : [a,b] \to \mathbb{R}$, f continuous on [a,b] and differentiable on the open interval]a,b[. Let f(c) = f(b) = 0. Then, $\exists a \ c \in]a,b[$ such that f'(c) = 0.

Theorem 162 (Mean Value Theorem). Let $f : [a,b] \to \mathbb{R}$, f continuous on [a,b], f differentiable on [a,b[. Then, $\exists a \ c \in]a, b[$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
(40)

5.1. Applications of the Mean Value Theorem.

Theorem 163. Let $f:[a,b] \to \mathbb{R}$ be differentiable. Then, $f' \equiv 0$ on $[a,b] \iff f$ is constant on [a,b].

Corollary 164. Let $f, g: [a, b] \to \mathbb{R}$ differentiable such that $f' \equiv g'$ on [a, b]. Then, $\exists a \ c \in \mathbb{R}$ such that g = f + c.

Theorem 165. Let $f : [a,b] \to \mathbb{R}$, f differentiable. Then, f is increasing on $[a,b] \iff f'(x) \ge 0$ $\forall x \in [a,b].$

Theorem 166. Let $f: I \to \mathbb{R}$ be differentiable. Then, f is Lipschitz continuous on $I \iff f'$ is bounded on I.