
Math 222: Calculus 3
Final Exam Revision Notes

1 Things we should’ve remembered from Calc 1, Calc 2,
and high school

1.1 Trig Identities

• sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

• cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)

Double-Angle Formulae

• sin(2θ) = 2 sin(θ) cos(θ) = 2 tan(θ)
1+tan(θ)2

• cos(2θ) = 2 cos(θ)2 − 1 = 1− 2 sin(θ)2

Half-Angle Formulae

• sin(1
2
θ) = 1

2
(1− cos(θ))

• cos(1
2
θ) = 1

2
(1 + cos(θ))

Power-reduction formulae

• sin2(θ) = 1
2
(1− cos(2θ))

• cos2(θ) = 1
2
(1 + cos(2θ))

1.2 Derivatives

d

dx
cu = (ln(c))cu

du

dx
d

dx
arcsin(u) =

1√
1− u2

du

dx

d

dx
arctan(u) =

1

1 + u2
du

dx

1.3 Integrals

• Fundamental Theorem of Calculus:∫ b(x)

a(x)

f(x)dx = a′(x)f(a(x))− b′(x)f(b(x)) (1)

• Integration by parts: ∫
f(x)g′(x)dx = f(x)g(x)−

∫
g(x)f ′(x)dx (2)
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• Integrals to memorize: ∫
tan(x)dx = ln(| sec(x)|) + C (3)∫
sec(x)dx = ln(| sec(x) + tan(x)|) + C (4)

• Trig substitution
√
a2 − x2 → x = a sin(θ) (5)
√
a2 + x2 → x = a tan(θ) (6)
√
x2 − x2 → x = a sec(θ) (7)

2 Infinite Sequences and Series
(Some of this stuff is from my Math 141 notes since there’s some overlap).

2.1 Sequences

Definition 2.1. A sequence is a mapping from the natural numbers to the real numbers.
We say that a sequence converges if the limit of the sequence as you go to infinity is a finite
number. Otherwise, we say that it diverges.

2.1.1 Limit Laws

• If an → a, then any tail sequence will also converge to a.

• an converging to a is the same thing as |an − a| → 0.

• If an → a and bn → b and λ, µ ∈ R, then the linear combination λan + µbn converges to
λa+ µb.

• anbn → ab.

• If b 6= 0, then, an
bn
→ a

b
.

• If f is continuous at a, then, f(an)→ f(a).

2.1.2 Facts

Definition 2.2. We say that a sequence is increasing if an < an+1∀n ≥ 1. We say that
a function is decreasing if the reverse inequality holds. If a function is either increasing or
decreasing, we say that it is monotonic.

Definition 2.3. A bounded sequence is one that is either bounded below or bounded above.

• A bounded below sequence is one where there exists a real number m such that an >
m ∀ n ≥ 1.

• A bounded above sequence is one where there exists a real number n such that an >
n,∀ n ≥ 1.

Theorem 1 (Monotonic Sequence Theorem). Every bounded and monotonic sequence is con-
vergent.
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Theorem 2 (Squeeze Theorem). If an ≤ bn ≤ cn for some n ≥ n0 and if

lim
n→∞

an = lim
n→∞

= L

then, limn→∞ bn = L.

2.2 Series

A series is the sum of all terms of a sequence. It is something of the form

a1 + a2 + a3 + ...

An important concept is the idea of a partial sum which is given by:

sn =
n∑
k=1

an = a1 + a2 + ...+ an

If the partial sums converge, then we say that the series converges.

Example 2.1. The geometric series is the simplest example. It is given by:

G =
∞∑
n=1

arn−1 = a+ ar + ar2 + ar3 + ...+ arn−1

• This series converges ⇐⇒ the common ratio |r| < 1. In that case, the sum of the series
would be given by:

∞∑
i=1

arn−1 =
a

1− r

Theorem 3 (Test for Divergence). If the series
∑∞

n=1 an is convergent, then, an → 0 as
n → ∞. Note that the converge is completely false (just because a limit goes to 0 does not
guarantee convergence, just see the harmonic series).

2.3 Comparison Tests

Idea: to compare a given series with a series that we already know is convergent or divergent.
There are two versions of this: (1) the regular comparison test and (2) the limit comparison
test.

Definition 2.4. The comparison test says: suppose that we have two series
∑
an and

∑
bn

with only positive terms. Then:

• If
∑
bn is convergent and an ≤ bn for all n near infinity, then an is also convergent.

• If
∑
bn is divergent and an ≥ bn for all n near infinity, then

∑
an is also divergent.

You need a known series to work with. Generally, the two more useful types are geometric and
p-series.

Definition 2.5. The limiting comparison test says: you can compare series without having
one that is bigger or smaller than the other. This also requires terms to be positive. If:

lim
n→∞

an
bn

= c

where c is a positive, non-zero, finite constant, then there are two possibilities: (1) they either
both converge or (2) they either both diverge. We can basically conclude that the series
have the same behaviour as n tends to infinity. Advice: take bn to be the main terms of
both the denominator and numerator.
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2.4 Integral Test

Definition 2.6. The integral test says: suppose that f is continuous, positive, and decreasing
on the interval [1,∞[ and let an = f(n). Then, the series converges ⇐⇒ the corresponding
integral is convergent.

This proves a very important lemma:

Lemma 4. The p-series test: P-series are something of the form:
∞∑
n=0

1

np

This series converges ⇐⇒ p > 1.

Useful Fact: The following converges ⇐⇒ p > 1:
∞∑
n=3

1

n(ln(n)p

2.5 Absolute Convergence, Root, and Ratio Tests

2.5.1 Absolute Convergence

Motivation: for any given series
∑
an, we can consider the corresponding series:

sum∞n=1|an| = |a1|+ |a2|+ ...

whose terms are the absolute value of the terms in the original sequence.

Definition 2.7. A series is called absolutely convergent if the series of absolute values are
convergent.

• A series is called conditionally convergent if the series is convergent but not absolutely
convergent. For example: alternating harmonic series.

• All absolutely convergent series are also convergent.

2.5.2 Ratio Test

This test is useful when determining if a series is absolutely convergent. Good to use when
there are factorials. There are 3 cases:

1. Series is absolutely convergent and therefore convergent when:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L < 1

2. Series is divergent when:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L > 1 or L =∞

3. The worst one - you cannot draw any conclusions. If this is the case, then the ratio test
is completely inconclusive and you need to find another test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L = 1
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2.5.3 Root Test

This test is good to use when we have powers of n.

1. The series is absolutely convergent when:

lim
n→∞

|an|
1
n = L < 1

2. The series is divergent when:

lim
n→∞

|an|
1
n = L > 1 or =∞

3. Completely inconclusive when:

lim
n→∞

|an|
1
n = L = 1

2.6 Alternating Series Test

Definition 2.8. An alternating series is one where the terms alternate between positive and
negative terms. They are in the form of:

an = (−1)nbn

where bn is the absolute value of the sequence. It can also be present in trigonometric functions
as well:

cos(nπ) ≡ sin

(
π

2
+ nπ

)
≡ (−1)n

If the following rules are satisfied, then the series is convergent. If they are not satisfied, then
we cannot say anything and need to find another test:

• bn is decreasing

• the limit of bn as n tends to infinity is zero.

2.7 Estimating Sums

The error involved in using the partial sums sn to approximate a convergent series: if s ≈ sn,
then, the error given by the remainder term Rn = s− sn
Theorem 5 (Alternating Series Estimation). If s =

∑
(−1)n+1bn, where bn > 0 is the sum of

an alternating series that satisfies the alternating series test rules, then,

|Rn| = |s− sn| ≤ bn+1

2.8 Strategy for Testing Series

1. Classify according to form: if we are asked to compute the sum, then we know that the
series must be one that can be studied using a telescopic series or a geometric series (for
now).

2. Always use the test for divergence at the beginning.

3. P-series-type series will be rendered inconclusive by the root an ratio tests.

4. Use the integral test when the summand is easy to integrate.
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2.9 Power Series

Definition 2.9. A power series is a series of the form:
∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + c3x
3 + ...

Power series converge for some values of x and diverge for other values of x. The radius
of convergence is a quantity r in the range [0,∞[ with the following property: the series
converges for |x − c| < r. It fails to converge when the reverse holds. Anything can happen
when |x− c| = r.

Steps for obtaining the interval of convergence of a power series:

1. First obtain the radius of convergence. You generally do this using the root or ratio test.

2. Then, you need to check the end-points (where equality holds). You need to use a test
other than root or ratio.

2.10 Representations of Functions as Power Series

Helpful rules for determining the radius of convergence for some power series compositions.
Define the following:

f(x) =
∞∑
n=0

αnx
n r > 0

g(x) =
∞∑
n=0

βnx
n s > 0

Then, f(x) and g(x) can be combined in various ways:

• Linear combinations: µf(x) + λg(x) =
∑

(µαn + λβn)

– Radius of convergence ≥ min{r, s}.

• Multiplication of f(x) and g(x): r ≥ min{r, s}.

• Division: suppose g(0) = β0 6= 0. Then: f(x)
g(x)

. All we can say is that r is strictly positive.
To compute the coefficients, equate the coefficients and recursively solve for them.

• You can term-by-term integrate and differentiate: you’d obtain the same radius of con-
vergence, but the interval of convergence may change.

• Compositions: g(f(x)). r > 0 unless f(x)]s radius of convergence is infinite. Then, all we
can say is that the radius will be at least r.

• Useful theorem: The radius of convergence of a function centred at a is determined by
the distance to the nearest “blow-up” (function undefined) of the function in both R and
C.

Definition 2.10. Suppose that f is n + 1-times differentiable at c. Then, it has the finite
expansion of the form:

f(x) = f ′(x) + f ′(c)(x− c) + ...+
1

n!
f (n)(c)(x− c)n +Rn
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For some remainder Rn. The function minus the remainder is called the Taylor Polynomial
of degree Pn. The Taylor series is given by:

f(x) =
∞∑
n=0

f (n)(c)

n!
(x− c)n

2.10.1 Useful Taylor Series Expansions about x = 0:

ex =
∞∑
n=0

xn

n!
= 1 + x+

1

2
x2 +

1

3!
x3 +

1

4!
x4 + ...

cos(x) =
∞∑
n=0

(−1)nx2n

(2n)!
= 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + ...

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + ...

1

1− x
=
∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + ...

cosh(x) =
∞∑
n=0

(−1)nx2n

(2n)!
= 1 +

1

2!
x2 +

1

4!
x4 +

1

6!
x6 + ...

sin(x) =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
= x+

1

3!
x3 +

1

5!
x5 +

1

7!
x7 + ...

(1 + x)n = 1 + nx+
(n)(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + ... =

∞∑
n=0

(
n

k

)
xk

3 Vector-Valued Functions and Space Curves
Vector functions are functions of the form:

t 7→ (u1(t), u2(t), u3(t)) = u(t)

An example of a vector function are space curves. For example,

t 7→ (x(t), y(t), z(t)) = r(t)

is a curve in 3-space or t-time. We can obtain the location of the particle at time t from r(t).

Definition 3.1. The velocity of any space-curve is the derivative of r(t):

r′(t) =
dr

dt
=

(
dx

dt
,
dy

dt
,
dz

dt

)
(8)

Definition 3.2. The speed of any space curve is the magnitude of r′(t):

v = σ = ||r′(t)|| (9)

Definition 3.3. The arc-length of the trajectory is gives us the distance travelled between
t = a and t = b. It is given by: ∫ b

a

||r′(t)||dt =
∫ b

a

σdt (10)

There are two parameterizations of a curve: with respect to time t and with respect to arc-
length s. Obtaining an arc-length parametrization is nice, because it makes the speed one,
which makes computation easier. If |dr

ds
| = 1, then, s is an arc-length parameter.
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3.1 Frenet-Serret Frame

The Frenet-Serret frame consist of three unit vectors: the unit tangent vector T̂ , the unit
normal vector N̂ , and the unit binormal vector B̂.

Definition 3.4. The unit tangent vector T̂ points in the direction of the curve. There are
two ways we can obtain this vector, depending on the parameterization that we have:

T̂ =
dr

ds
(11)

T̂ =
r′(t)

||r′(t)||
(12)

The first is when we have a unit/arc-length parameterization; the second is when we are given
an arbitrary parameterization.

Definition 3.5. The normal unit vector is the derivative of T̂ with respect to arc-length,
divided by its length.

N̂ = B̂ × N̂ (13)

dT̂

ds
= κN̂ (14)

Note that this vector is only defined if κ 6= 0.

Definition 3.6. The binormal unit vector is the cross-product of T̂ and N̂ .

B̂ =
r′(t)× r′′(t)
||r′(t)× r′′(t)||

(15)

B̂ = T̂ × N̂ (16)

Definition 3.7. The curvature κ of a curve measures the rate at which the curve is turning
away from a tangent line at any point. It measures the curve’s failure to be a line. It is defined
as:

κ = κ(s) =

∣∣∣∣∣∣∣∣dT̂ds
∣∣∣∣∣∣∣∣ (17)

κ =
||r′(t)× r′′(t)||
||r′(t)||3

(18)

If the curve is planar, then curvature is given by

κ =
||f ′′(t)||

(1 + f ′(t)2)3/2
(19)

Definition 3.8. The torsion τ of a curve is given by:

dN̂

ds
= −τB̂ − κT̂ (20)

τ =
(r′(t)× r′′(t)) · r′′′(t)
||r′(t)× r′′(t)||2

(21)

Definition 3.9. The normal plane is given by (x − r) · T̂ = 0. It is the plane that passes
through r and is normal to T̂ and is therefore normal to the curve.
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Definition 3.10. The osculating plane is given by (x−r) · B̂ = 0. It is the plane that passes
through r and contains T̂ and N̂ .

Definition 3.11. The radius of curvature is given by

ρ =
1

κ
= κ−1

Definition 3.12. The centre of curvature is given by

r + κ−1N̂ (22)

It lies on the osculating plane.

Together, the TNB vectors and the scalars above make up the Frenet-Serret Formulas,
which are given by:  T̂ ′N̂ ′

B̂′

 =

 0 κ 0

−κ 0 τ

0 −τ 0


 T̂N̂
B̂

 (23)

if we have an arc-length parameterization and

d

dt
= ||r′(t)||

 0 κ 0

−κ 0 τ

0 −τ 0


 T̂N̂
B̂

 (24)

for an arbitrary parameterization with respect to t.

3.1.1 Acceleration

Acceleration is the second derivative r′′(t) of r(t). There are two components of the acceleration
vector:

a(t) = aT (t)T̂ (t) + aN(t)N̂(t) (25)

• The tangential component, which scales the unit tangent vector. Two ways to compute
this:

aT =
dσ

dt
(26)

aT =
r′(t) · r′′(t)
||r′(t)||

(27)

• The normal component, which scales the unit normal vector

aN = κσ2 (28)

aN =
||r′(t)× r′′(t)||
||r′(t)||

(29)
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Figure 1: Polar coordinates

4 Parametric Equations & Polar Coordinates

4.1 Useful Parameterizations to Know

• A circle can be parameterized by x = cos(t), y = sin(t), 0 ≤ t ≤ 2π.

• A circle can also be parameterized like this: x = sin(2t), y = cos(2t), 0 ≤ t ≤ 2π.

• A general parameterization of a circle with centre (h, k) and radius r is given by:

x = h+ r cos(t) (30)
y = k + r sin(t) (31)
0 ≤ t ≤ 2π (32)

• A cycloid can be parameterized by:

x = r(θ − sin(θ)) (33)
y = r(1− cos(θ)) (34)
θ ∈ R (35)

4.2 Polar Coordinates

In the polar coordinate system, each point has many representations. The connection between
polar coordinates and rectangular coordinates is:

x = r cos(θ) (36)
y = r sin(θ) (37)

To find r and θ when x and y are unknown:

r2 = x2 + y2 (38)

tan(θ) =
y

x
(39)

4.2.1 Rules of polar coordinates

• r = a generally describes a circle centred at 0 with radius |a|.

– r = 2a cos(θ) is a circle of radius |a| with centre (a, 0).
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– r = 2b sin(θ) is a circle of radius |b| with centre (0, b).
– r = 2a cos(θ) + 2b sin(θ) is a circle with radius

√
a2 + b2 with centre (a, b).

– r = a ∓ a cos(θ) and r = a ± sin(θ) describes a cardioid. Heart-shaped graph that
always contain the origin.

• θ = β is a line that goes through the origin and makes an angle of β with the positive
x− axis; alternatively, it is a line through the origin with slope tan(β).

• r = cos(θ) = a describes the vertical line x = a.

• r = sin(θ) = b describes the horizontal line y = b.

4.2.2 Areas and Lengths of Polars

The area of a general polar region R bounded by the polar curve r = f(θ) and by the rays
θ = a and θ = b. The area A over the polar region is given by:

A =

∫ b

a

1

2
[f(θ)]2dθ (40)

It’s useful to think of area as being swept out by a rotating ray through 0 that starts with an
angle a and ends with b.

5 Multivariable Functions and Extrema

5.1 Limits and Continuity

Definition 5.1. Let f : D → R be a function with D ⊆ R2 and fix a point (a, b) ∈ D. We say
that the limit of f(x, y) as (x, y) approaches (a, b) is L if for every ε > 0 we can find a δ > 0
such that if 0 <

√
(x− a)2 + (y − b)2 < δ and (x, y) ∈ D, then:

|f(x, y)− L| < ε (41)

The limit is denoted by:

lim
(x,y)→(a,b)

f(x, y) = L (42)

We say that the limit exists at a given point (a, b) if the limit equals that value for every possible
direction we can approach (a, b) in.

Definition 5.2. We say that a function is continuous at (a,b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b) (43)

5.2 Partial Derivatives

Definition 5.3. Let f : D → R be a function with domain D ⊆ R2 and fix (a, b) ∈ R2. Then,
the partial derivative of f with respect to x at (a, b) is given by the limit:

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)
h

(44)

The partial derivative with respect to y is given by

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)
h

(45)
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These are called the first partial derivatives. If we take further partical derivatives, we can
obtain the second-partial derivatives of f .

Theorem 6 (Clairaut’s Theorem). Suppose that the mixed second partial derivatives ∂2f
∂x∂y

and
∂2f
∂y∂x

exist and are continuous in the open neighbourhood of (a, b). Then, the second partial
derivatives are equal at (a, b) for nice functions.

5.3 Linear Approximations and the Tangent Plane

Definition 5.4. The tangent plane is given by:

f(x+ δx, y + δy) = f(x, y) +
∂f

∂x
(x, y)δx+

∂f

∂y
(x, y)δy + ERROR

If the error term tends to 0, then f can be locally approximated by a linear plane. In R3, this
is given by:

f(x, y) = f(x0, y0) +
[
∂f
∂x
(x0, y0)

∂f
∂y
(x0, y0)

] [x− x0
y − y0

]
+ ERROR (46)

We can also find the tangent plane using the gradient:

∇F (a, b, c) ·

x− ay − b
x− c

 = 0 (47)

5.4 The Chain Rule and the Total Derivative

5.4.1 “What the hell is a Jacobian?” - Drury

Motivation: the Jacobian matrix is important f because if f is differentiable at a point x,
then, the Jacobian defines a linear map from Rm → Rn, which is the best best linear
approximation of the function f near the point x.

Definition 5.5. The Jacobian Matrix is the matrix containing all first-order partial deriva-
tives of a vector-valued function. It comes from linearizing the function. Supposed f : Rn → Rm

is a function which takes as input the vector x ∈ Rn and produces as output the vector
f(x) ∈ Rm. then, the Jacobian matrix Jac(F) is an m× n matrix and is defined as:

Jac(F ) =
[
∂f
∂x1

. . . ∂f
∂xn

]
=


∂f1
∂x1

. . . ∂f1
∂xn... . . . ...

∂fm
∂x1

. . . ∂fm
∂xn

 (48)

5.4.2 Chain Rule

We need to use the chain rule whenever we have compositions of functions, i.e., f(g(x)). In
Calc 3, we need to deal with compositions of vector-valued functions. Each vector-valued
function has it’s own Jacobian matrix associated with it, which describes the linear map that
the function induces. Let g : Rp → Rq be a function of p variables and let f : Rq → Rr be a
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function of q variables. Then, we can write out the Jacobian matrices for each of these maps:

g′(t) =


∂x1
∂t1

. . . ∂x1
∂tp

... . . . ...
∂xq
∂t1

. . . ∂xq
∂tp



f ′(x) =


∂y1
∂x1

. . . ∂y1
∂xq

... . . . ...
∂yr
∂x1

. . . ∂yr
∂xq


Since we are composing linear maps, and since compositions of maps for matrices is the same
as matrix multiplication, to obtain the Jacobian matrix of the transformation, we just multiply
the Jacobians:

h′(t) = f ′(g′(t))g′(t) (49)
∂y1
∂t1

. . . ∂y1
∂tp

... . . . ...
∂yr
∂t1

. . . ∂yr
∂tp

 =


∂y1
∂x1

. . . ∂y1
∂xq

... . . . ...
∂yr
∂x1

. . . ∂yr
∂xq



∂x1
∂t1

. . . ∂x1
∂tp

... . . . ...
∂xq
∂t1

. . . ∂xq
∂tp

 (50)

5.4.3 Implicit Functions

Theorem 7 (Implicit Function Theorem). If

1. F (a, b) = 0 and

2. ∂F
∂y
(a, b) 6= 0

then, the equation F (x, y) = 0 defines y as a function of x near the point (a, b) and the derivative
of y as a function of x near a is given by:

y′(x) =
dy

dx
(x) = −

∂F
∂x
(x, y)

∂F
∂y
(x, y)

(51)

There are 3 cases of this theorem:

1. Case 1: x and y are both scalars: x ∈ R, y ∈ R, f(x, y) = 0. Then:

∂F

∂y
(x, y) 6= 0⇒ y = y(x) (52)

2. Case 2: x is a vector, y is a scalar: x = (x1, ..., xn) ∈ Rn, y ∈ R, F (x1, ..., xn, y) = 0.
Then, if

∂F

∂y

(
x1 . . . xn y

)
6= 0⇒ y = y

(
x1 . . . xn

)
(53)

3. Case 3: both x and y are vectors: t =
(
t1 . . . tp

)
∈ Rp, x =

(
x1 . . . xn

)
∈ Rn. The

condition then becomes:

F1(t1, ..., tp, x1, ..., xn) = 0

...
Fn(t1, ..., tp, x1, ..., xn) = 0
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Therefore, F = (F1, ..., Fn). The Jacobian becomes:

Jac(F ) = F ′ = Ft|Fx =


∂F1

∂t1
. . . ∂F1

∂tp
∂F1

∂x1
. . . ∂F1

∂xn
... . . . ...

... . . . ...
∂Fn

∂t1
. . . ∂Fn

∂tp
∂Fn

∂xn
. . . ∂Fn

∂xn


The condition here is that det(Fx) 6= 0 so that we can invert the matrix. Then, we can
write:

x(t) =

 x1(t1, .., tp)...
xn(t1, ..., tp)

⇒ x′(t) =


∂x1
∂t1

(t) . . . ∂x1
∂tp

(t)
... . . . ...

∂xn
∂t1

(t) . . . ∂xn
∂tp

(t)

 = −F−1x Ft

5.5 The Gradient and Directional Derivatives

Definition 5.6. Let f : R3 → R be a scalar function f(x, y, z). Then, the gradient of f ,
denoted by ∇f , is defined as:

∇f = grad(f) =
(
∂f
∂x

∂f
∂y

∂f
∂z

)
(54)

Definition 5.7. Suppose u is a unit vector and f(x, y, z) is a scalar function. Then, the
quantity

Duf(x, y, z) = ∇f(x, y, z) · u (55)

is called the directional derivative of f in the direction u.

• Duf takes its maximum value when u is in the direction of ∇f and the maximum value
is equal to ||∇f ||.

• The minimum value is −||∇f || and it happens when u = −||∇f ||−1∇f .

• ∇f points in the direction of greatest increase of f .

• The greatest rate of increase is equal to ||∇f ||.

• ∇f is normal to the level surfaces of f .

5.6 Extreme Values

A critical point of a scalar-valued function f is a point where ∇f = 0.

Definition 5.8. TheHessian matrix is a matrix that contains the second-order partial deriva-
tives of a scalar-valued function. The mixed derivatives are the entires off the main diagonal.
Because of Clairaut’s Theorem, this matrix is symmetric. In the 2-by-2 case, this is:

H(f) =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]
(56)

We use the Hessian to conduct a second-derivative test, which we need to do to classify critical
points:

1. det(H) < 0→ saddle
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2. det(H) > 0→

(a) ∂2f
∂x2

> 0→ minimum

(b) ∂2f
∂x2

< 0→ maximum

3. det(H) = 0→ inconclusive; beyond scope of course.

5.7 Maxima and Minima on Restricted Domains

Theorem 8. If f is continuous and defined on a closed, bounded set, then, it necessarily will
attain a maximum and minimum. If you are interested in finding maximum and minimum
values and where they are located, then, there are three places that you need to look:

1. Points where f is not differentiable.

2. Points where f ′(x) = 0.

3. Boundary points.

5.8 Lagrange Multipliers

Motivation: to introduce a better way to optimize a function subject to a restricted domain;
we want to find constrained extrema. The idea is to introduce a new variable – the lagrange
multiplier. We typically are given an objective function f to optimize subject to a contraint
g. Then, the solution to the following system of equations plus the constraint g will give us our
critical points:

∇f = λ∇g (57)

If we are given two constraints: g and h, then, the previous equation becomes:

∇f = λ∇g + µ∇h (58)

6 Multiple Integrals

6.1 Double Integral

In Calc 2, integration happened over a line. Here, double integrals occur over some rectangle
or general region.

Definition 6.1. The double integral of f over the rectangle R = [a, b]× [c, d] is∫ ∫
R

f(x, y)da =

∫ x=b

x=a

∫ y=d

y=c

f(x, y)dydx (59)

6.1.1 Properties of Double Integrals

1. Linearity: you can break up linear combinations of double integrals like in Calc 2.

2. Positivity: if f(x) is positive in R, then the double integral is also positive in R.

3. One: ∫ ∫
R

1dA = Area of A
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4. If R is a union of two disjoint pieces, then:∫ ∫
R1∪R2

fdA =

∫ ∫
R1

fdA+

∫ ∫
R2

fdA

Theorem 9 (Fubini’s Theorem). If R is a bounded, continuous rectangle [a, b]× [c, d] and f is
also bounded, then you can reverse the order of integration without changing the solution:∫ b

x=a

∫ d

y=c

f(x, y)dydx =

∫ d

y=c

∫ b

x=a

f(x, y)dydy (60)

The average value of the area in a region D is given by:

Avg =
1

area(D)

∫ ∫
D

f(x, y)dA (61)

6.2 Volumes with Double Integrals

With volume questions, we are basically subtracting areas under surfaces – zu and zl

V ol =

∫ ∫
R

(zu(x, y)− zl(x, y))dA (62)

6.3 Double Integrals in Polar Coordinates

To obtain the area bounded by two angles and two functions r, we use the following formula:∫ θ2

θ=θ1

∫ r=r(θ)

r=0

rdrdθ (63)

The r is what we use when we have a change of variables; it’s the Jacobian.

6.4 Surface Area

Aim: compute the surface area of a piece z = z(x, y) that lies above the region R in the
xy-plane. The formula that we use is:

∫ ∫
R

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dA (64)

6.5 Spherical Coordinates

In spherical coordinates, we have:

• ρ is the distance from the origin to the point. Must be positive or zero.

• θ is hte same angle we say in polar/cylindrical coordinates; it is the angle between the
positive x axis and the line r from polars and cylindrical. No restrictions on it.

• φ is the angle between the positive z-axis and the line from the origin to the point
0 ≤ φ ≤ π.
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6.5.1 Conversions: Spherical to Rectangular

• x = ρ sin(φ) cos(θ).

• y = ρ sin(φ) sin(θ).

• z = ρ cos(θ).

Helpful patterns:

• ρ = a describes a sphere of radius a centred at the origin.

• φ = α describes a cone that makes an angle of α with the positive z = axis.

• θ = β describes a vertical plane that makes an angle of β with the positive x-axis.

6.5.2 Setting up triple integrals with sphericals

You can use triple integrals to obtain solids; you integrate over a volume E with this.

V =

∫ ∫ ∫
E

ρ2 sin(φ)dρdφdθ

ρ2 sin(φ) is the change of variable Jacobian.

6.5.3 Quadratic Solids

Knowing these can be useful for figuring out regions of integration

• Ellipsoid

x2

a2
+
y2

b2
+
z2

c2
= 1

• Cone

x2

a2
+
y2

b2
=
z2

c2

This cone will open along the positive z-axis.
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• Cylinder

x2

a2
+
y2

b2
= 1

The cross-section here is an ellipse. It is centred on the axis corresponding to the variable
that does not appear in the equation.

• Hyperboloid of one sheet

x2

a2
+
y2

b2
− z2

c2
= 1

This is centred along the axis with the negative in front of it.
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